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Dynamics over Number Fields

K = global field, N > 1.

¢ : PV(K) — PY(K) morphism over K, degree d > 2.
(N =1: ¢ € K(z) is a rational function.)

Preper(¢, K) := {preperiodic points of ¢ in P!(K)}.
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Theorem (Northcott, 1950): Let K be a global
field. Let ¢ : PY(K) — PY(K) be a morphism, defined
over K, of degree d > 2. Then

#Preper(¢, K) < co.

Dynamical Uniform Boundedness Conjecture
(Morton & Silverman, 1994):
For any integers d > 2, D > 1, and N > 1, there is a
constant C' = C(d, D, N) such that
e for any number field K with [K : Q] = D, and
e for any morphism ¢ : PV (K) — PV (K) defined over
K and of degree d,

#Preper(¢, K) < C(d, D, N).

Conjecture (DUBC Lite):
There is a constant C' > 0 so that for any quadratic
polynomial ¢ € Q|z],

#Preper(¢, Q) < C.

Refined DUBC Lite Conjecture
(Poonen, 1998):
The DUBC Lite Constant is 9.



Recall:

Definition. Let K be a global field, v € M} non-
archimedean, and ¢ € K(z) a rational function.

We say ¢ has good reduction at v if ¢ may be written
in homogeneous coordinates as [f, g], i.e.,

() =

for some f, g € O,|x, y| homogeneous of the same degree
such that:

the reductions f and g have no common zeros besides

(0,0).

Idea: ¢ still “makes sense” everywhere modulo v.



Theorem.
(Pezda, Morton & Silverman, Zieve, 1990s).
If ¢ € K(z) with deg¢ = d has good reduction at v,
then
#Preper(¢, K) < O(dVP).

p, is the prime ideal in K associated to v, and Ny, is
its norm. |

In fact, they proved a bound on the length of the longest
periodic cycle.

Somewhat better bounds are possible if you know two
good primes.

The proof works entirely in the local field K.



Theorem. (Call & Goldstine, 1997.) Let ¢ € Q and
let ¢(z) = 2% + ¢. Let s be the number of bad primes
(i.e., one plus the number of distinct primes dividing

the denominator of ¢).
Then
#Preper(¢,Q) < 1+2°7 = 0(2°)

except for ¢ = —2, with #Preper(¢, Q) = 6.

Idea of Proof:
1. (p-adic dynamics step):

Recall I, = filled Julia set of ¢ at p.
Clearly Preper(¢,Q,) \ {co} C K,.

(a.) For good primes p, prove that K, sits inside a unit

disk.

(b.) For bad primes p, prove that K, sits inside a union
of two unit disks.
(Slightly different for p = 2, 00.)

2. (global step):

In each choice of one unit disk at each prime (or interval
length 1 at v = 00), there is only one rational number.



Theorem. (RB, 2004.) Let K be a global field, and let
®(z) € K|z] be a polynomial of degree d > 2. Let s be

the number of bad primes (i.e, not potentially good)
of ¢. Then

2
#Preper(¢, K) < O d -slogs | .
log d

In fact, for s large enough, the bound is

d* — 2d + 2)[tlog,t + tlogylog,t + 3t] + 1.
d

where

S if there are no archimedean primes

t = Dlogd
s+

4log 2

where D = [K : Q)] in the number field case.

otherwise,



Recall:

Definition. Let v € Mk, and let ¢ € K|z]| be a poly-
nomial of degree d > 2. Let C, be the completion of an
algebraic closure of K.

The filled Julia set of ¢ at v is

Koo ={x € C,:{|¢"(x)|s}n>0 is bounded}

Note:
(1) All preperiodic points (besides 0o) lie in Ky,
(2) If ¢ is good at v, then Ky, = D(0,1).

(3) If ¢ is monic, then the smallest disk D(a, r) contain-
ing Ky, has radius r > 1.



Lemma 1. Let K,v,¢,d be as above. Assume ¢ is
monic, and let r4, be the radius of the smallest disk in
C, containing Ky,

Given N > 2/ let xy,...,zx € Ky,. Then

H z; — xj|v < B,(N) .Técij—l)Nlongj
i#]
where
By(N) = {N N if v is archimedean,

1 if v 1s non-archimedean.

Note:

(1) If ¢ not monic, you get a correction factor of
|ag| "NV =1/(@=1) on the right.

(2) The N¥ factors can probably be substantially re-
duced (but not eliminated).

3) Otherwise, these bounds are sharp: ¢(z) = 2% + c.
(3) , P



Proof.
Let D(a,rg,) be the smallest disk containing Ky ,.

For any integer 5 > 0, write
j=co+crd+cod> + -+ cprd”
in base d. (0 <¢; <d—1.) Let

M
fi(z) = | [16'(2) — a7,
i=0
so that f; is a monic polynomial of degree 7 with

|fj(x)|fu S T;?:CI+CQ+..._|_CM

for x € Ky .

Meanwhile, H(CCZ — x;) = £(det V)?, where V is the
7]
Vandermonde matrix

1z zf ... x{v_l
1 @y x5 ... :cév_l

2
1oy xy ... xy

10



Since each f; is monic, we can apply column operations
(starting from the right) to obtain det V' = det A, where

1 filzr) falze) .o fyoa(z)]
e 1 fl(fv2) fz(fvz) fN—?(fC2)

_i fl(;UN) falzw) .. fy-1lzn)]

By Hadamard’s inequality, |det A|, is bounded above by
the product of the norms of the columns.

(Use the L?norm for archimedean v, and L*®-norm for
non-archimedean v.)

The f; column has norm at most vV - T;O;L"JFCM if v is

. . co+---+c . . .
archimedean, or simply r ¢Ov M if v is non-archimedean.

Hence

H 2 — 25|y < By(NV) H T;SOJF...MM)’

i] j=0

11



That is,
E(N.d
[]12i — 2510 < Bu(N) -1 09,
i#]
where

Nd _ZZCO —|—Cl '+CM(j)]

= tw1ce the sum of all base-d coefficients
of all integers from 0 to N — 1.

Finally, it is elementary to show that
E(N,d) < (d—1)Nlog,; N.

12



Lemma 2. Let K,v,¢,d, and r4, be as in Lemma 1.
Assume that

{(4 +4/3)(d — 1) if v is archimedean,
Tév >

1 if v 1s non-archimedean.

Then there is an integer 1 < m < d — 1 and disjoint sets
Vi, Vo C C, such that

o ICQS,U — Vvl U ‘/27

o : Vi = Ky, is m-to-l,
op:Vo—» Ky, is (d—m)-to-1, and
e For z1,..., oy € V],

[T s = il < By DM Ioma Y= Fn
i#]

where

P,(N) = N — (1 —log;m).

1 if v 1s non-archimedean.

B/(N) = {NN(d — 1)P=N)if v is archimedean,

(Throw in the same correction factor if ¢ is not monic.)
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Theorem: Sketch of Proof.
We can reduce to the case that ¢ monic.

For each v € M, let R, = TZUU.

[Actually, adjust R, slightly at archimedean v.|

Let w € Mg be the absolute value for which R,, is largest.

If V1 contains N distinct rational preperiodic points
x1,...,xny € V1 CC,,
then by the product formula,

L=]11 11 l=i ==l < T 1] i — =503

1#] vEM v bad i#j

(d—1)N

][ By or BY)

v arch

IA

R@_Upm(N) H RLong
v bad

(d—1)N

I

: H (B, or B))

v arch

[ Rfulogd N—Pm(N)]
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Since R, > 1, we only need to choose N large enough so
that

d—m
m(d — 1)

to get a contradiction.

N+ (1 —log;m) <0

slog; N —

Letting N be slightly bigger than
m(d — 1)

d—m

N, = slog,; s

does the trick.

Do the same for V5. So if the total number of ratio-
nal preperiodic points is at least N, + Ng_,,, we get a
contradiction.

The worst case is m = 1, which gives a total number of
points on the order of at most

1+ (d—1)%slog,s = (d° — 2d + 2)slog s.

15



Heights

The standard height on PV (K) is
h([:lfo, “ e ,ZCND —

1
w0 > Ky - Q] logmax{|zoly, . .., [zxl}-
. veEMp

For K = Q and for z; € Z with ged(xg, ..., xy) = 1, we
can write

h([xo, ..., zN]) = logmax{|Zo|eos - - - 5 |TN|oo}

(Analogous definition for function fields.)

Key properties:

oIf » : PV — PV is any morphism of degree d, then
h(¢(x)) —d - h(zx) is a bounded function of .

e (Non-degeneracy) For global fields K and any
real number B, the set of K-points of height at most
B is finite.

16



Canonical Heights

Given a morphism ¢ : PV — PV defined over K of degree
d > 2, the canonical height for ¢ on PV (K) is

ho(a) = lim -1 (¢"(z).

We have:
e The limit converges.

® iy — h is bounded.

o hy(9(2)) = d- ho(a)
® h¢($) Z 0.
e For NV =1, ¢ a polynomial, and z # oo:

ho(z) =0 <= z € Ky, for all v € M.

e If  is preperiodic, then iL(.’IZ) = 0.
e For global fields, if h(x) = 0, then x is preperiodic.

17



Points of Small Canonical Height

a.k.a. “Almost” Preperiodic Points
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N

Ratio is hy(153/140)/h(¢) = 0.0117. ..
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Another Point of Small Canonical Height

1 97
E le. SR S 5)
xample. ¢(z) 1t ToAt
—7 =19 = —1 — 1 — 9
— 11 = —06 H H4323 >
4 512

he(—7) = 0.0011. . ., vs.
h(p) = log(97) = 4.57 . ..
Ratio is hg(—7)/h(¢) = 0.00025. . .

Conjecture. (Silverman)

Let K be a number field and d > 2.

There is a constant C' = C(K, d) such that if ¢ € K(z)
with deg ¢ = d, then for any non-preperiodic P € P!(K),

he(P) > Ch(g).
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Function Fields over Arbitrary Fields

Oveir a global field K, we have: x € PV (K) is preperiodic
iff h¢($) = 0.

Idea of Proof: Preperiodic = height zero is easy.

The converse follows from non-degeneracy.

But for general function fields K (e.g. over C), we don’t
have non-degeneracy.

Example.

K = C(T), and ¢(z2) = 22

Then ¢ has countably many preperiodic points and un-
countably many points of canonical height zero.
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But, if there is at least one bad prime, then the same
argument as the main Theorem still works:

Theorem. (RB, 2005.)
Let K be a function field over an arbitrary field IF, and
let ¢ € K|z] with deg¢p > 2. Suppose that ¢ is not
isotrivial, even after a K-rational change of coordinates.
Then

z € P(K) is preperiodic iff hg(z) = 0.
In fact, there are at most O(slog s) such points, where s
is the number of bad primes

Extended:

e by Baker (2006) to rational functions on P!
e by Chatzidakis and Hrushovski (2007) to PV
e Cf. also Petsche, Szpiro, Tepper (2008) for PV
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Dynamical Mordell Lang

Conjecture.
(Dynamical Mordell-Lang Conjecture; posed by Ghioca
and Tucker, 2007)

Given:

e X . a quasiprojective variety over C
e V C X, asubvariety

e ®: X — X, amorphism

o Pc X(C)

Then {n > 0 : ®"(P) € V} is a union of finitely many
arithmetic progressions and finitely many other integers.

(Essentially) equivalently, if V/(C) N {®"(P) : n > 0} is
infinite, then there is a subvariety W C V and an integer
m > 1 such that ®™(W) C W.
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Theorem. (RB, Ghioca, Kurlberg, Tucker, 2007)
Suppose X = (P1)Y and ® = (¢, ..., ¢), where

e ¢ € Qfz), _

e IV C X is a subvariety defined over Q,

eand P € X(Q).

If V is a curve and ¢ has no non-exceptional periodic
critical points,

OR

it V., P and ¢ are defined over Q, and ¢ is a quadratic

polynomial,

then {n > 0 : ®"(P) € V'} is a union of finitely many
arithmetic progressions and finitely many other integers.
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Idea of Proof:
e F'ind p at which everything has good reduction.

e The residue classes are the periodic points of ¢.

e Use Rivera-Letelier’s analysis of dynamics on peri-
odic components to construct an integer k£ and power
serles

Fp1(2), ..., Fug(z) € Zp|[2]]

for all £ = 0,...,k — 1 so that for all n > 0 large
enough,

OHR(P) = (Fyi(n),. .., Fry(n)).

o Let [(V) = (Hy,...,Hp,) be the ideal of V.
Let Gg,j = H] O (Fg)l, ceey Fg,g) S Zp[[ZH
For any n large enough,

R o I
Grjn)=0forall j=1,...,m

e But a nontrivial power series in Z,||z]] can only have
finitely many zeros in Z,.
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