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Mathematical formulation

In the simplest setting, in 2D fluid region
{(x , y) : −∞ < y < η(t; x)}

the velocity (u(t; x , y), v(t; x , y)) & the pressure P(t; x , y) satisfy
the Euler equations

ux + vy = 0, ut + uux + vuy = −Px ,
vt + uvx + vvy = −Py − g ;

g > 0 is the gravity constant.

The vorticity ω = vx − uy measures the local swirl or eddy.
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The wave profile is a priori unknown! Free-boundary problem.

The top boundary conditions on y = η(t; x) are

v = ηt + uηx (kinematic),

P = Patm + S
ηxx

(1 + η2
x)

3/2
(dynamic);

where S > 0 is the coefficient of surface tension.

The bottom and horizontal boundary conditions are

(u, v) → (0, 0) as y → −∞
η → 0 as |x | → ∞.
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Boundary evolution

In case ω ≡ 0 (irrotational setting), with velocity potential

φx = u, φy = v the problem reduces to

∆φ = 0 in −d < y < η(t; x),
ηt= φy − φxηx on y = η(t; x),

φt= −gη + S
ηxx

(1 + η2
x)

3/2
− 1

2 |∇φ|
2 on y = η(t; x),

∇φ→ 0 as |x | → ∞.

The evolutionary nature is on the free surface.
In case of general vorticities (rotational setting), additional
nonlinearity in the field equation.
Why vorticity? (i) Real flows possess vorticities. (ii)
Stagnation (Ko-Strauss), Stability (Lin-Hur.)
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Overview on the Cauchy problem

Time evolution of the wave profile and velocity distribution pose as
an initial value problem provided with the initial data. For this
initial value problem one studies well-posedness. Well-posedness
usually summarizes existence, uniqueness and continuity properties
in time and with respect to initial data.

Chief difficulties are:
(i) possible Rayleigh-Taylor instability of the linear part and
(ii) severe nonlinearity (quasilinear).

...(water waves), which are easily seen by everyone and which are
used as an example of waves in elementary courses... are the worst
possible example... They have all the complications that waves can

have.
Richard Feynman.
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Brief history, in the Sobolev setting

gravity waves, S = 0

Nalimov (1974), Yosihara (1982): local well-posedness when
the free surface is small localized perturbation from being flat.

The smallness implies the Taylor-Young inequality

∇P · n̂ < 0

(connected to the Rayleigh-Taylor instability).

Beale, Hou & Lowengrob (1993): the linearized problem is
locally well-posed
(i) for S = 0, if and only if the Taylor-Young inequality holds,
(ii) for S > 0, without restrictions.
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Sjue Wu (1997): local wellposedness for the nonlinear
problem for general data. The Taylor-Young inequality holds
so long as the free surface is nonself-intersecting.

Capillary waves, S > 0

Yosihara (1983), Iguchi & Tani (2002): local well-posedness
for small data

Ambrose & Masmoudi (2005) for general data,
Shatah & Zeng (06, 08) with geometric approach.

well-posedness for gravity waves as weak-* limit as S → 0.

(see also Christodoulou-Lindblad, Coutand-Shkoller, Lannes)
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Question

Due to its nonlinearity, all existing well-posedness results relative to
the water-wave initial value problem rely on energy estimate only.
Further analysis would help to better understand the behavior of
solutions.

Surface tension (S > 0) has certain regularizing effects in the
linear analysis.
Is it possible to use them in in order to prove that the profile of the
wave gains some smoothness in later time (Smoothing Effect)?
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Further formulation when ω ≡ 0

Let ψ(t, x) = φ(t, x , η(t, x)). With Dirichlet-Neumann operator

G (η)ψ :=
√

1 + (∂xη)2
∂φ

∂n

∣∣∣
y=η(t,x)

,

the system may be written: for t ∈ R+ and x ∈ R

∂tη =G (η)ψ,

∂tψ =−gη + S
∂2

xη

(1 + (∂xη)2)3/2

−1

2
(∂xψ)2 − 1

2

1

(1 + (∂xη)2)
(G (η)ψ + ∂xη ∂xψ)2.
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Dispersion relation

Linearize around η ≡ 0 & ψ ≡ 0 (flat surface, no motion) to obtain

∂tη = H∂xψ, ∂tψ = −gη + S∂2
xη.

H is the Hilbert transform, Ĥf (ξ) = −isgn(ξ)f̂ (ξ). Equivalently,

∂2
t ψ = −gH∂xψ + SH∂3

xψ.

Compare to the wave equation ∂2
t ψ − ∂2

xψ = 0.

Dispersion relation:

without surface tension with surface tension

c(ξ) =
√

g/|ξ| c(ξ) =
√

S |ξ|
↓

smoothing effects!
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Finally, our formulation (inspired by

Ambrose & Masmoudi)

(The interface is a general parametrized curve.)

∂2
t u − H∂3

αu = −2u∂α∂tu − u2∂2
αu + R(t, α),

(weakly) coupled with

∂tθ = −u∂αθ + H∂αu + r(t, α).

α ∈ R: arclength parametrization,
u: modified tangential velocity,
θ: angle between tangent & x-axis.

Remainders satisfy

‖r(t, α)‖Hs ≤ C (‖u‖Hs , ‖ut‖Hs−1),

‖R(t, α)‖Hs ≤ C (‖ut‖Hs , ‖uα‖Hs ),

that is, they are lower order terms.



Kato’s smoothing for linear equation

Solution of{
(∂2

t − H∂3
α)u = 0,

u(0, α) = u0(α) and ∂tu(0, α) = u1(α)

is given via Frourier transform

û(t, ξ) = û0(ξ) cos |ξ|3/2t + û1(ξ)
sin |ξ|3/2t

|ξ|3/2

:= Ŵ0(t, ξ)û0(ξ) + Ŵ1(t, ξ)û1(ξ).

Smoothing effects for W0:

(i) ‖∂1/4
α W0(t)u0‖L∞α L2

t
≤ C‖u0‖L2

α
,

(ii) ‖∂1/4
α

∫ t
0 W0(t − t ′)f (·, t ′)dt ′‖L∞t L2

α
≤ C‖f ‖L1

αL2
t
,

(iii) ‖∂1/2
α

∫ t
0 W0(t − t ′)f (·, t ′)dt ′‖L∞α L2

t
≤ C‖f ‖L1

αL2
t
.
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Proof of (i). Let Û(t) = e iξ3/2t . Then,

∂1/4
α U(t)u0(α) = c

∫
e i(ξ3/2t+αξ)ξ1/4û0(ξ)dξ

= c

∫
e i(ηt+αη2/3)η−1/6û0(η

2/3)dη.

By Plancherel,∫
|∂1/4

α U(t)u0|2dt =

∫
|η|−1/6|û0(η

2/3)|2dη

= c

∫
|û0(ξ)|2dξ = c‖u0‖2

L2 .



Smoothing effects for inhomogeneous

equation

Solution to {
(∂2

t − H∂3
α)u = f (t, α),

u(0, α) = 0 and ∂tu(0, α) = 0

is given via Duhamel’s principle as

u(t, α) =

∫ t

0
W1(t − t ′)f (t ′, α)dt ′, Ŵ1(t, ξ) =

sin |ξ|3/2t

|ξ|3/2
.

This has the smoothing property

‖∂2
αu‖L∞α L2

t
≤ C‖f ‖L1

αL2
t
.

The smoothing effects make up for two derivatives in nonlinearity.
HOWEVER, u∂α∂tu has 2 + 1/2 derivatives in α. More than what
smoothing effects can treat.
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This results in that the equation cannot be solved by standard
argument based on an iteration argument; the solutions map
is not in C 2.

Surface tension effects produce strong nonlinear effects as well

as dispersion property. Indeed, ∂t ∼ ∂
3/2
α .

Smoothing effects for the capillary water-wave problem is too
weak to treat its strong nonlinearity. To proceed, needs to
treat u∂α∂tu differently.
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Parametrix to linear problem

View the equation as

(∂2
t + 2u∂α∂t + u2∂2

α − H∂3
α)u = R(t, α).

That is to say, view u∂α∂tu + u2∂2
αu as a ”linear” component of

the equation too, but with a variable coefficient which happens
to depend on the solution itself.

Establish analogous Kato’s smoothing effects for the equation

(∂2
t + 2c(t, α)∂α∂t + c2(t, α)∂2

α − H∂3
α)u = 0,

where c(t, α) is a (variable) coefficient function, via techniques in
microlocal analysis.



Why is there a chance that this may work? If one goes back to the
linear equation

(∂2
t − H∂3

α)u = 0

one can see that the space time Fourier transform of the solution u
lives on the surface

Ω = {(τ, ξ)/τ2 − |ξ|3 = 0},

and the ”curvature” of this surface is responsible for the
smoothing effect presented above. If one assumes that c(t, α) = c ,
then the space time Fourier transform of the solution u of

(∂2
t + 2c∂α∂t + c2∂2

α − H∂3
α)u = 0

lives on the surface

Ω̃ = {(τ, ξ)/τ2 + cξτ + c2ξ2 − |ξ|3 = 0},

that geometrically looks very much like Ω.



What one can prove in fact is the following: the solution of{
(D2

t + 2c(t, α)DαDt + c2(t, α)D2
α + iHD3

α)u = 0,

u(0, α) = u0(α), ∂tu(0, α) = u1(α)

(Dt = −i∂t and Dα = −i∂α) satisfies

‖D1/4
α u‖L∞α L2

t
≤ C (‖u0‖L2 + ‖u1‖H−3/2),

and the solution to{
(D2

t + 2c(t, α)DαDt + c2(t, α)D2
α + iHD3

α)u = f (t, α),

u(0, α) = 0, ∂tu(0, α) = 0

satisfies

‖D2−ε
α u‖L∞α L2

t
≤ Ct4ε/3‖f ‖L2

αL2
t
,

where C is a polynomial in ‖c‖W sα,∞
α W

st ,∞
t

.



Putting thing together

Kato’s smoothing effects for the equation{
(D2

t + 2c(t, α)DαDt + c2(t, α)D2
α − HD3

α)u = f (t, α),

u(0, α) = u0(α), ∂tu(0, α) = u1(α)

energy method ⇒ local well-posedness of solution to{
(∂t + u∂α)2u − H∂3

αu = R(t, α)

u(0, α) = u0(α), ∂tu(0, α) = u1(α)

in (u, ∂tu) ∈ C ([0,T ];Hs(R))× C ([0,T ];Hs−3/2(R)) for s > s0
for some s0, satisfying

‖ < α >−s−1 ∂s+1/4
α u‖L2

αL2
T
<∞

(smoothing property of solutions).
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