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How to guess which nonlinear dispersive equation behaves as a linear

one for small data?

• ∂2
tu−∆u = −u3 x ∈ R3. All solutions exist globally and asymptoti-

cally behave like linear solutions. Same result holds for the Klein-Gordon

equation (C. Morawetz and W. Strauss 1972).

• ∂2
tu−∆u = u2 x ∈ R3. Fritz John 1979 proved that small solutions

blow up. (Generalization of this result to higher dimension was given by

Walter Strauss)

• ∂2
tu − ∆u = |∂tu|2 − |∇u|2 x ∈ R3. Small solution exist globally and

behave like linear solutions v = eu−1. More generally, if the nonlinearity

satisfies the null condition we have global existence of small solutions, D.

Christodoulou , S. Klainerman 1984.



• i∂tu − ∆u = u2 (or ū2) x ∈ R3. Small solutions behave like linear

solutions. Hayashi, Mizumachi, and Naumkin 2002

• i∂tu − ∆u = |u|2 x ∈ R3. Small solutions do not behave like a linear

solutions.

• i∂tu−∆u = |u|2u vs u3 x ∈ R. T. Ozawa 1991

The Aim of the Talk

To derive and explain all of these results and to prove new results from a

simple computation involving space time resonant sets.



Time resonance

Time resonance is an ODE phenomena.

∂tu = 2iu + v2

∂tv = iv

The solution u behaves very differently from the linear equation.

u = u0e
2it + v2

0te
2it



Poincaré - Dulac Normal Forms

Given an analytic ODE

u̇ = Au + f (u) = Au + M2(u, u) + . . . u ∈ Rd

Find an analytic transformation

v = G(u) = u + H2(u) + H3(u) + . . .

where Hk is k multilinear map of u, that transform solutions of the above

equation to solutions of the linear system

v̇ = Av



Poincaré - Dulac Normal Forms (continued)

Plug v = G(u) = u + H2 + . . . into the equation to get

G′(u)(Au + f (u)) = AG(u)

and expand in a power series to find the quadratic term of G

H2(Au, u) + H2(u,Au) + M2(u, u) = AH2(u, u),

which can be solved provided λk1
+ λk2

6= λk. Repeating this process for

the higher order terms of G leads to the condition on the eigenvalues λk of

the matrix A

λk1
+ λk2

· · · + λk` 6= λk



Poincaré - Dulac Normal Forms (continued)

Our way of computing G(u) or more precisely G−1(v) is to look at the

integral equation

u = eAtu0 + eAt
t∫

0

e−Asf (u(s))ds

and write it in terms of the profile of u, i.e., w = e−Atu

w = u0 +

t∫
0

e−Asf (eAsw(s))ds = u0 +

t∫
0

e−AsM2(eAsw, eAsw) + . . . ds

Each i-multilinear term consists of matrices whose eigenvalues are given by

e
(λk1

+λk2
···+λki−λk)s



Poincaré - Dulac Normal Forms (continued)

Since ẇ = e−AtM2(eAtw, eAtw) + . . . which is at least quadratic in w, then

integrating by parts on w in
t∫

0

e−AsM2(eAsw, eAsw) + . . . ds

eliminates M2 in favor of a cubic term. If

λk1
+ λk2

· · · + λki − λk 6= 0

then w is a function of e−AtM̃2(eAtw, eAtw)+ . . . . Otherwise we get power

of t which makes the behavior of u and eAtv0 quit different.



Time resonance for PDEs

The same analysis can be applied to PDEs which are translation invariant

with eigenvalues and eigenvectors substituted by ξ and e−iξ·x (Shatah 1985).

EXAMPLE:

i∂tu−∆u = u2

Writing û for the Fourier transform, we have the equation for ŵ = e−i|ξ|
2tû

ŵ(ξ, s) = û0(ξ)− i
∫

ξ1+ξ2=ξ

( t∫
0

ei(−ξ
2+ξ2

1+ξ2
2)sŵ(ξ1, s)ŵ(ξ2, s)ds

)



Time resonance for PDEs

(Example continued)

Thus if we let φ = −ξ2 + ξ2
1 + ξ2

2 then if φ 6= 0 we can integrate by parts in

s and eliminate the quadratic term in favor of a cubic term. Thus quadratic

time resonances correspond to

T = {(ξ1, ξ2); φ = 0 whenever ξ1 + ξ2 = ξ}.

Unfortunately the set T is too big, it corresponds to ξ1 ·ξ2 = 0, which means

that the quadratic term is relevant and can not be eliminated via a transform.



Time resonance for PDEs

(Example continued)

However we know that small solutions to

i∂tu−∆u = u2

behave like linear solutions, Hayashi, Mizumachi, and Naumkin. So the

normal forms method fails for this PDE.



Time resonance for PDEs

EXAMPLE �u + u = Q(u, u) x ∈ R3.

φ ≥
√
|ξ1|2 + |ξ2|2 + 1, which implies no time resonance. Consequently

we can eliminate the quadratic term in favor of the cubic.

EXAMPLE �u = Null form x ∈ R3.

Null form ≈ |∂tu|2 − |∇u|2⇒ φ = 1.

All other null forms give φ ≈ |ξ1 ∧ ξ2|.



Time resonance for PDEs

EXAMPLE ∂tu− ∂xu = uv

∂tv − c∂xv = u2

φu = (1 − c)ξ2 which always vanishes. However L. Tartar (1981) proved

that if c 6= 1 we have global existence for small data.

Too many failures and too few successes. Are we missing something? Yes.



Plane waves vs wave packets

The problem lies in the way we computed resonances. We considered

eigenvectors e−iξ·x which are not in the space of functions where nonlinear

solutions behave like linear ones. For that to happen we need to consider

functions that decay at spatial infinity.

Thus instead of e−iξ·x we need to consider a wave packet ψ, i.e., a smooth

function on Rd which is strongly localized in space and in frequency.



Wave Packets

Instead of compact support we can take Gaussians

ψ = c2kdeix·ξ0e−
|x−x0|222k

4 ψ̂ = eix0·(ξ−ξ0)e
−|ξ−ξ0|

2

22k



Wave packets in dispersive equations

Thus if we propagate a wave packet, adapted to the origin with frequency

ξ1, by an equation

∂tu = iL(
1

i
∇)u

the solution after time t is given by

û = eiL(ξ)tψ ≈ eiL(ξ1)tei∇L(ξ1)·(ξ−ξ1)tψ̂

Thus the solution u is basically supported around∇L(ξ1)t.



Group velocity∇L(ξ)

Thus if we have two time resonant frequencies ξ1 and ξ2 they might be lo-

cated at different places in space. And if the solutions are spatially localized,

these time resonant frequencies wont even have a chance to feel the effects

of one another.



Space Time Resonances

Two wave packets adapted to a region I are spatially resonant if after time

t they occupy essentially the same region in space, i.e., they have the same

group velocity.

• Space resonance S = {(ξ1, ξ2);∇L(ξ1) = ∇L(ξ2)}.

• Time resonance T = {(ξ1, ξ2);L(ξ1) + L(ξ2) = L(ξ1 + ξ2)}.

• Space Time resonanceR = T ∩ S.

How do space resonances impact the behavior of solutions to the nonlinear

equation

∂tu = iL(
1

i
∇)u + u2



Space resonances

If two frequencies ξ1 and ξ2 are time resonant but not space resonant, then

they resonate through the tail. Thus if the tail is sufficiently small the growth

from resonance will be nullified by the smallness of the tail. The smallness

of the tail can be measured by using weighted norms.



How to prove global existence and scattering?

∂tu = iL(
1

i
∇)u + u2

Let φ = −L(ξ) + L(η) + L(ξ − η) be the quadratic frequency interaction.

ŵ(ξ, s) = û0(ξ)− i
t∫

0

( ∫
eiφ(ξ,η)sŵ(η, s)ŵ(ξ − η, s)dη

)
ds

•On the space time resonant setRwe apply stationary phase to see if the set

is small enough so that growth due to resonant behavior can be dominated

by the size of the resonant set.
t∫

0

∫
eiφ(ξ,η)sŵ(η, s)ŵ(ξ − η, s)dηds ≈

t∫
1

sα
ds



How to prove global existence and scattering? (continued)

•On the set {φ 6= 0}, i.e., no time resonances, integrate by parts with respect

to s. This introduces a factor of 1
φ and changes the equation to cubic.

t∫
0

∫
eiφ(ξ,η)sŵ(η, s)ŵ(ξ − η, s)dηds ≈

t∫
0

( ∫
eiφ(ξ,η)s1

φ
O(ŵ3)dηds

• On the set {φ 6= 0} but {∇ηφ 6= 0}, i.e., time resonances but no space res-

onances, integrate by parts with respect to η. This introduces an additional

decay of 1
t and a factor of order 1

|∇ηφ|.

t∫
0

∫
eiφ(ξ,η)sŵ(η, s)ŵ(ξ−η, s)dηds ≈

t∫
0

1

s

∫
eiφ(ξ,η)s 1

|∇ηφ|
O(ŵ∇ŵ)dηds

• The factors 1
φ and 1

|∇ηφ| are viewed as bilinear operators. These operators

are usually of Coifman Meyer type and are harmless.



Schrödinger equations

EXAMPLE 1 i∂tu−∆u = u2 x ∈ R3.

The phase: φ = −|ξ|2 + |ξ − η|2 + |η|2.

Time resonance T : φ = 0⇒ η · (ξ − η) = 0.

Space resonance S: ∇ηφ = 0⇒ η =
ξ

2
.

Space Time resonanceR: ξ = η = 0.



Schrödinger equations

• Stationary phase to control the behavior nearR (φ = 0 and∇ηφ = 0):

t∫
0

∫
eiφ(ξ,η)sŵ(η, s)ŵ(ξ − η, s)dηds ≈

t∫
1

s
3
2

ŵ(0, s)2ds

This gives a bound on |ŵ|L∞t,ξ which takes the place of bound the profile in

L1. The dispersive estimate that we use for the linear equation

|e−i∆tf |L∞ ≤
1

t
3
2

|f̂ |L∞ +
1

t
7
4

|x2f |L2

• Energy estimates are straight forward since we are in 3 dimensions.

•Weighted L2 estimates can be achieved by computing ∂`ξŵ for ` = 1, 2.



Schrödinger equations

This gives a simple proof of existence and scattering for small data in 3

dimensions.

EXAMPLE 2 i∂tu−∆u = ū2 x ∈ R3.

φ = −|ξ|2 − |ξ − η|2 − |η|2. This has the same space time resonant sets as

example 1.

EXAMPLE 3 i∂tu−∆u = |u|2 x ∈ R3.

φ = −|ξ|2 + |ξ − η|2 − |η|2 = 2ξ · η. The resonant set is too big: stationary

phase imply small data can not behave as linear



Schrödinger equations

EXAMPLE 4 i∂tu−∆u = uΛu x ∈ R2.

φ = −|ξ|2 + |ξ − η|2 + |η|2. Space Time resonanceR: ξ = η = 0.

For Λ = 1 stationary phase in a neighborhood of R imply that solutions

diverge logarithmically from the linear behavior.

If Λ vanishes onR, e.g. Λ̂ = ξ then we get rid of the logarithmic divergence.

However in this case we lose energy estimates.



Schrödinger equations

EXAMPLE 4 (continued)

By changing Λ̂ = ξ to Λ̂ = ξ√
1+|ξ|2

we can close the argument.

• The energy estimate requires the use of space time resonance splitting

since the decay is borderline.

• Delort has an existence proof for Λ̂ = ξ. His proof uses smoothing esti-

mates which so far we can not incorporate in our method.



Schrödinger equations

EXAMPLE 5 i∂tu−∆u = |u|2u x ∈ R.

ŵ(ξ, t) = û0(ξ) + i

t∫
0

eiφs ¯̂w(−ξ + η + σ, s)ŵ(η, s)ŵ(σ, s)dηdσds

φ = −|ξ|2 − |ξ − η − σ|2 + |η|2 + |σ|2.

φ = ∂ηφ = ∂σφ = 0 if ξ = η = σ. From stationary phase applied to

ŵ(ξ, t) = û0 + ic

t∫
1

s
|ŵ(ξ, s)|2ŵ(ξ, s) +O(s−

3
2)ds.

This leads to a phase correction on w for long time behavior

e−ic
∫ t 1

s|ŵ(ξ,s)|2dsŵ. ( T. Ozawa 91)



Absence of space time resonances

Example 4. illustrates how the structure of the nonlinearity can kill space

time resonances. The most well known example of this is the “null condi-

tion” for wave equations.

EXAMPLE 6 �u = Q(u, u) x ∈ R3.

Small solutions exists globally provided the nonlinearity has a null structure.

D. Christodoulou conformal coordinates

S. Klainerman vector fields



Wave equations

EXAMPLE 6 (continued) The symbol of the quadratic interaction is given

by Q̂ = ξ1η2 − ξ2η1

Writing (∂t ± i|ξ|)û = û± and expressing the equation as a system for u±

we obtain a quadratic term with a symbol ξ1η2−ξ2η1
|η||ξ−η|

φ = −|ξ| + |ξ − η| + |η|, ∇ηφ =
η

|η|
− η − ξ
|η − ξ|

2
ξ1η2 − ξ2η1

|η||ξ − η|
=
(
∂η1φ

)
(
η2

|η|
− η2 − ξ2

|η − ξ|
)−
(
∂η2φ

)
(
η1

|η|
− η1 − ξ1

|η − ξ|
)



A model for water waves with surface tension

∂tv = Λu Λ = |ξ|

∂tu = ∆v + |∇u|2 − |Λu|2

This is equivalent to: ∂2
tu = −Λ3u + ∂t

(
|∇u|2 − |Λu|2

)
.

We have ± waves: e±it|ξ|
3
2 .



A model for water waves with surface tension

To compute space time resonances we compute the phase for ± waves.

T is given by φ = |ξ|
3
2 ± |η|

3
2 ± |ξ − η|

3
2 = 0

R is given by∇ηφ = 3
2

(
± η

|η|
1
2
± η−ξ
|η−ξ|

1
2

)
= 0.



A model for water waves with surface tension

The symbol of the quadratic interaction terms are given by:

++ and −− are given by: ±
(
|η|

3
2 + |ξ − η|

3
2
)(
η · (ξ − η) + |η||ξ − η|

)
+− and−+ are given by: ±

(
−|η|

3
2 + |ξ−η|

3
2
)(
η · (ξ−η) + |η||ξ−η|

)



A model for water waves with surface tension

For ++ or −− interaction ∇ηφ = 0 if ξ = 2η which make the phase

φ ∼ |ξ|
3
2 6= 0 unless ξ = 0. This is the easy case

For +− or −+ interaction ∇ηφ = 0 if ξ = 0 which make the phase φ = 0.

However in this case the quadratic interaction vanishes thus we have a null

form structure

For this model problem we do not have even local energy estimates. How-

ever if we cut off the high frequencies we obtain global existence and linear

asymptotic behavior.


