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The Ginzburg-Landau energy with magnetic field

Gε(ψ,A) =
1
2

∫

Ω

|∇Aψ|2 + |curlA− hex|2 +
(1− |ψ|2)2

2ε2

I Ω ⊂ R2 simply connected
I ψ : Ω → C "order parameter"
I |ψ|2= density of superconducting Cooper pairs, |ψ| ∼ 1

superconducting phase, |ψ| ∼ 0 normal phase, ψ = 0 vortices
I A : Ω → R2 vector potential ∇A = ∇− iA
I h = curlA induced magnetic field
I hex > 0 intensity of applied field
I ε = 1

κ "Ginzburg-Landau parameter": material constant
I limit ε → 0 extreme type-II or strongly repulsive



The Ginzburg-Landau equations

(GL)





−∇2
Aψ = ψ

ε2 (1− |ψ|2) in Ω
−∇⊥h = ψ ×∇Aψ in Ω
h = hex on ∂Ω
∇Aψ · ν = 0 on ∂Ω.

Invariance under U(1)-gauge-transformations (“Abelian gauge theory")
{

ψ 7→ ψe iΦ

A 7→ A +∇Φ
(1)

The physical quantities are gauge-invariant, such as: |ψ|2, h,
j = ψ ×∇Aψ, Gε.
motivations: superconductivity, superfluidity, Bose-Einstein condensates
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Vortices

I |ψ|2 ≤ 1 density of superconducting electrons
I |ψ| = 0 normal phase
I |ψ| ∼ 1 superconducting phase
I vortices: zeros of ψ with nonzero degree

I ψ = ρe iϕ
1
2π

∫

∂B(x0,r)

∂ϕ

∂τ
= d ∈ Z

degree of the vortex

I In the limit ε → 0 vortices become point-like, or more generally
codimension-2 singularities



h
hex

ex

h
ex

Ω

h
ex



Vorticity

ϕ not single-valued

introduce the vorticity-measure

µε := µ(ψ,A) = curl (ψ ×∇Aψ) + curlA

“Jacobian estimate" (see Jerrard-Soner)

curl (ψ×∇ψ) = det Dψ = curl (ρ2∇ϕ) ' curl∇ϕ = 2π
∑

i

diδai qd ε → 0

If (ψ,A) satisfies (GL2)

−∇⊥h = ψ ×∇Aψ

taking the curl
{ −∆h + h = µ ' 2π

∑
i diδai in Ω

h = hex on ∂Ω.

Also |∇Aψ| ' |∇h| Ã logarithmic divergence of
∫
Ω
|∇Aψ|2



Vorticity

ϕ not single-valued

introduce the vorticity-measure

µε := µ(ψ,A) = curl (ψ ×∇Aψ) + curlA

“Jacobian estimate" (see Jerrard-Soner)

curl (ψ×∇ψ) = det Dψ = curl (ρ2∇ϕ) ' curl∇ϕ = 2π
∑

i

diδai qd ε → 0

If (ψ,A) satisfies (GL2)

−∇⊥h = ψ ×∇Aψ

taking the curl
{ −∆h + h = µ ' 2π

∑
i diδai in Ω

h = hex on ∂Ω.

Also |∇Aψ| ' |∇h| Ã logarithmic divergence of
∫
Ω
|∇Aψ|2



Vorticity

ϕ not single-valued

introduce the vorticity-measure

µε := µ(ψ,A) = curl (ψ ×∇Aψ) + curlA

“Jacobian estimate" (see Jerrard-Soner)

curl (ψ×∇ψ) = det Dψ = curl (ρ2∇ϕ) ' curl∇ϕ = 2π
∑

i

diδai qd ε → 0

If (ψ,A) satisfies (GL2)

−∇⊥h = ψ ×∇Aψ

taking the curl
{ −∆h + h = µ ' 2π

∑
i diδai in Ω

h = hex on ∂Ω.

Also |∇Aψ| ' |∇h| Ã logarithmic divergence of
∫
Ω
|∇Aψ|2



Influence of the applied field and critical fields

I hex < Hc1 no vortex, |ψ| ∼ 1 (Meissner effect)
I Hc1 = O(| log ε|) first critical field: first vortices appear, then

number increases with hex
→ Abrikosov lattices (triangular) vortices repell...

I Hc2 = O( 1
ε2 ) bulk superconductivity destroyed, surface

superconductivity remains
I Hc3 = O( 1

ε2 ) superconductivity destroyed, normal state ψ ≡ 0
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Leading order results for minimizers (mean field description)

Theorem (Sandier-S)

Assume hex = λ| log ε|. As ε → 0, Gε

h2ex
Γ-converges w.r.to the

convergence of µ(u,A)/hex to

Eλ(µ) :=
1
2λ

∫

Ω

|µ|+ 1
2

∫

Ω

|∇hµ|2 + |hµ − 1|2

where { −∆hµ + hµ = µ in Ω
hµ = 1 on ∂Ω.

Consequently, for minimizers of Gε, as ε → 0 we have

µε

hex
⇀ µ∗ = m1ωλ

h
hex

⇀ h∗

Gε(ψ,A)

h2ex
→ Eλ(µ∗)

where µ∗ is the minimizer of Eλ.



Minimization of Eλ: the obstacle problem

The minimization of Eλ is equivalent (by convex duality) to the obstacle
problem

min
h−1∈H1

0 (Ω)
h≥1− 1

2λ

1
2

∫

Ω

|∇h|2 + h2

with µ∗ = −∆h∗ + h∗
Coincidence set

ω =

{
x ∈ Ω/h∗(x) = 1− 1

2λ
:= m

}

µ∗ is a uniform density = m on ω ⊂ Ω.

λ

Ω

µ
∗
=1−1/(2λ)

µ
∗
=0

ω
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Dependence on λ

I λ < λ0: ωλ = ∅, µ∗ = 0, no vortices
I λ = λ0: ωλ = Λ = finite set of points (assume Λ = {p})

I λ > λ0: ωλ 6= ∅

I | log ε| ¿ hex ¿ 1
ε2 : ω∞ = Ω, µ∗ = 1

Hc1 ∼ λ0| log ε|
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A splitting of the energy

Let (ψ,A) satisfy (GL2). We are able to show

Gε(ψ,A) = h2exEλ(µ∗) + G1(ψ,A)

where G1 is roughly like

G1(ψ,A) ' 1
2

∫
|∇Aψ|2 + |h − hex|2 +

(1− |ψ|2)2
2ε2

− π
∑

i

di log
1

ε
√
hex

.

First part ∼ GL “free" energy without applied field
≥ π

∑ |di | log 1
ε
√
hex

energy in the vortex cores - lower bounds by “ball construction methods",
Bethuel-Brezis-Hélein, Jerrard, Sandier, Sandier-S...

I When adding a vortex an “infinite" amount of energy is added, but
also substracted

I Ã remains a “renormalized energy"
I Ã we need to extract the energy in the vortex cores with very high

precision, in order to evaluate the remainder
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Behaviour of energy-minimizers at next order

We also have

G1(ψ,A) ' 1
2

∫

Ω

|∇h1|2 + h21 − π
∑

i

di log
1

ε
√
hex

where
{ −∆h1 + h1 = µε − hexµ∗ in Ω

h1 = 0 on ∂Ω.

I density of vortices mhex, distances ∼ 1/
√
mhex → should blow-up to

see the pattern
I after blow up at the scale

√
mhex, around a point in ω, we get a

configuration of points in the WHOLE plane with

−∆H = 2π
∑

i

diδai − 1 in R2

Question: what’s the interaction energy of the ai ’s? Pbl: infinite-size
domain
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The renormalized energy

Given a configuration of points + degree (ai , di ) in the plane obtained
this way, assuming all di = 1 and given H a solution to

−∆H = 2π
∑

i

δai − 1.

We consider for any R a cutoff function χR ∈ C∞0 (BR) such that
0 ≤ χR ≤ 1 and χR ≡ 1 in BR−1, and |∇χR | ≤ 2, and we define

W ({ai},H) = lim inf
R→∞

1
|BR | limα→0

(1
2

∫

BR\∪iB(ai ,α)

χR |∇H|2

+
∑

i

χR(ai )π logα
)

cf renormalized energy of Bethuel-Brezis-Hélein for finite number of
vortices

“W ({ai}) = ‖2π
∑

i

δai − 1‖2H−1”



F denotes the set of ({ai},H) with −∆H = 2π
∑

i δai − 1 in R2

Theorem (Lower bound)

Let ω denote the support of µ∗. Then for any (ψε,Aε), there exists a
probability measure P on F such that

lim inf
ε→0

1
mhex|ω|G1(ψε,Aε) ≥

∫
W ({ai},H) dP({ai},H) ≥ inf

ai ,H
W

and thus

Gε(ψε,Aε) ≥ h2exEλ(µ∗) + mhex|ω| inf
ai ,H

W + o(hex)

Sharp lower bound up to higher order o(hex) (=o(number of vortices)) =
best possible



The matching upper bound

Theorem (Upper bound)

Assume hex ¿ 1
ε2 . For ε < ε0, there exists (ψε,Aε) such that

Gε(ψε,Aε) ≤ h2exEλ(µ∗) + mhex|ω| inf
ai ,H

W + o(hex)

Corollary
“For minimizers of Gε, blown-up of the vortices at scale

√
mhex around xε

chosen at random converge P-a.s. to configurations of points in the
plane minimizing W ."



Method and difficulties

I in order to derive W we need to control the number of vortices per
unit volume after blow-up
Ã need very sharp (sharper than in the past!) lower bounds on the
energy of each vortex with possibly infinite number of them

I the renormalized cost of a vortex in BR tends to −∞ when the
vortex approaches ∂BR Ã need cut-off and letting R →∞

I the size of the blown-up domain ω tends to ∞. Through the ergodic
theorem, we define an averaged notion of Γ-convergence which
works for infinite domains when the energy is translation invariance.
Alternate to a method of Alberti-Müller. Pbl: our energy density is
not positive.

I to prove the upper bound we first need to be able to reduce to
periodic configurations of points in the plane, i.e. show that
minimizing W in R2 can be well-approximated by minimizing it over
configurations of points on large tori

I show also that the discontinuity on ∂ω generates a negligible energy
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The result for periodic configurations

I Let H be a solution to

−∆H = δ0 − 1

on a torus of volume 1 of arbitrary shape.
I Fourier transform the explicit expression for W in that case to make

it a function of the lattice (regularisation of
∑

p∈Λ
1
|p|2 )

I its value becomes related to Dedekind eta function and Eisenstein
series

I Minimizing W becomes equivalent to minimizing the Epstein zeta
function ζ(s) =

∑
p∈Λ

1
|p|s , s > 2, over lattices

I results from number theory (Cassels, Rankin, 60’s) say that this is
minimized by the triangular lattice

Theorem
The function W restricted to periodic configurations is minimized over all
lattices of volume 1 by the triangular lattice

Ã W allows to distinguish between lattices!
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Conclusion and perspectives

I we have characterized the location of vortices in all applied field
regimes hex ¿ 1

ε2 up to the scale where we see individual vortices
I derived a limiting problem of interaction of points in the plane: the

renormalized energy W
I W is a logarithmic type of interaction Ã long range!
I this problem allows to distinguish between different kind of lattices

and prefers the triangular one Ã first justification of the Abrikosov
lattice in this regime

I remains to study the renormalized energy W without assuming
periodicity Ã question of crystallisation...
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