From Ginzburg-Landau to vortex lattice problems

Sylvia Serfaty, w/ Etienne Sandier

http://www.math.nyu.edu/faculty/serfaty

Conference in honor of Cathleen Moraweetz, September 18-20, 2008, Toronto

The Ginzburg-Landau energy with magnetic field

$$G_{\varepsilon}(\psi, A) = \frac{1}{2} \int_{\Omega} |\nabla_A \psi|^2 + |\operatorname{curl} A - h_{\operatorname{ex}}|^2 + \frac{(1 - |\psi|^2)^2}{2\varepsilon^2}$$

- ▶ $\Omega \subset \mathbb{R}^2$ simply connected
- ▶ $\psi : \Omega \to \mathbb{C}$ "order parameter"
- ▶ $|\psi|^2$ = density of superconducting Cooper pairs, $|\psi| \sim 1$ superconducting phase, $|\psi| \sim 0$ normal phase, $|\psi| = 0$ vortices
- ▶ $A: \Omega \to \mathbb{R}^2$ vector potential $\nabla_A = \nabla iA$
- \blacktriangleright $h = \operatorname{curl} A$ induced magnetic field
- $h_{\rm ex} > 0$ intensity of applied field
- $ightharpoonup arepsilon = rac{1}{\kappa}$ "Ginzburg-Landau parameter": material constant
- ▶ limit $\varepsilon \to 0$ extreme type-II or strongly repulsive

The Ginzburg-Landau equations

$$(GL) \left\{ \begin{array}{ll} -\nabla_A^2 \psi = \frac{\psi}{\varepsilon^2} (1 - |\psi|^2) & \text{in } \Omega \\ -\nabla^\perp h = \psi \times \nabla_A \psi & \text{in } \Omega \\ h = h_{\mathrm{ex}} & \text{on } \partial\Omega \\ \nabla_A \psi \cdot \nu = 0 & \text{on } \partial\Omega. \end{array} \right.$$

Invariance under $\mathbb{U}(1)$ -gauge-transformations ("Abelian gauge theory")

$$\begin{cases}
\psi \mapsto \psi e^{i\Phi} \\
A \mapsto A + \nabla \Phi
\end{cases} \tag{1}$$

The physical quantities are gauge-invariant, such as: $|\psi|^2$, h, $j=\psi\times\nabla_A\psi$, G_ε .

motivations: superconductivity, superfluidity, Bose-Einstein condensates

The Ginzburg-Landau equations

$$(GL) \left\{ \begin{array}{ll} -\nabla_A^2 \psi = \frac{\psi}{\varepsilon^2} (1 - |\psi|^2) & \text{in } \Omega \\ -\nabla^\perp h = \psi \times \nabla_A \psi & \text{in } \Omega \\ h = h_{\mathrm{ex}} & \text{on } \partial\Omega \\ \nabla_A \psi \cdot \nu = 0 & \text{on } \partial\Omega. \end{array} \right.$$

Invariance under $\mathbb{U}(1)$ -gauge-transformations ("Abelian gauge theory")

$$\begin{cases}
\psi \mapsto \psi e^{i\Phi} \\
A \mapsto A + \nabla \Phi
\end{cases} \tag{1}$$

The physical quantities are gauge-invariant, such as: $|\psi|^2$, h, $j=\psi\times\nabla_A\psi$, G_ε .

motivations: superconductivity, superfluidity, Bose-Einstein condensates

Vortices

- $|\psi|^2 \le 1$ density of superconducting electrons
- $ightharpoonup |\psi|=0$ normal phase
- ullet $|\psi|\sim 1$ superconducting phase
- \blacktriangleright vortices: zeros of ψ with nonzero degree

$$\qquad \qquad \psi = \rho e^{i\varphi}$$

$$\frac{1}{2\pi} \int_{\partial B(x_0, r)} \frac{\partial \varphi}{\partial \tau} = d \in \mathbb{Z}$$

degree of the vortex

▶ In the limit $\varepsilon \to 0$ vortices become *point-like*, or more generally *codimension-2* singularities

Vorticity

φ not single-valued

introduce the vorticity-measure

$$\mu_{arepsilon} := \mu(\psi, A) = \operatorname{curl}(\psi \times \nabla_A \psi) + \operatorname{curl} A$$

"Jacobian estimate" (see Jerrard-Soner

$$\operatorname{curl}(\psi \times \nabla \psi) = \det D\psi = \operatorname{curl}(\rho^2 \nabla \varphi) \simeq \operatorname{curl}\nabla \varphi = 2\pi \sum_i d_i \delta_{a_i} \quad \operatorname{qd} \varepsilon \to 0$$

If (ψ, A) satisfies (GL2)

$$-\nabla^{\perp}h = \psi \times \nabla_{A}\psi$$

taking the cur

$$\left\{egin{array}{ll} -\Delta h + h = \mu \simeq 2\pi \sum_i d_i \delta_{\mathsf{a}_i} & ext{in } \Omega \ h = h_{ ext{ex}} & ext{on } \partial \Omega \end{array}
ight.$$

Also $|
abla_A\psi|\simeq |
abla_h|$ \leadsto logarithmic divergence of $\int_\Omega |
abla_A\psi|$

Vorticity

 φ not single-valued

introduce the vorticity-measure

$$\mu_{\varepsilon} := \mu(\psi, A) = \operatorname{curl}(\psi \times \nabla_A \psi) + \operatorname{curl} A$$

"Jacobian estimate" (see Jerrard-Soner)

$$\operatorname{curl}(\psi \times \nabla \psi) = \det D\psi = \operatorname{curl}(\rho^2 \nabla \varphi) \simeq \operatorname{curl} \nabla \varphi = 2\pi \sum_i d_i \delta_{a_i} \quad \operatorname{qd} \varepsilon \to 0$$

If (ψ, A) satisfies (GL2)

$$-\nabla^{\perp} h = \psi \times \nabla_A \psi$$

taking the curl

$$\left\{egin{array}{ll} -\Delta h + h = \mu \simeq 2\pi \sum_i d_i \delta_{s_i} & ext{in } \Omega \ h = h_{ ext{ex}} & ext{on } \partial \Omega \end{array}
ight.$$

Also $|
abla_A\psi|\simeq |
abla h|$ \leadsto logarithmic divergence of $\int_\Omega |
abla_A\psi|^2$

Vorticity

 φ not single-valued

introduce the vorticity-measure

$$\mu_{\varepsilon} := \mu(\psi, A) = \operatorname{curl}(\psi \times \nabla_A \psi) + \operatorname{curl} A$$

"Jacobian estimate" (see Jerrard-Soner)

$$\operatorname{curl} \left(\psi \times \nabla \psi \right) = \det D \psi = \operatorname{curl} \left(\rho^2 \nabla \varphi \right) \simeq \operatorname{curl} \nabla \varphi = 2\pi \sum_i d_i \delta_{a_i} \quad \operatorname{qd} \varepsilon \to 0$$

If (ψ, A) satisfies (GL2)

$$-\nabla^{\perp} h = \psi \times \nabla_{\mathbf{A}} \psi$$

taking the curl

$$\left\{ \begin{array}{ll} -\Delta h + h = \mu \simeq 2\pi \sum_i d_i \delta_{a_i} & \text{in } \Omega \\ h = h_{\text{ex}} & \text{on } \partial \Omega. \end{array} \right.$$

Also $|\nabla_A \psi| \simeq |\nabla h| \rightsquigarrow \text{logarithmic divergence of } \int_{\Omega} |\nabla_A \psi|^2$

- $h_{
 m ex} < H_{c_1}$ no vortex, $|\psi| \sim 1$ (Meissner effect)
- ▶ $H_{c_1} = O(|\log \varepsilon|)$ first critical field: first vortices appear, then number increases with $h_{\rm ex}$
 - → Abrikosov lattices (triangular) vortices repell...
- ▶ $H_{c_2} = O(\frac{1}{\varepsilon^2})$ bulk superconductivity destroyed, surface superconductivity remains
- $ightharpoonup H_{c_3} = O(\frac{1}{\varepsilon^2})$ superconductivity destroyed, normal state $\psi \equiv 0$

- $h_{\rm ex} < H_{\rm c_1}$ no vortex, $|\psi| \sim 1$ (Meissner effect)
- ▶ $H_{c_1} = O(|\log \varepsilon|)$ first critical field: first vortices appear, then number increases with $h_{\rm ex}$
 - → Abrikosov lattices (triangular) vortices repell...
- ▶ $H_{c_2} = O(\frac{1}{\varepsilon^2})$ bulk superconductivity destroyed, surface superconductivity remains
- $lackbox{H}_{c_3} = O(rac{1}{arepsilon^2})$ superconductivity destroyed, normal state $\psi \equiv 0$

- $h_{
 m ex} < H_{c_1}$ no vortex, $|\psi| \sim 1$ (Meissner effect)
- ▶ $H_{c_1} = O(|\log \varepsilon|)$ first critical field: first vortices appear, then number increases with $h_{\rm ex}$
 - → Abrikosov lattices (triangular) vortices repell...

- ▶ $H_{c_2} = O(\frac{1}{\varepsilon^2})$ bulk superconductivity destroyed, surface superconductivity remains
- $lackbox{H}_{c_3} = O(rac{1}{arepsilon^2})$ superconductivity destroyed, normal state $\psi \equiv 0$

- $h_{
 m ex} < H_{c_1}$ no vortex, $|\psi| \sim 1$ (Meissner effect)
- ▶ $H_{c_1} = O(|\log \varepsilon|)$ first critical field: first vortices appear, then number increases with $h_{\rm ex}$
 - → Abrikosov lattices (triangular) vortices repell...

- ► $H_{c_2} = O(\frac{1}{\varepsilon^2})$ bulk superconductivity destroyed, surface superconductivity remains
- $ightharpoonup H_{c_3} = O(\frac{1}{\varepsilon^2})$ superconductivity destroyed, normal state $\psi \equiv 0$

- $h_{\mathrm{ex}} < H_{c_1}$ no vortex, $|\psi| \sim 1$ (Meissner effect)
- ▶ $H_{c_1} = O(|\log \varepsilon|)$ first critical field: first vortices appear, then number increases with $h_{\rm ex}$
 - → Abrikosov lattices (triangular) vortices repell...

- ▶ $H_{c_2} = O(\frac{1}{\varepsilon^2})$ bulk superconductivity destroyed, surface superconductivity remains
- ▶ $H_{c_3} = O(\frac{1}{\varepsilon^2})$ superconductivity destroyed, normal state $\psi \equiv 0$

Leading order results for minimizers (mean field description)

Theorem (Sandier-S)

Assume $h_{\rm ex}=\lambda |\log \varepsilon|$. As $\varepsilon \to 0$, $\frac{G_\varepsilon}{h_{\rm ex}^2}$ Γ -converges w.r.to the convergence of $\mu(u,A)/h_{\rm ex}$ to

$$E_{\lambda}(\mu) := \frac{1}{2\lambda} \int_{\Omega} |\mu| + \frac{1}{2} \int_{\Omega} |\nabla h_{\mu}|^2 + |h_{\mu} - 1|^2$$

 $\begin{cases} -\Delta h_{\mu} + h_{\mu} = \mu & \text{in } \Omega \\ h_{\mu} = 1 & \text{on } \partial\Omega. \end{cases}$

where

Consequently for minimizers of
$$G$$
 as $\varepsilon \to 0$ we have

Consequently, for minimizers of G_{ε} , as $\overline{\varepsilon} \to 0$ we have

$$rac{\mu_{arepsilon}}{h_{
m ex}}
ightharpoonup \mu_* = m \mathbf{1}_{\omega_{\lambda}} \qquad rac{h}{h_{
m ex}}
ightharpoonup h_*$$

$$rac{G_arepsilon(\psi,A)}{h_{
m ex}^2} o E_\lambda(\mu_*)$$
 where μ_* is the minimizer of E_λ .

Minimization of E_{λ} : the obstacle problem

The minimization of E_{λ} is equivalent (by convex duality) to the *obstacle* problem

$$\min_{\substack{h-1\in H_0^1(\Omega)\\h\geq 1-\frac{1}{2\lambda}}}\frac{1}{2}\int_{\Omega}|\nabla h|^2+h^2$$

with $\mu_* = -\Delta h_* + h_*$

Coincidence set

$$\omega = \left\{ x \in \Omega / h_*(x) = 1 - \frac{1}{2\lambda} := m \right\}$$

 μ_* is a uniform density = m on $\omega \subset \Omega$

Minimization of E_{λ} : the obstacle problem

The minimization of E_{λ} is equivalent (by convex duality) to the *obstacle* problem

$$\min_{\substack{h-1 \in H_0^1(\Omega) \\ h>1-\frac{1}{2N}}} \frac{1}{2} \int_{\Omega} |\nabla h|^2 + h^2$$

with $\mu_* = -\Delta h_* + h_*$

Coincidence set

$$\omega = \left\{ x \in \Omega / h_*(x) = 1 - \frac{1}{2\lambda} := m \right\}$$

 μ_* is a uniform density = m on $\omega \subset \Omega$.

- lacktriangledown $\lambda < \lambda_0$: $\omega_\lambda = \varnothing$, $\mu_* = 0$, no vortices
- ▶ $\lambda = \lambda_0$: $\omega_{\lambda} = \Lambda =$ finite set of points (assume $\Lambda = \{p\}$)
- $ightharpoonup |\log arepsilon| \ll h_{
 m ex} \ll rac{1}{arepsilon^2}; \quad \omega_{\infty} = \Omega, \;\; \mu_* = 1$

$$H_{c_1} \sim \lambda_0 |\log \varepsilon|$$

- \blacktriangleright $\lambda < \lambda_0$: $\omega_{\lambda} = \emptyset$, $\mu_* = 0$, no vortices
- $\lambda = \lambda_0$: $\omega_{\lambda} = \Lambda = \text{finite set of points (assume } \Lambda = \{p\})$

$$\triangleright \lambda > \lambda_0$$
: $\omega_{\lambda} \neq \emptyset$

$$ightharpoonup |\log arepsilon| \ll h_{
m ex} \ll rac{1}{arepsilon^2}; \quad \omega_{\infty} = \Omega, \;\; \mu_* = 1$$

$$H_{c_1} \sim \lambda_0 |\log \varepsilon|$$

- lacktriangledown $\lambda < \lambda_0$: $\omega_{\lambda} = \emptyset$, $\mu_* = 0$, no vortices
- ▶ $\lambda = \lambda_0$: $\omega_{\lambda} = \Lambda = \text{finite set of points (assume } \Lambda = \{p\})$

 \blacktriangleright $\lambda > \lambda_0$: $\omega_{\lambda} \neq \emptyset$

$$ightharpoonup |\log arepsilon| \ll h_{
m ex} \ll rac{1}{arepsilon^2}; \quad \omega_{\infty} = \Omega, \;\; \mu_* = 1$$

$$H_{c_1} \sim \lambda_0 |\log \varepsilon|$$

- \blacktriangleright $\lambda < \lambda_0$: $\omega_{\lambda} = \emptyset$, $\mu_* = 0$, no vortices
- ▶ $\lambda = \lambda_0$: $\omega_{\lambda} = \Lambda = \text{finite set of points (assume } \Lambda = \{p\})$

 \blacktriangleright $\lambda > \lambda_0$: $\omega_{\lambda} \neq \emptyset$

 $ightharpoonup |\log \varepsilon| \ll h_{\mathrm{ex}} \ll \frac{1}{\varepsilon^2}; \quad \omega_{\infty} = \Omega, \;\; \mu_* = 1$

$$H_{c_1} \sim \lambda_0 |\log \varepsilon|$$

A splitting of the energy

Let (ψ, A) satisfy (GL2). We are able to show

$$G_{\varepsilon}(\psi, A) = h_{\mathrm{ex}}^2 E_{\lambda}(\mu_*) + G_1(\psi, A)$$

where G_1 is roughly like

$$G_1(\psi,A) \simeq rac{1}{2} \int |
abla_A \psi|^2 + |h - h_{
m ex}|^2 + rac{(1 - |\psi|^2)^2}{2arepsilon^2} - \pi \sum_i d_i \log rac{1}{arepsilon \sqrt{h_{
m ex}}}.$$

First part \sim GL "free" energy without applied field

$$\geq \pi \sum |d_i| \log \frac{1}{\varepsilon \sqrt{h_{\mathrm{ex}}}}$$

energy in the vortex cores - lower bounds by "ball construction methods", Bethuel-Brezis-Hélein, Jerrard, Sandier, Sandier-S...

- When adding a vortex an "infinite" amount of energy is added, but also substracted
- ▶ ~→ remains a "renormalized energy"
- we need to extract the energy in the vortex cores with very high precision, in order to evaluate the remainder

A splitting of the energy

Let (ψ, A) satisfy (GL2). We are able to show

$$G_{\varepsilon}(\psi, A) = h_{\mathrm{ex}}^2 E_{\lambda}(\mu_*) + G_1(\psi, A)$$

where G_1 is roughly like

$$G_1(\psi,A) \simeq rac{1}{2} \int |
abla_A \psi|^2 + |h-h_{
m ex}|^2 + rac{(1-|\psi|^2)^2}{2arepsilon^2} - \pi \sum_i d_i \log rac{1}{arepsilon \sqrt{h_{
m ex}}}.$$

First part ∼ GL "free" energy without applied field

$$\geq \pi \sum |d_i| \log \frac{1}{\varepsilon \sqrt{h_{\mathrm{ex}}}}$$

energy in the vortex cores - lower bounds by "ball construction methods", Bethuel-Brezis-Hélein, Jerrard, Sandier, Sandier-S...

- When adding a vortex an "infinite" amount of energy is added, but also substracted
- ► ~ remains a "renormalized energy"
- ► → we need to extract the energy in the vortex cores with very high precision, in order to evaluate the remainder

Behaviour of energy-minimizers at next order

We also have

$$G_1(\psi,A) \simeq rac{1}{2} \int_{\Omega} |
abla h_1|^2 + h_1^2 - \pi \sum_i d_i \log rac{1}{arepsilon \sqrt{h_{
m ex}}}$$

where

$$\left\{ \begin{array}{ll} -\Delta \mathit{h}_1 + \mathit{h}_1 = \mu_\varepsilon - \mathit{h}_{\mathrm{ex}} \mu_* & \text{in } \Omega \\ \\ \mathit{h}_1 = 0 & \text{on } \partial \Omega. \end{array} \right.$$

- ▶ density of vortices $mh_{\rm ex}$, distances $\sim 1/\sqrt{mh_{\rm ex}}$ → should blow-up to see the pattern
- ▶ after blow up at the scale $\sqrt{mh_{\rm ex}}$, around a point in ω , we get a configuration of points in the WHOLE plane with

$$-\Delta H = 2\pi \sum_i d_i \delta_{a_i} - 1$$
 in \mathbb{R}^2

Question: what's the interaction energy of the *a_i's*? Pbl: infinite-size

Behaviour of energy-minimizers at next order

We also have

$$G_1(\psi,A) \simeq rac{1}{2} \int_{\Omega} |
abla h_1|^2 + h_1^2 - \pi \sum_i d_i \log rac{1}{arepsilon \sqrt{h_{
m ex}}}$$

where

$$\left\{ \begin{array}{ll} -\Delta h_1 + h_1 = \mu_\varepsilon - h_{\rm ex} \mu_* & \text{in } \Omega \\ h_1 = 0 & \text{on } \partial \Omega. \end{array} \right.$$

- \blacktriangleright density of vortices $\emph{mh}_{ex},$ distances $\sim 1/\sqrt{\emph{mh}_{ex}} \rightarrow$ should blow-up to see the pattern
- ▶ after blow up at the scale $\sqrt{mh_{\rm ex}}$, around a point in ω , we get a configuration of points in the WHOLE plane with

$$-\Delta H = 2\pi \sum_{i} d_{i} \delta_{a_{i}} - 1 \quad \text{in } \mathbb{R}^{2}$$

Question: what's the interaction energy of the *a_i's*? Pbl: infinite-size

Behaviour of energy-minimizers at next order

We also have

$$G_1(\psi,A) \simeq rac{1}{2} \int_{\Omega} |
abla h_1|^2 + h_1^2 - \pi \sum_i d_i \log rac{1}{arepsilon \sqrt{h_{
m ex}}}$$

where

$$\left\{ \begin{array}{ll} -\Delta \mathit{h}_1 + \mathit{h}_1 = \mu_\varepsilon - \mathit{h}_{\mathrm{ex}} \mu_* & \text{in } \Omega \\ \\ \mathit{h}_1 = 0 & \text{on } \partial \Omega. \end{array} \right.$$

- ▶ density of vortices $mh_{\rm ex}$, distances $\sim 1/\sqrt{mh_{\rm ex}}$ \to should blow-up to see the pattern
- ▶ after blow up at the scale $\sqrt{mh_{\rm ex}}$, around a point in ω , we get a configuration of points in the WHOLE plane with

$$-\Delta H = 2\pi \sum_i d_i \delta_{a_i} - 1 \quad \text{in } \mathbb{R}^2$$

Question: what's the interaction energy of the a_i 's? Pbl: infinite-size domain

The renormalized energy

Given a configuration of points + degree (a_i, d_i) in the plane obtained this way, assuming all $d_i = 1$ and given H a solution to

$$-\Delta H = 2\pi \sum_{i} \delta_{a_i} - 1.$$

We consider for any R a cutoff function $\chi_R \in C_0^\infty(B_R)$ such that $0 \le \chi_R \le 1$ and $\chi_R \equiv 1$ in B_{R-1} , and $|\nabla \chi_R| \le 2$, and we define

$$W(\lbrace a_{i}\rbrace, H) = \liminf_{R \to \infty} \frac{1}{|B_{R}|} \lim_{\alpha \to 0} \left(\frac{1}{2} \int_{B_{R} \setminus \cup_{i} B(a_{i}, \alpha)} \chi_{R} |\nabla H|^{2} + \sum_{i} \chi_{R}(a_{i}) \pi \log \alpha \right)$$

cf renormalized energy of Bethuel-Brezis-Hélein for finite number of vortices

"
$$W({a_i}) = ||2\pi \sum_i \delta_{a_i} - 1||_{H^{-1}}^2$$
"

 \mathcal{F} denotes the set of $(\{a_i\}, H)$ with $-\Delta H = 2\pi \sum_i \delta_{a_i} - 1$ in \mathbb{R}^2

Theorem (Lower bound)

Let ω denote the support of μ_* . Then for any $(\psi_{\varepsilon}, A_{\varepsilon})$, there exists a probability measure P on \mathcal{F} such that

probability measure
$$P$$
 on $\mathcal F$ such that
$$\liminf_{\epsilon \to 0} \frac{1}{mb_{\epsilon} |t_{\epsilon}|} G_{1}(\psi_{\varepsilon}, A_{\varepsilon}) \geq \int W(\{a_{i}\}, H) \, dP(\{a_{i}\}, H) \geq \inf_{t \in \mathcal F} W$$

and thus

$$\liminf_{\varepsilon\to 0}\frac{1}{mh_{\mathrm{ex}}|\omega|}G_1(\psi_\varepsilon,A_\varepsilon)\geq \int W(\{a_i\},H)\,dP(\{a_i\},H)\geq \inf_{a_i,H}W$$

 $G_{\varepsilon}(\psi_{\varepsilon}, A_{\varepsilon}) \geq h_{\mathrm{ex}}^2 E_{\lambda}(\mu_*) + m h_{\mathrm{ex}} |\omega| \inf_{\varepsilon \in H} W + o(h_{\mathrm{ex}})$

Sharp lower bound up to higher order $o(h_{\rm ex})$ (=o(number of vortices)) = best possible

The matching upper bound

Theorem (Upper bound)

Assume $h_{\rm ex} \ll \frac{1}{\varepsilon^2}$. For $\varepsilon < \varepsilon_0$, there exists $(\psi_{\varepsilon}, A_{\varepsilon})$ such that

$$G_{arepsilon}(\psi_{arepsilon},A_{arepsilon}) \leq h_{\mathrm{ex}}^2 E_{\lambda}(\mu_*) + m h_{\mathrm{ex}} |\omega| \inf_{a_i,H} W + o(h_{\mathrm{ex}})$$

Corollary

"For minimizers of G_{ε} , blown-up of the vortices at scale $\sqrt{mh_{\rm ex}}$ around x_{ε} chosen at random converge P-a.s. to configurations of points in the plane minimizing W."

- ▶ in order to derive W we need to control the number of vortices per unit volume after blow-up
 - → need very sharp (sharper than in the past!) lower bounds on the energy of each vortex with *possibly infinite number* of them
- ▶ the renormalized cost of a vortex in B_R tends to $-\infty$ when the vortex approaches $\partial B_R \rightsquigarrow$ need cut-off and letting $R \rightarrow \infty$
- ▶ the size of the blown-up domain ω tends to ∞ . Through the ergodic theorem, we define an averaged notion of Γ -convergence which works for infinite domains when the energy is translation invariance. Alternate to a method of Alberti-Müller. Pbl: our energy density is not positive.
- ▶ to prove the upper bound we first need to be able to reduce to periodic configurations of points in the plane, i.e. show that minimizing W in \mathbb{R}^2 can be well-approximated by minimizing it over configurations of points on large tori
- lacktriangle show also that the discontinuity on $\partial \omega$ generates a negligible energy

- ▶ in order to derive W we need to control the number of vortices per unit volume after blow-up
 - → need very sharp (sharper than in the past!) lower bounds on the energy of each vortex with *possibly infinite number* of them
- ▶ the renormalized cost of a vortex in B_R tends to $-\infty$ when the vortex approaches $\partial B_R \rightsquigarrow$ need cut-off and letting $R \to \infty$
- ▶ the size of the blown-up domain ω tends to ∞. Through the ergodic theorem, we define an averaged notion of Γ-convergence which works for infinite domains when the energy is translation invariance. Alternate to a method of Alberti-Müller. Pbl: our energy density is not positive.
- ▶ to prove the upper bound we first need to be able to reduce to periodic configurations of points in the plane, i.e. show that minimizing W in \mathbb{R}^2 can be well-approximated by minimizing it over configurations of points on large tori
- lacktriangle show also that the discontinuity on $\partial \omega$ generates a negligible energy

- ▶ in order to derive W we need to control the number of vortices per unit volume after blow-up
 - → need very sharp (sharper than in the past!) lower bounds on the energy of each vortex with *possibly infinite number* of them
- ▶ the renormalized cost of a vortex in B_R tends to $-\infty$ when the vortex approaches $\partial B_R \rightsquigarrow$ need cut-off and letting $R \to \infty$
- ▶ the size of the blown-up domain ω tends to ∞ . Through the ergodic theorem, we define an averaged notion of Γ -convergence which works for infinite domains when the energy is translation invariance. Alternate to a method of Alberti-Müller. Pbl: our energy density is not positive.
- ▶ to prove the upper bound we first need to be able to reduce to periodic configurations of points in the plane, i.e. show that minimizing W in \mathbb{R}^2 can be well-approximated by minimizing it over configurations of points on large tori
- lacktriangle show also that the discontinuity on $\partial \omega$ generates a negligible energy

- ▶ in order to derive W we need to control the number of vortices per unit volume after blow-up
 - → need very sharp (sharper than in the past!) lower bounds on the energy of each vortex with *possibly infinite number* of them
- ▶ the renormalized cost of a vortex in B_R tends to $-\infty$ when the vortex approaches $\partial B_R \rightsquigarrow$ need cut-off and letting $R \to \infty$
- ▶ the size of the blown-up domain ω tends to ∞ . Through the ergodic theorem, we define an averaged notion of Γ -convergence which works for infinite domains when the energy is translation invariance. Alternate to a method of Alberti-Müller. Pbl: our energy density is not positive.
- ▶ to prove the upper bound we first need to be able to reduce to periodic configurations of points in the plane, i.e. show that minimizing W in \mathbb{R}^2 can be well-approximated by minimizing it over configurations of points on large tori
- lacktriangle show also that the discontinuity on $\partial \omega$ generates a negligible energy

- ▶ in order to derive W we need to control the number of vortices per unit volume after blow-up
 - → need very sharp (sharper than in the past!) lower bounds on the energy of each vortex with *possibly infinite number* of them
- ▶ the renormalized cost of a vortex in B_R tends to $-\infty$ when the vortex approaches $\partial B_R \rightsquigarrow$ need cut-off and letting $R \to \infty$
- ▶ the size of the blown-up domain ω tends to ∞ . Through the ergodic theorem, we define an averaged notion of Γ -convergence which works for infinite domains when the energy is translation invariance. Alternate to a method of Alberti-Müller. Pbl: our energy density is not positive.
- ▶ to prove the upper bound we first need to be able to reduce to periodic configurations of points in the plane, i.e. show that minimizing W in \mathbb{R}^2 can be well-approximated by minimizing it over configurations of points on large tori
- show also that the discontinuity on $\partial \omega$ generates a negligible energy

The result for periodic configurations

▶ Let *H* be a solution to

$$-\Delta H = \delta_0 - 1$$

on a torus of volume 1 of arbitrary shape.

- ► Fourier transform the explicit expression for W in that case to make it a function of the lattice (regularisation of $\sum_{p \in \Lambda} \frac{1}{|p|^2}$)
- its value becomes related to Dedekind eta function and Eisenstein series
- Minimizing W becomes equivalent to minimizing the Epstein zeta function $\zeta(s) = \sum_{p \in \Lambda} \frac{1}{|p|^s}$, s > 2, over lattices
- ▶ results from number theory (Cassels, Rankin, 60's) say that this is minimized by the triangular lattice

Theorem

The function W restricted to periodic configurations is minimized over all lattices of volume 1 by the triangular lattice

 $\rightsquigarrow W$ allows to distinguish between lattices!

The result for periodic configurations

▶ Let *H* be a solution to

$$-\Delta H = \delta_0 - 1$$

on a torus of volume 1 of arbitrary shape.

- ► Fourier transform the explicit expression for W in that case to make it a function of the lattice (regularisation of $\sum_{p \in \Lambda} \frac{1}{|p|^2}$)
- its value becomes related to Dedekind eta function and Eisenstein series
- Minimizing W becomes equivalent to minimizing the Epstein zeta function $\zeta(s) = \sum_{p \in \Lambda} \frac{1}{|p|^s}$, s > 2, over lattices
- ▶ results from number theory (Cassels, Rankin, 60's) say that this is minimized by the triangular lattice

Theorem

The function W restricted to periodic configurations is minimized over all lattices of volume 1 by the triangular lattice

 $\rightsquigarrow W$ allows to distinguish between lattices!

The result for periodic configurations

▶ Let *H* be a solution to

$$-\Delta H = \delta_0 - 1$$

on a torus of volume 1 of arbitrary shape.

- ► Fourier transform the explicit expression for W in that case to make it a function of the lattice (regularisation of $\sum_{p \in \Lambda} \frac{1}{|p|^2}$)
- ▶ its value becomes related to Dedekind eta function and Eisenstein series
- ▶ Minimizing W becomes equivalent to minimizing the Epstein zeta function $\zeta(s) = \sum_{p \in \Lambda} \frac{1}{|p|^s}$, s > 2, over lattices
- ► results from number theory (Cassels, Rankin, 60's) say that this is minimized by the triangular lattice

Theorem

The function W restricted to periodic configurations is minimized over all lattices of volume 1 by the triangular lattice

 \rightsquigarrow W allows to distinguish between lattices!

Conclusion and perspectives

- we have characterized the location of vortices in all applied field regimes $h_{\rm ex} \ll \frac{1}{\varepsilon^2}$ up to the scale where we see individual vortices
- ightharpoonup derived a limiting problem of interaction of points in the plane: the renormalized energy W
- ▶ W is a logarithmic type of interaction \rightsquigarrow long range!
- ▶ this problem allows to distinguish between different kind of lattices and prefers the triangular one → first justification of the Abrikosov lattice in this regime
- ightharpoonup remains to study the renormalized energy W without assuming periodicity \leadsto question of crystallisation...

Bibliography

- ► E. Sandier, S.S., *Vortices in the Magnetic Ginzburg-Landau Model*, Progress in Nonlinear Differential Equations, Birkhaüser, 2007.
- ► E. Sandier, S.S, forthcoming.
- ▶ thanks to S. R. S. Varadhan, A. Venkatesh, C. S. Günturk