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The Ginzburg-Landau energy with magnetic field

1 1— | 2)2
G (¢, A) = 5 /Q IV A + |curl A — hey|? + %
» Q C R? simply connected
» ¢ : Q — C "order parameter"
» |¢|>= density of superconducting Cooper pairs, [/ ~ 1

superconducting phase, || ~ 0 normal phase, ¥» = 0 vortices
A : Q — R? vector potential V4 =V —iA
h = curl A induced magnetic field

»
>
» heyx > 0 intensity of applied field
>
>

€= % "Ginzburg-Landau parameter": material constant

limit £ — 0 extreme type-ll or strongly repulsive



The Ginzburg-Landau equations

~Viv=%(1-[0P) inQ
—V5ih=19 xVa in Q
h = hex on 0N
Vay-v=20 on 012.

(GL)

Invariance under U(1)-gauge-transformations (“Abelian gauge theory")
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The physical quantities are gauge-invariant, such as: |¢
J =19 xVat, G..
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—V5ih=19 xVa in Q
h = hex on 0N
Vay-v=20 on 012.

(GL)

Invariance under U(1)-gauge-transformations (“Abelian gauge theory")

v pei®
{An—>A+V<D (1)

2v h,

The physical quantities are gauge-invariant, such as: |¢

J=1U X Vay, G..
motivations: superconductivity, superfluidity, Bose-Einstein condensates



Vortices

|4)|? < 1 density of superconducting electrons
|| = 0 normal phase

|| ~ 1 superconducting phase

vortices: zeros of 1 with nonzero degree

vvyyvyy

> 1) = pe'?
1
— 9¢ =deZ
27 JOB(xo,r) or

degree of the vortex

» In the limit € — 0 vortices become point-like, or more generally
codimension-2 singularities
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Vorticity

® not single-valued

introduce the vorticity-measure

pe = p(1p, A) = curl (¢ X Va1h) + curl A

“Jacobian estimate" (see Jerrard-Soner)

curl (Y x Vip) = det Dyp = curl (p°V) =~ curl Vo = 27 Z did;;, qde—0

If (1, A) satisfies (GL2)
—Vth =1 x Va
taking the curl

—Ah+h=p~21),did,, inQ
h = hey on 09.

Also |V 41| ~ [V h| ~ logarithmic divergence of [, |V at)|?
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Influence of the applied field and critical fields

» hex < He, no vortex, 1| ~ 1 (Meissner effect)
» Hc, = O(]logel) first critical field: first vortices appear, then

number increases with hey

— Abrikosov lattices (triangular) vortices repell...

R2e o o
e o o o

e o o o
e o o o

e o o o
e o o o

» Hc, = O(%) bulk superconductivity destroyed, surface
superconductivity remains
» H., = O(%) superconductivity destroyed, normal state 1) = 0



Leading order results for minimizers (mean field description)

Theorem (Sandier-S)
G,

Assume hey = M loge|. Ase — 0, 7= -converges w.r.to the
convergence of p(u, A)/hex to

1 1
Ex(n) ::ﬁ/n\u|+§/9|vm|2+\h#—1|2

where
—Ah,+h,=p in Q
h,=1 on 0R.

Consequently, for minimizers of G., as € — 0 we have

He h
how = Mhen g

Ge(¥, A)

2
hex

where 11, is the minimizer of Ey.



Minimization of E,: the obstacle problem

The minimization of E, is equivalent (by convex duality) to the obstacle
problem

1
min 7/\Vh|2+h2
h—1eH}(Q) 2 Jq

h>1—3k

with y1, = —Ah, + h,




Minimization of E,: the obstacle problem

The minimization of E, is equivalent (by convex duality) to the obstacle

problem
1
min 7/ |Vh|? + h?
h—1eH}(Q) 2 Jq
h>1-2%
with g, = —Ah, + h,

Coincidence set
1
wz{er/h*(x)zl—D\.:m}

1% is @ uniform density = m on w C Q.
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Dependence on A

> A< Mgt wy =60, e =0, no vortices
» XA = )g: wy = A\ = finite set of points (assume A = {p})

> A > Mot wy £ D

> loge| € hex < 1 weo =, p =1

Hq ~ )\0| |Og‘€|



A splitting of the energy

Let (¢, A) satisfy (GL2). We are able to show

G=(¥, A) = W2, Ex(p) + Gi(h, A)

where Gj is roughly like
~ 1 2 2 (1=1¥]%)
Gu(w,A) = 5 [[ITa0 +1h— b+ i—delog —=

First part ~ GL “free" energy without applied field

> 7Y |di|log E\/1h:

energy in the vortex cores - lower bounds by “ball construction methods",
Bethuel-Brezis-Hélein, Jerrard, Sandier, Sandier-S...




A splitting of the energy

Let (¢, A) satisfy (GL2). We are able to show
Ge(10, A) = W Ex(u) + Gi(v, A)
where Gj is roughly like

1
ev/hex

1 1— )2
G A) =~ 3 (1902 41 o+ U257 g

First part ~ GL “free" energy without applied field

> |di|log - 1hcx

energy in the vortex cores - lower bounds by “ball construction methods",
Bethuel-Brezis-Hélein, Jerrard, Sandier, Sandier-S...

» When adding a vortex an “infinite" amount of energy is added, but
also substracted

. " , "
» ~~ remains a ‘renormalized energy

» ~» we need to extract the energy in the vortex cores with very high
precision, in order to evaluate the remainder



Behaviour of energy-minimizers at next order

We also have
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Behaviour of energy-minimizers at next order

We also have

1 1
Gi(¢, A) ~ §/Q|Vhl\2+h§ —WZC/,' |08W

where

—Ahy 4+ hy = pe — hoxpts  in Q
hy =0 on 09Q.

» density of vortices mhey, distances ~ 1/v/mhey, — should blow-up to
see the pattern

» after blow up at the scale v/ mhe,, around a point in w, we get a
configuration of points in the WHOLE plane with

—AH = 27TZ did,, —1 in R?

Question: what's the interaction energy of the a;’s? Pbl: infinite-size
domain



The renormalized energy

Given a configuration of points + degree (a;, d;) in the plane obtained
this way, assuming all d; = 1 and given H a solution to

—AH = 277253,. —1.

We consider for any R a cutoff function xg € C§°(Bg) such that
0<xr<1land xg =1in Bg_1, and |[Vxgr| <2, and we define

1 1/
W({a;}, H) = liminf —— lim (7/ XrIVH|?
BR\U;B(B;,(X)

R—o0 |BR| a—0 \2
+ ZXR(BI')MOE; 06)

cf renormalized energy of Bethuel-Brezis-Hélein for finite number of
vortices

“W({ai}) = 12 ) da — 15"



F denotes the set of ({a;}, H) with —AH =27 >".4,, — 1 in R?

Theorem (Lower bound)

Let w denote the support of .. Then for any (1., A.), there exists a
probability measure P on F such that

1
lanJQfm 1(ve, Ac) /W {a;},H)dP({ai}, H) > a|’nf w
and thus

Ge (e, Ac) > h2 Ex(pt) + mhey|w| ian W + o(hex)

Sharp lower bound up to higher order o(hex) (=o(number of vortices))
best possible



The matching upper bound

Theorem (Upper bound)

Assume hey <K 6% For e < g, there exists (1., A.) such that

G:(¢e, Ac) < hngA(,u*) + Mhey|w] ian W + o(hex)

ai,

Corollary

“For minimizers of G., blown-up of the vortices at scale \/mhey around x.
chosen at random converge P-a.s. to configurations of points in the
plane minimizing W."
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» in order to derive W we need to control the number of vortices per
unit volume after blow-up
~~ need very sharp (sharper than in the past!) lower bounds on the
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Method and difficulties

» in order to derive W we need to control the number of vortices per
unit volume after blow-up
~~ need very sharp (sharper than in the past!) lower bounds on the
energy of each vortex with possibly infinite number of them

» the renormalized cost of a vortex in Br tends to —oo when the
vortex approaches 0Bg ~~ need cut-off and letting R — oo

» the size of the blown-up domain w tends to co. Through the ergodic
theorem, we define an averaged notion of [-convergence which
works for infinite domains when the energy is translation invariance.
Alternate to a method of Alberti-Miiller. Pbl: our energy density is
not positive.

» to prove the upper bound we first need to be able to reduce to
periodic configurations of points in the plane, i.e. show that
minimizing W in R? can be well-approximated by minimizing it over
configurations of points on large tori

» show also that the discontinuity on Jw generates a negligible energy
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The result for periodic configurations

» Let H be a solution to
—AH=¢y—-1

on a torus of volume 1 of arbitrary shape.

» Fourier transform the explicit expression for W in that case to make
. . . . . 1
it a function of the lattice (regularisation of 3_ _\ W)

> its value becomes related to Dedekind eta function and Eisenstein
series

» Minimizing W becomes equivalent to minimizing the Epstein zeta
function ((s) = >_ ca ﬁ, s > 2, over lattices

» results from number theory (Cassels, Rankin, 60's) say that this is
minimized by the triangular lattice

Theorem

The function W restricted to periodic configurations is minimized over all
lattices of volume 1 by the triangular lattice

~ W allows to distinguish between lattices!



Conclusion and perspectives

» we have characterized the location of vortices in all applied field
regimes hey < E% up to the scale where we see individual vortices

» derived a limiting problem of interaction of points in the plane: the
renormalized energy W

» W is a logarithmic type of interaction ~~ long range!

» this problem allows to distinguish between different kind of lattices
and prefers the triangular one ~~ first justification of the Abrikosov
lattice in this regime

» remains to study the renormalized energy W without assuming
periodicity ~~ question of crystallisation...
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