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1. Boltzmann Equation (1872)

∂tF + v · ∇xF = Q(F, F ) (1)

where F (t, x, v) ≥ 0 is the distribution function

for the gas particles at time t ≥ 0, position

x ∈ Ω, and v ∈ R3, Q(F1, F2) (hard-sphere) is

∫
R3

∫
S2

|v − u|F1(u
′)F2(v

′)| cos θ|dωdu

−
∫
R3

∫
S2

|v − u|F1(u)F2(v)| cos θ|dωdu (2)

where

u′ = u + (v − u) · ω, v′ = v − (v − u) · ω, cos θ

= (u − v) · ω/|u − v|.



The Maxwellian distribution: μ(v) = e−|v|2/2.
Global Solutions Near Maxwellian: Let

F = μ +
√

μf,

{∂t + v · ∇x + L} f = Γ(f, f)

where the standard linear Boltzmann operator
is given by

Lf ≡ νf −Kf = − 1√
μ
{Q(μ,

√
μf)+ Q(

√
μf, μ)},

(3)
and

Γ(f1, f2) =
1√
μ

Q(
√

μf1,
√

μf2) ≡ Γgain(f1, f2)

−Γloss(f1, f2). (4)

The collision invariant and H−Theorem implies
that L ≥ 0, and

ker L = {a(t, x)√μ, b(t, x)·v√μ, c(t, x)|v|2√μ}.
Here for fixed (t, x), the standard projection P
onto the hydrodynamic (macroscopic) part is
given by

Pf = {af(t, x) + bf(t, x) · v + cf(t, x)|v|2}
√

μ(v).



Energy Estimate:

1

2

d

dt
||f ||2 + 〈Lf, f〉 =

∫ ∫
fΓ(f, f).

If 〈Lf, f〉 ≥ δ||f ||2, global small solutions. But
we only know

〈Lf, f〉 ≥ δ||{I − P}f ||2,

It suffices to estimate Pf in terms of {I−P}f :

{∂t + v · ∇x}Pf = Γ(f, f)−{∂t + v · ∇ + L} {I−P}f
to get

∇xc = g1

∂tc + ∇ · b = g2

∂xib
j + ∂xjb

i = g3

∂tb +∇xa = g4

∂ta = g5

where gl � ∂{I − P}f+high order. We deduce
that

Δb � ∂2{I − P}f.

We hence have ellipticity for b.



2. Boundary Value Problem

One basic problem in the Boltzmann study:
Uniqueness, Time-decay toward e−|v|2/2, with

physical boundary conditions in a general do-
main Ω.

Let Ω = {x : ξ(x) < 0} is connected, and
bounded with ξ(x) smooth. The outward nor-
mal vector at ∂Ω is given by

n(x) =
∇ξ(x)

|∇ξ(x)|. (5)

We say Ω is real analytic if ξ is real analytic in
x. We define Ω is strictly convex if there exists

cξ > 0 such that

∂ijξ(x)ζ
iζj ≥ cξ|ζ|2 (6)

for all x such that ξ(x) ≤ 0, and all ζ ∈ R3. We

say that Ω has a rotational symmetry, if there
are vectors x0 and 	, such that for all x ∈ ∂Ω

{(x − x0)× 	} · n(x) ≡ 0. (7)



We denote the phase boundary in the space

Ω × R3 as γ = ∂Ω × R3 :

γ+ = {(x, v) ∈ ∂Ω × R3 : n(x) · v > 0 outgoing},
γ− = {(x, v) ∈ ∂Ω × R3 : n(x) · v < 0 incoming},
γ0 = {(x, v) ∈ ∂Ω × R3 : n(x) · v = 0 grazing}.

Given (t, x, v), let the trajectory (or the char-

acteristics) for the Boltzmann equation:

[X(s), V (s)] = [X(s; t, x, v), V (s; t, x, v)]

= [x + (s − t)v, v] (8)

with the initial condition: [X(t; t, x, v), V (t; t, x, v)]

= [x, v]. For any (x, v) such that x ∈ Ω̄, v �= 0,

we define its backward exit time tb(x, v) > 0

to be the the last moment at which the back-

time straight line [X(s; 0, x, v), V (s; 0, x, v)] re-

mains in Ω :

tb(x, v) = sup{τ ≥ 0 : x − τv ∈ Ω}.



Four Basic Types of Boundary Conditions:

(1) In-flow:

f |γ− = g(t, x, v) (9)

(2) Bounce-back:

f(t, x, v)|γ− = f(t, x,−v) (10)

(3) Specular reflection: for x ∈ ∂Ω, let

R(x)v = v − 2(n(x) · v)n(x), (11)

and

f(t, x, v)|γ− = f(x, v, v − 2(n(x) · v)n(x))

= f(x, v, R(x)v) (12)

(4) Diffusive reflection:

f(t, x, v)|γ− = cμ

√
μ(v)

∫
v′·n(x)>0

f(t, x, v′)√
μ(v′){nx · v′}dv′. (13)



2.1 Previous Work

In 1977, Asano and Shizuta’s announcement.

Desvillettes and Villani (2005) establish almost

exponential decay rate with large amplitude,

provided certain a-priori strong Sobolev esti-

mates can be verified.

2.2 Difficulties

The validity of these a-priori estimates is com-

pletely open even local in time, in a bounded

domain. As a matter of fact, such kind of

strong Sobolev estimates are not be expected

for a general non-convex domain.

Characteristic Boundary: This is because

even for simplest kinetic equations with the



differential operator v · ∇x, the phase bound-

ary ∂Ω × R3 is always characteristic but not

uniformly characteristic at the grazing set

γ0 = {(x, v) : x ∈ ∂Ω, and v · n(x) = 0}.
The complication of the geometry makes it

difficult to employ spatial Fourier transforms

in x.

Bouncing Characteristics: particles interact-

ing with the boundary repeatedly.

Strategy: To develop an unified L2−L∞ the-

ory.



2.3 Main Results

We introduce the weight function

w(v) = (1 + ρ|v|2)βeθ|v|2. (14)

where 0 ≤ θ < 1
4, ρ > 0 and β ∈ R1.

Theorem 1 Assume w−2{1+|v|}3 ∈ L1. There

exists δ > 0 such that if F0 = μ +
√

μf0 ≥ 0,

and

||wf0||∞ + sup
0≤t≤∞

eλ0t||wg(t)||∞ ≤ δ,

with λ0 > 0, then there there exists a unique

solution F (t, x, v) = μ +
√

μf ≥ 0 to the inflow

boundary value problem (9) for the Boltzmann

equation (1). There exists 0 < λ < λ0 such

that

sup
0≤t≤∞

eλt||wf(t)||∞ ≤ C{||wf0||∞

+ sup
0≤t≤∞

eλ0t||wg(t)||∞}.



Moreover, if Ω is strictly convex (6), and if
f0(x, v) is continuous except on γ0, and g(t, x, v)
is continuous in [0,∞)×{∂Ω×R3\γ0} satisfying

f0(x, v) = g(x, v) on γ−,

then f is continuous in [0,∞) × {Ω̄ × R3 \ γ0}.

Theorem 2 Assume w−2{1 + |v|}3 ∈ L1. As-
sume the conservations of mass and energy are
valid for f0. Then there exists δ > 0 such that
if F0(x, v) = μ +

√
μf0(x, v) ≥ 0 and ||wf0||∞ ≤

δ, there exists a unique solution F (t, x, v) = μ+√
μf(t, x, v) ≥ 0 to the bounce-back boundary

value problem (10) for the Boltzmann equation
(1) such that

sup
0≤t≤∞

eλt||wf(t)||∞ ≤ C||wf0||∞.

Moreover, if Ω is strictly convex (6), and if
initially f0(x, v) is continuous except on γ0 and

f0(x, v) = f0(x,−v) on ∂Ω × R3 \ γ0,

then f is continuous in [0,∞) × {Ω̄ × R3 \ γ0}.



Theorem 3 Assume w−2{1 + |v|}3 ∈ L1. As-

sume that ξ is both strictly convex (6) and an-

alytic, and the mass and energy are conserved

for f0. In the case of Ω has any rotational sym-

metry (7), we require that the corresponding

angular momentum is conserved for f0. Then

there exists δ > 0 such that if F0(x, v) = μ +√
μf0(x, v) ≥ 0 and ||wf0||∞ ≤ δ, there exists a

unique solution F (t, x, v) = μ+
√

μf(t, x, v) ≥ 0

to the specular boundary value problem (12)

for the Boltzmann equation (1) such that

sup
0≤t≤∞

eλt||wf(t)||∞ ≤ C||wf0||∞.

Moreover, if f0(x, v) is continuous except on

γ0 and

f0(x, v) = f0(x, R(x)v) on ∂Ω

then f is continuous in [0,∞) × {Ω̄ × R3 \ γ0}.



Theorem 4 There is θ0(ν0) > 0 such that

θ0(ν0) < θ <
1

4
, and ρ is sufficiently small

(15)

for weight function w. Assume the mass con-

servation is valid for f0. If F0(x, v) = μ +√
μf0(x, v) ≥ 0 and ||wf0||∞ ≤ δ sufficiently

small, then there exists a unique solution F (t, x, v) =

μ +
√

μf(t, x, v) ≥ 0 to the diffuse boundary

value problem (14) for the Boltzmann equa-

tion (1) such that

sup
0≤t≤∞

eλt||wf(t)||∞ ≤ C||wf0||∞.

Moreover, if ξ is strictly convex, and if f0(x, v)

is continuous except on γ0 with

f0(x, v)|γ− = cμ
√

μ
∫
{nx·v′>0}

f0(x, v′)√
μ(v′){n(x) · v′}dv′

then f is continuous in [0,∞) × {Ω̄ × R3 \ γ0}.



2.4 Velocity Lemma

Lemma 5 Let Ω be strictly convex defined in

(6). Along the trajectories dX(s)
ds = V (s), dV (s)

ds =

0 in (8), define:

α(s) ≡ ξ2(X(s)) + [V (s) · ∇ξ(X(s))]2

−2{V (s) · ∇2ξ(X(s)) · V (s)}ξ(X(s)). (16)

Let X(s) ∈ Ω̄ for t1 ≤ s ≤ t2. Then there exists

constant Cξ > 0 such that

eCξ(|V (t1)|+1)t1α(t1) ≤ eCξ(|V (t1)|+1)t2α(t2);

e−Cξ(|V (t1)|+1)t1α(t1) ≥ e−Cξ(|V (t1)|+1)t2α(t2).

(17)



This lemma implies that in a strictly convex

domain (6), the singular set γ0 can not be

reached via the trajectory dx
dt = v, dv

dt = 0 from

interior points inside Ω, and hence γ0 does

not really participate or interfere with the inte-

rior dynamics. No singularity would be created

from γ0 and it is possible to perform calculus

for the back-time exit time tb(x, v). History and

Vlasov-Poisson (Hwang and Velazquez 2007)



2.5 L2 Decay Theory

It suffices to establish the following finite-time

estimate∫ 1

0
||Pf(s)||2νds ≤ M

{∫ 1

0
||{I − P}f(s)||2ν

+boundary contributions

}
(18)

for any solution f to the linear Boltzmann

equation with boundary conditions.

It is challenging to estimate L2 of b

Δb = ∂2{I − P}f,

with b · n(x) = 0 (bounce-back and specular)

or b ≡ 0 (inflow and diffuse) at ∂Ω.



Hyperbolic (Transport) Feature: If not, the
normalized Zk(t, x, v) ≡ fk(t,x,v)√∫ 1

0 ||Pfk(s)||2νds
satisfies

∫ 1
0 ||PZk(s)||2νds ≡ 1, and∫ 1

0
||(I − P)Zk(s)||2νds ≤ 1

k
. (19)

Denote a weak limit of Zk to be Z, we expect
that Z = PZ = 0, by each of the four boundary
conditions. The key is to prove that Zk → Z.

No Concentration in Interior Ω : By the av-
eraging Lemma, we know that Zk(s) → Z.

No Concentration Near ∂Ω : On the Non-
Grazing Set v·n(x) �= 0 : Since Zk is a solution
to a transport equation, non-grazing point can
be reached via a trajectory from the interior of
Ω.

Almost Grazing Set v · n(x) ∼ 0, thanks to
the fact (19) no concentration for

Zk ∼ PZk = {ak(t, x)+bk(t, x)·v+ck(t, x)|v|2}
√

μ(v)



2.6 L∞ Decay Theory

We denote a weight function h(t, x, v) = w(v)

f(t, x, v). Let U(t)h solves

{∂t + v · ∇x + ν − Kw}h = 0, (20)

where Kwh = wK(h
w). Consider G(t)h solves

{∂t + v · ∇x + ν}h = 0, (21)

U(t) = G(t) +
∫ t

0
G(t − s1)KwU(s1)ds1. (22)

By Vidav’s (1970), (two iterations):

U(t) = G(t) +
∫ t

0
G(t − s1)KwG(s1)ds1+

∫ t

0

∫ s1

0
G(t−s1)KwG(s1−s)KwU(s)dsds1. (23)

To estimate the last double integral in terms

of the L2 norm of f = h
w.



2.6.1 Inflow boundary condition (9):

With the compact property of Kw, we are led
to the main contribution in (28) roughly of the
form∫ t

0

∫ s1

0

∫
v′,v′′

|h(s, X(s; s1, X(s1; t, x, v), v′), v′′)|

dv′dv′′dsds1. (24)

The v′ integral is estimated by a change of vari-
able introduced in Vidav (A-smoothing 1970,
Liu-Yu 2007)

y ≡ X(s; s1, X(s1; t, x, v), v′)
= x − (t − s1)v − (s1 − s)v′. (25)

Since det( dy
dv′) �= 0 almost always true, the v′

and v′′−integration in (29) can be bounded by∫
Ω,v′′ bounded

|h(s, y, v′′)|dydv′′

≤ C

(∫
Ω,v′′ bounded

|f(s, y, v′′)|2dydv′′
)1/2

.



For bounce-back, specular or diffuse reflections,

the characteristic trajectories repeatedly inter-

act with the boundary. Instead of X(s; t, x, v),

we should use the generalized characteristics,

Xcl(s; t, x, v). To determine the change of vari-

able

y ≡ Xcl(s; s1, Xcl(s1; t, x, v), v′), (26)

always almost have

det

{
dXcl(s; s1, Xcl(s1; t, x, v), v′)

dv′

}
�= 0. (27)



2.6.2 The Bounce-Back Reflection:

Let (t0, x0, v0) = (t, x, v), (tk+1, xk+1, vk+1) is

(tk − tb(xk, vk), xb(xk, vk),−vk); and

Xcl(s; t, x, v) =
∑
k

1[tk+1,tk)
(s){xk + (s − tk)vk},

Vcl(s; t, x, v) =
∑
k

1[tk+1,tk)
(s)vk.

The bounce-back cycles Xcl(s; t, x, v) from a

given point (t, x, v) is relatively simple.



2.6.3 Specular Reflection:

Let (t0, x0, v0) = (t, x, v), (tk+1, xk+1, vk+1) is

(tk − tb(xk, vk), xb(xk, vk), R(xk+1)vk); and

Xcl(s; t, x, v) =
∑

k 1[tk+1,tk)
(s){xk + (s − tk)vk},

Vcl(s; t, x, v) =
∑

k 1[tk+1,tk)
(s)vk.

Difficulty: The specular cycles Xcl(s; t, x, v)

reflect repeatedly with the boundary in general,

and dXcl(s;s1,Xcl(s1;t,x,v),v′)
dv′ is very complicated

to compute and (32) is extremely difficult to

verify. This is non-standard in the billiard lit-

erature (x and v are not symmetric!)



Small almost tangential bounces:

Let (0, x1, v1) and sk = tb(xk, vk) for k = 1,2,3, ...
so that ξ(x1 − s1v1) = 0, x2 = x1 − s1v1 ∈ ∂Ω
and for k ≥ 2 : xk = xk−1 − skvk ∈ ∂Ω.

ξ(x1 −
k∑

j=1

sjvj) = 0, vk = R(xk)vk−1.

Proposition 6 For any finite k ≥ 1,

∂vi
k

∂vl
1

= δli + ζ(k)ni(x1)n
l(x1) + O(ε0), (28)

where ζ(k) is an even integer so that

det

(
∂vi

k

∂vl
1

)
= {ζ(k) + 1} + O(ε0) �= 0.

It then follows that det{dXcl(s;s1,Xcl(s1;t,x,v),v′)
dv′ } �=

0 for these special cycles.

This crucial observation is then combined with
analyticity of ξ to conclude that the set of
det{dXcl(s;Xcl(s1,x,v),v′)

dv′ } = 0 is arbitrarily small.



2.6.4 Diffuse Reflection:

Let (t0, x0, v0) = (t, x, v), (tk+1, xk+1, vk+1) is

(tk−tb(xk, vk), xb(xk, vk), vk+1); for vk+1·n(xk+1)

> 0; and Xcl(s; t, x, v) is∑
k

1[tk+1,tk)
(s){xk + (s − tk)vk},

Vcl(s; t, x, v) =
∑
k

1[tk+1,tk)
(s)vk.

Difficulty: Similar change of variable is ex-

pected with respect to one of such indepen-

dent variables. However, the main difficulty in

this case is the L∞ control of G(t) which satis-

fies (26). The most natural L∞ estimate: for

weight w = μ−1
2 : (bad for linear theory)

h(t, x, v) = cμ

∫
v′·n(x)>0

h(t, x, v′)μ(v′){v′·n(x)}dv′.



L∞ for weaker weight � μ−1
2 : The measure of

those particles can not reach initial plane after

k−bounces is small when k is large (non-zero!!)

Lemma 7 Let the probability measure dσ =

dσ(x) is given by

dσ(x) = cμμ(v′){n(x) · v′}dv′. (29)

For any ε > 0, there exists k0(ε, T0) such that

for k ≥ k0, for all (t, x, v),0 ≤ t ≤ T0, x ∈ Ω̄ and

v ∈ R3,∫
Πk−1

l=1{vl: vl·n(xl)>0}
1{tk(t,x,v,v1,v2...,vk−1)>0}Π

k−1
l=1

dσ(xl) ≤ ε.

We therefore can obtain an approximate repre-

sentation formula for G(t) by the initial datum,

with only finite number of bounces.


