Boltzmann Equation in Bounded Domains Yan Guo
 Division of Applied Mathematics Brown University
 September 2, 2008

In Honor of Cathleen S. Morawetz

1. Boltzmann Equation (1872)

$$
\begin{equation*}
\partial_{t} F+v \cdot \nabla_{x} F=Q(F, F) \tag{1}
\end{equation*}
$$

where $F(t, x, v) \geq 0$ is the distribution function for the gas particles at time $t \geq 0$, position $x \in \Omega$, and $v \in \mathbf{R}^{3}, Q\left(F_{1}, F_{2}\right)$ (hard-sphere) is

$$
\begin{align*}
& \int_{\mathbf{R}^{3}} \int_{\mathbf{S}^{2}}|v-u| F_{1}\left(u^{\prime}\right) F_{2}\left(v^{\prime}\right)|\cos \theta| d \omega d u \\
- & \int_{\mathbf{R}^{3}} \int_{\mathbf{S}^{2}}|v-u| F_{1}(u) F_{2}(v)|\cos \theta| d \omega d u \tag{2}
\end{align*}
$$

where

$$
\begin{aligned}
u^{\prime} & =u+(v-u) \cdot \omega, v^{\prime}=v-(v-u) \cdot \omega, \cos \theta \\
& =(u-v) \cdot \omega /|u-v|
\end{aligned}
$$

The Maxwellian distribution: $\mu(v)=e^{-|v|^{2} / 2}$. Global Solutions Near Maxwellian: Let

$$
\begin{aligned}
F & =\mu+\sqrt{\mu} f, \\
\left\{\partial_{t}+v \cdot \nabla_{x}+L\right\} f & =\ulcorner(f, f)
\end{aligned}
$$

where the standard linear Boltzmann operator is given by
$L f \equiv \nu f-K f=-\frac{1}{\sqrt{\mu}}\{Q(\mu, \sqrt{\mu} f)+Q(\sqrt{\mu} f, \mu)\}$,
and

$$
\begin{align*}
\Gamma\left(f_{1}, f_{2}\right)= & \frac{1}{\sqrt{\mu}} Q\left(\sqrt{\mu} f_{1}, \sqrt{\mu} f_{2}\right) \equiv \Gamma_{\text {gain }}\left(f_{1}, f_{2}\right) \tag{3}\\
& -\Gamma_{\text {loss }}\left(f_{1}, f_{2}\right) . \tag{4}
\end{align*}
$$

The collision invariant and H-Theorem implies that $L \geq 0$, and
ker $L=\left\{a(t, x) \sqrt{\mu}, \quad b(t, x) \cdot v \sqrt{\mu}, \quad c(t, x)|v|^{2} \sqrt{\mu}\right\}$. Here for fixed (t, x), the standard projection P onto the hydrodynamic (macroscopic) part is given by
$\mathbf{P} f=\left\{a_{f}(t, x)+b_{f}(t, x) \cdot v+c_{f}(t, x)|v|^{2}\right\} \sqrt{\mu(v)}$.

Energy Estimate:

$$
\frac{1}{2} \frac{d}{d t}\|f\|^{2}+\langle L f, f\rangle=\iint f\ulcorner(f, f) .
$$

If $\langle L f, f\rangle \geq \delta\|f\|^{2}$, global small solutions. But we only know

$$
\langle L f, f\rangle \geq \delta\|\{\mathbf{I}-\mathbf{P}\} f\|^{2},
$$

It suffices to estimate $\mathbf{P} f$ in terms of $\{\mathbf{I}-\mathbf{P}\} f$:
$\left\{\partial_{t}+v \cdot \nabla_{x}\right\} \mathbf{P} f=\Gamma(f, f)-\left\{\partial_{t}+v \cdot \nabla+L\right\}\{\mathbf{I}-\mathbf{P}\} f$ to get

$$
\begin{aligned}
\nabla_{x} c & =g_{1} \\
\partial_{t} c+\nabla \cdot b & =g_{2} \\
\partial_{x_{i}} b^{j}+\partial_{x_{j}} b^{i} & =g_{3} \\
\partial_{t} b+\nabla_{x} a & =g_{4} \\
\partial_{t} a & =g_{5}
\end{aligned}
$$

where $g_{l} \backsim \partial\{\mathbf{I}-\mathbf{P}\} f+$ high order. We deduce that

$$
\Delta b \backsim \partial^{2}\{\mathbf{I}-\mathbf{P}\} f .
$$

We hence have ellipticity for b.

2. Boundary Value Problem

One basic problem in the Boltzmann study: Uniqueness, Time-decay toward $e^{-|v|^{2} / 2}$, with physical boundary conditions in a general domain Ω.

Let $\Omega=\{x: \xi(x)<0\}$ is connected, and bounded with $\xi(x)$ smooth. The outward normal vector at $\partial \Omega$ is given by

$$
\begin{equation*}
n(x)=\frac{\nabla \xi(x)}{|\nabla \xi(x)|} \tag{5}
\end{equation*}
$$

We say Ω is real analytic if ξ is real analytic in x. We define Ω is strictly convex if there exists $c_{\xi}>0$ such that

$$
\begin{equation*}
\partial_{i j} \xi(x) \zeta^{i} \zeta^{j} \geq c_{\xi}|\zeta|^{2} \tag{6}
\end{equation*}
$$

for all x such that $\xi(x) \leq 0$, and all $\zeta \in \mathbf{R}^{3}$. We say that Ω has a rotational symmetry, if there are vectors x_{0} and ϖ, such that for all $x \in \partial \Omega$

$$
\begin{equation*}
\left\{\left(x-x_{0}\right) \times \varpi\right\} \cdot n(x) \equiv 0 . \tag{7}
\end{equation*}
$$

We denote the phase boundary in the space $\Omega \times \mathbf{R}^{3}$ as $\gamma=\partial \Omega \times \mathbf{R}^{3}:$
$\gamma_{+}=\left\{(x, v) \in \partial \Omega \times \mathbf{R}^{3}: n(x) \cdot v>0\right.$ outgoing $\}$,
$\gamma_{-}=\left\{(x, v) \in \partial \Omega \times \mathbf{R}^{3}: n(x) \cdot v<0\right.$ incoming $\}$,
$\gamma_{0}=\left\{(x, v) \in \partial \Omega \times \mathbf{R}^{3}: \quad n(x) \cdot v=0\right.$ grazing $\}$.

Given (t, x, v), let the trajectory (or the characteristics) for the Boltzmann equation:

$$
\begin{align*}
{[X(s), V(s)]=} & {[X(s ; t, x, v), V(s ; t, x, v)] } \\
& =[x+(s-t) v, v] \tag{8}
\end{align*}
$$

with the initial condition: $[X(t ; t, x, v), V(t ; t, x, v)]$
$=[x, v]$. For any (x, v) such that $x \in \bar{\Omega}, v \neq 0$, we define its backward exit time $t_{\mathbf{b}}(x, v)>0$ to be the the last moment at which the backtime straight line $[X(s ; 0, x, v), V(s ; 0, x, v)]$ remains in Ω :

$$
t_{\mathbf{b}}(x, v)=\sup \{\tau \geq 0: x-\tau v \in \Omega\} .
$$

Four Basic Types of Boundary Conditions:
(1) In-flow:

$$
\begin{equation*}
\left.f\right|_{\gamma_{-}}=g(t, x, v) \tag{9}
\end{equation*}
$$

(2) Bounce-back:

$$
\begin{equation*}
\left.f(t, x, v)\right|_{\gamma_{-}}=f(t, x,-v) \tag{10}
\end{equation*}
$$

(3) Specular reflection: for $x \in \partial \Omega$, let

$$
\begin{equation*}
R(x) v=v-2(n(x) \cdot v) n(x), \tag{11}
\end{equation*}
$$

and

$$
\begin{align*}
\left.f(t, x, v)\right|_{\gamma_{-}} & =f(x, v, v-2(n(x) \cdot v) n(x)) \\
& =f(x, v, R(x) v) \tag{12}
\end{align*}
$$

(4) Diffusive reflection:

$$
\begin{align*}
\left.f(t, x, v)\right|_{\gamma_{-}}= & c_{\mu} \sqrt{\mu(v)} \int_{v^{\prime} \cdot n(x)>0} f\left(t, x, v^{\prime}\right) \\
& \sqrt{\mu\left(v^{\prime}\right)}\left\{n_{x} \cdot v^{\prime}\right\} d v^{\prime} . \tag{13}
\end{align*}
$$

2.1 Previous Work

In 1977, Asano and Shizuta's announcement.

Desvillettes and Villani (2005) establish almost exponential decay rate with large amplitude, provided certain a-priori strong Sobolev estimates can be verified.

2.2 Difficulties

The validity of these a-priori estimates is completely open even local in time, in a bounded domain. As a matter of fact, such kind of strong Sobolev estimates are not be expected for a general non-convex domain.

Characteristic Boundary: This is because even for simplest kinetic equations with the
differential operator $v \cdot \nabla_{x}$, the phase boundary $\partial \Omega \times \mathbf{R}^{3}$ is always characteristic but not uniformly characteristic at the grazing set

$$
\gamma_{0}=\{(x, v): x \in \partial \Omega, \text { and } v \cdot n(x)=0\} .
$$

The complication of the geometry makes it difficult to employ spatial Fourier transforms in x.

Bouncing Characteristics: particles interacting with the boundary repeatedly.

Strategy: To develop an unified $L^{2}-L^{\infty}$ theory.

2.3 Main Results

We introduce the weight function

$$
\begin{equation*}
w(v)=\left(1+\rho|v|^{2}\right)^{\beta} e^{\theta|v|^{2}} \tag{14}
\end{equation*}
$$

where $0 \leq \theta<\frac{1}{4}, \rho>0$ and $\beta \in \mathbf{R}^{1}$.
Theorem 1 Assume $w^{-2}\{1+|v|\}^{3} \in L^{1}$. There exists $\delta>0$ such that if $F_{0}=\mu+\sqrt{\mu} f_{0} \geq 0$, and

$$
\left\|w f_{0}\right\|_{\infty}+\sup _{0 \leq t \leq \infty} e^{\lambda_{0} t}\|w g(t)\|_{\infty} \leq \delta
$$

with $\lambda_{0}>0$, then there there exists a unique solution $F(t, x, v)=\mu+\sqrt{\mu} f \geq 0$ to the inflow boundary value problem (9) for the Boltzmann equation (1). There exists $0<\lambda<\lambda_{0}$ such that
$\sup _{0 \leq t \leq \infty} e^{\lambda t}\|w f(t)\|_{\infty} \leq C\left\{\left\|w f_{0}\right\|_{\infty}\right.$

$$
\left.+\sup _{0 \leq t \leq \infty} e^{\lambda_{0} t}\|w g(t)\|_{\infty}\right\}
$$

Moreover, if Ω is strictly convex (6), and if $f_{0}(x, v)$ is continuous except on γ_{0}, and $g(t, x, v)$ is continuous in $[0, \infty) \times\left\{\partial \Omega \times \mathbf{R}^{3} \backslash \gamma_{0}\right\}$ satisfying

$$
f_{0}(x, v)=g(x, v) \quad \text { on } \gamma_{-},
$$

then f is continuous in $[0, \infty) \times\left\{\bar{\Omega} \times \mathbf{R}^{3} \backslash \gamma_{0}\right\}$.
Theorem 2 Assume $w^{-2}\{1+|v|\}^{3} \in L^{1}$. Assume the conservations of mass and energy are valid for f_{0}. Then there exists $\delta>0$ such that if $F_{0}(x, v)=\mu+\sqrt{\mu} f_{0}(x, v) \geq 0$ and $\left\|w f_{0}\right\|_{\infty} \leq$ δ, there exists a unique solution $F(t, x, v)=\mu+$ $\sqrt{\mu} f(t, x, v) \geq 0$ to the bounce-back boundary value problem (10) for the Boltzmann equation (1) such that

$$
\sup _{0 \leq t \leq \infty} e^{\lambda t}\|w f(t)\|_{\infty} \leq C\left\|w f_{0}\right\|_{\infty}
$$

Moreover, if Ω is strictly convex (6), and if initially $f_{0}(x, v)$ is continuous except on γ_{0} and

$$
f_{0}(x, v)=f_{0}(x,-v) \text { on } \partial \Omega \times \mathbf{R}^{3} \backslash \gamma_{0},
$$

then f is continuous in $[0, \infty) \times\left\{\bar{\Omega} \times \mathbf{R}^{3} \backslash \gamma_{0}\right\}$.

Theorem 3 Assume $w^{-2}\{1+|v|\}^{3} \in L^{1}$. Assume that ξ is both strictly convex (6) and analytic, and the mass and energy are conserved for f_{0}. In the case of Ω has any rotational symmetry (7), we require that the corresponding angular momentum is conserved for f_{0}. Then there exists $\delta>0$ such that if $F_{0}(x, v)=\mu+$ $\sqrt{\mu} f_{0}(x, v) \geq 0$ and $\left\|w f_{0}\right\|_{\infty} \leq \delta$, there exists a unique solution $F(t, x, v)=\mu+\sqrt{\mu} f(t, x, v) \geq 0$ to the specular boundary value problem (12) for the Boltzmann equation (1) such that

$$
\sup _{0 \leq t \leq \infty} e^{\lambda t}\|w f(t)\|_{\infty} \leq C\left\|w f_{0}\right\|_{\infty}
$$

Moreover, if $f_{0}(x, v)$ is continuous except on γ_{0} and

$$
f_{0}(x, v)=f_{0}(x, R(x) v) \text { on } \partial \Omega
$$

then f is continuous in $[0, \infty) \times\left\{\bar{\Omega} \times \mathbf{R}^{3} \backslash \gamma_{0}\right\}$.

Theorem 4 There is $\theta_{0}\left(\nu_{0}\right)>0$ such that

$$
\theta_{0}\left(\nu_{0}\right)<\theta<\frac{1}{4}, \text { and } \rho \text { is sufficiently small }
$$

(15)
for weight function w. Assume the mass conservation is valid for f_{0}. If $F_{0}(x, v)=\mu+$ $\sqrt{\mu} f_{0}(x, v) \geq 0$ and $\left\|w f_{0}\right\|_{\infty} \leq \delta$ sufficiently small, then there exists a unique solution $F(t, x, v)=$ $\mu+\sqrt{\mu} f(t, x, v) \geq 0$ to the diffuse boundary value problem (14) for the Boltzmann equaion (1) such that

$$
\sup _{0 \leq t \leq \infty} e^{\lambda t}\|w f(t)\|_{\infty} \leq C\left\|w f_{0}\right\|_{\infty}
$$

Moreover, if ξ is strictly convex, and if $f_{0}(x, v)$ is continuous except on γ_{0} with

$$
\begin{aligned}
\left.f_{0}(x, v)\right|_{\gamma_{-}}= & c_{\mu} \sqrt{\mu} \int_{\left\{n_{x} \cdot v^{\prime}>0\right\}} f_{0}\left(x, v^{\prime}\right) \\
& \sqrt{\mu\left(v^{\prime}\right)\left\{n(x) \cdot v^{\prime}\right\} d v^{\prime}}
\end{aligned}
$$

then f is continuous in $[0, \infty) \times\left\{\bar{\Omega} \times \mathbf{R}^{3} \backslash \gamma_{0}\right\}$.

2.4 Velocity Lemma

Lemma 5 Let Ω be strictly convex defined in (6). Along the trajectories $\frac{d X(s)}{d s}=V(s), \frac{d V(s)}{d s}=$ 0 in (8), define:

$$
\begin{align*}
& \alpha(s) \equiv \xi^{2}(X(s))+[V(s) \cdot \nabla \xi(X(s))]^{2} \\
& -2\left\{V(s) \cdot \nabla^{2} \xi(X(s)) \cdot V(s)\right\} \xi(X(s)) . \tag{16}
\end{align*}
$$

Let $X(s) \in \bar{\Omega}$ for $t_{1} \leq s \leq t_{2}$. Then there exists constant $C_{\xi}>0$ such that

$$
\begin{gather*}
e^{C_{\xi}\left(\left|V\left(t_{1}\right)\right|+1\right) t_{1}} \alpha\left(t_{1}\right) \leq e^{C_{\xi}\left(\left|V\left(t_{1}\right)\right|+1\right) t_{2}} \alpha\left(t_{2}\right) \\
e^{-C_{\xi}\left(\left|V\left(t_{1}\right)\right|+1\right) t_{1}} \alpha\left(t_{1}\right) \geq e^{-C_{\xi}\left(\left|V\left(t_{1}\right)\right|+1\right) t_{2}} \alpha\left(t_{2}\right) . \tag{17}
\end{gather*}
$$

This lemma implies that in a strictly convex domain (6), the singular set γ_{0} can not be reached via the trajectory $\frac{d x}{d t}=v, \frac{d v}{d t}=0$ from interior points inside Ω, and hence γ_{0} does not really participate or interfere with the interior dynamics. No singularity would be created from γ_{0} and it is possible to perform calculus for the back-time exit time $t_{\mathrm{b}}(x, v)$. History and Vlasov-Poisson (Hwang and Velazquez 2007)

2.5 L^{2} Decay Theory

It suffices to establish the following finite-time estimate

$$
\int_{0}^{1}\|\mathbf{P} f(s)\|_{\nu}^{2} d s \leq M\left\{\int_{0}^{1}\|\{\mathbf{I}-\mathbf{P}\} f(s)\|_{\nu}^{2}\right.
$$

$$
\begin{equation*}
\text { +boundary contributions }\} \tag{18}
\end{equation*}
$$

for any solution f to the linear Boltzmann equation with boundary conditions.

It is challenging to estimate L^{2} of b

$$
\Delta b=\partial^{2}\{\mathbf{I}-\mathbf{P}\} f
$$

with $b \cdot n(x)=0$ (bounce-back and specular) or $b \equiv 0$ (inflow and diffuse) at $\partial \Omega$.

Hyperbolic (Transport) Feature: If not, the normalized $Z_{k}(t, x, v) \equiv \frac{f_{k}(t, x, v)}{\sqrt{\int_{0}^{1}\left\|\mathbf{P} f_{k}(s)\right\|_{\nu}^{2} d s}}$ satisfies $\int_{0}^{1}\left\|\mathbf{P} Z_{k}(s)\right\|_{\nu}^{2} d s \equiv 1$, and

$$
\begin{equation*}
\int_{0}^{1}\left\|(\mathbf{I}-\mathbf{P}) Z_{k}(s)\right\|_{\nu}^{2} d s \leq \frac{1}{k} . \tag{19}
\end{equation*}
$$

Denote a weak limit of Z_{k} to be Z, we expect that $Z=\mathrm{P} Z=0$, by each of the four boundary conditions. The key is to prove that $Z_{k} \rightarrow Z$.

No Concentration in Interior Ω : By the averaging Lemma, we know that $Z_{k}(s) \rightarrow Z$.

No Concentration Near $\partial \Omega$: On the NonGrazing Set $v \cdot n(x) \neq 0$: Since Z_{k} is a solution to a transport equation, non-grazing point can be reached via a trajectory from the interior of Ω.

Almost Grazing Set $v \cdot n(x) \sim 0$, thanks to the fact (19) no concentration for
$Z_{k} \sim \mathbf{P} Z_{k}=\left\{a_{k}(t, x)+b_{k}(t, x) \cdot v+c_{k}(t, x)|v|^{2}\right\} \sqrt{\mu(v)}$

2.6 L^{∞} Decay Theory

We denote a weight function $h(t, x, v)=w(v)$ $f(t, x, v)$. Let $U(t) h$ solves

$$
\begin{equation*}
\left\{\partial_{t}+v \cdot \nabla_{x}+\nu-K_{w}\right\} h=0, \tag{20}
\end{equation*}
$$

where $K_{w} h=w K\left(\frac{h}{w}\right)$. Consider $G(t) h$ solves

$$
\begin{gather*}
\left\{\partial_{t}+v \cdot \nabla_{x}+\nu\right\} h=0 \tag{21}\\
U(t)=G(t)+\int_{0}^{t} G\left(t-s_{1}\right) K_{w} U\left(s_{1}\right) d s_{1} \tag{22}
\end{gather*}
$$

By Vidav's (1970), (two iterations):

$$
\begin{gather*}
U(t)=G(t)+\int_{0}^{t} G\left(t-s_{1}\right) K_{w} G\left(s_{1}\right) d s_{1}+ \\
\int_{0}^{t} \int_{0}^{s_{1}} G\left(t-s_{1}\right) K_{w} G\left(s_{1}-s\right) K_{w} U(s) d s d s_{1} \tag{23}
\end{gather*}
$$

To estimate the last double integral in terms of the L^{2} norm of $f=\frac{h}{w}$.

2.6.1 Inflow boundary condition (9):

With the compact property of K_{w}, we are led to the main contribution in (28) roughly of the form

$$
\begin{gather*}
\int_{0}^{t} \int_{0}^{s_{1}} \int_{v^{\prime}, v^{\prime \prime}}\left|h\left(s, X\left(s ; s_{1}, X\left(s_{1} ; t, x, v\right), v^{\prime}\right), v^{\prime \prime}\right)\right| \\
d v^{\prime} d v^{\prime \prime} d s d s_{1} . \tag{24}
\end{gather*}
$$

The v^{\prime} integral is estimated by a change of variable introduced in Vidav (A-smoothing 1970, Liu-Yu 2007)

$$
\begin{align*}
y & \equiv X\left(s ; s_{1}, X\left(s_{1} ; t, x, v\right), v^{\prime}\right) \\
& =x-\left(t-s_{1}\right) v-\left(s_{1}-s\right) v^{\prime} . \tag{25}
\end{align*}
$$

Since $\operatorname{det}\left(\frac{d y}{d v^{\prime}}\right) \neq 0$ almost always true, the v^{\prime} and $v^{\prime \prime}$-integration in (29) can be bounded by

$$
\begin{gathered}
\int_{\Omega, v^{\prime \prime} \text { bounded }}\left|h\left(s, y, v^{\prime \prime}\right)\right| d y d v^{\prime \prime} \\
\leq C\left(\int_{\Omega, v^{\prime \prime} \text { bounded }}\left|f\left(s, y, v^{\prime \prime}\right)\right|^{2} d y d v^{\prime \prime}\right)^{1 / 2} .
\end{gathered}
$$

For bounce-back, specular or diffuse reflections, the characteristic trajectories repeatedly interact with the boundary. Instead of $X(s ; t, x, v)$, we should use the generalized characteristics, $X_{\mathrm{cl}}(s ; t, x, v)$. To determine the change of variable

$$
\begin{equation*}
y \equiv X_{\mathbf{c l}}\left(s ; s_{1}, X_{\mathbf{c l}}\left(s_{1} ; t, x, v\right), v^{\prime}\right), \tag{26}
\end{equation*}
$$

always almost have

$$
\begin{equation*}
\operatorname{det}\left\{\frac{d X_{\mathrm{cl}}\left(s ; s_{1}, X_{\mathbf{c l}}\left(s_{1} ; t, x, v\right), v^{\prime}\right)}{d v^{\prime}}\right\} \neq 0 \tag{27}
\end{equation*}
$$

2.6.2 The Bounce-Back Reflection:

$$
\begin{aligned}
& \text { Let }\left(t_{0}, x_{0}, v_{0}\right)=(t, x, v),\left(t_{k+1}, x_{k+1}, v_{k+1}\right) \text { is } \\
& \left(t_{k}-t_{\mathbf{b}}\left(x_{k}, v_{k}\right), x_{\mathbf{b}}\left(x_{k}, v_{k}\right),-v_{k}\right) ; \text { and } \\
& X_{\mathrm{cl}}(s ; t, x, v)=\sum_{k} \mathbf{1}_{\left[t_{k+1}, t_{k}\right)}(s)\left\{x_{k}+\left(s-t_{k}\right) v_{k}\right\}, \\
& V_{\mathrm{cl}}(s ; t, x, v)=\sum_{k} \mathbf{1}_{\left[t_{k+1}, t_{k}\right)}(s) v_{k} .
\end{aligned}
$$

The bounce-back cycles $X_{\mathrm{cl}}(s ; t, x, v)$ from a given point (t, x, v) is relatively simple.

2.6.3 Specular Reflection:

Let $\left(t_{0}, x_{0}, v_{0}\right)=(t, x, v),\left(t_{k+1}, x_{k+1}, v_{k+1}\right)$ is $\left(t_{k}-t_{\mathbf{b}}\left(x_{k}, v_{k}\right), x_{\mathbf{b}}\left(x_{k}, v_{k}\right), R\left(x_{k+1}\right) v_{k}\right)$; and $X_{\mathbf{c l}}(s ; t, x, v)=\sum_{k} \mathbf{1}_{\left[t_{k+1}, t_{k}\right)}(s)\left\{x_{k}+\left(s-t_{k}\right) v_{k}\right\}$, $V_{\mathrm{cl}}(s ; t, x, v)=\sum_{k} \mathbf{1}_{\left[t_{k+1}, t_{k}\right)}(s) v_{k}$.

Difficulty: The specular cycles $X_{\text {cl }}(s ; t, x, v)$ reflect repeatedly with the boundary in general, and $\frac{d X_{\mathrm{cl}}\left(s ; s_{1}, X_{\mathrm{cl}}\left(s_{1} ; t, x, v\right), v^{\prime}\right)}{d v^{\prime}}$ is very complicated to compute and (32) is extremely difficult to verify. This is non-standard in the billiard literature (x and v are not symmetric!)

Small almost tangential bounces:

Let ($0, x_{1}, v_{1}$) and $s_{k}=t_{\mathbf{b}}\left(x_{k}, v_{k}\right)$ for $k=1,2,3, \ldots$ so that $\xi\left(x_{1}-s_{1} v_{1}\right)=0, x_{2}=x_{1}-s_{1} v_{1} \in \partial \Omega$ and for $k \geq 2$: $\quad x_{k}=x_{k-1}-s_{k} v_{k} \in \partial \Omega$.

$$
\xi\left(x_{1}-\sum_{j=1}^{k} s_{j} v_{j}\right)=0, v_{k}=R\left(x_{k}\right) v_{k-1}
$$

Proposition 6 For any finite $k \geq 1$,

$$
\begin{equation*}
\frac{\partial v_{k}^{i}}{\partial v_{1}^{l}}=\delta_{l i}+\zeta(k) n^{i}\left(x_{1}\right) n^{l}\left(x_{1}\right)+O\left(\varepsilon_{0}\right) \tag{28}
\end{equation*}
$$

where $\zeta(k)$ is an even integer so that

$$
\operatorname{det}\left(\frac{\partial v_{k}^{i}}{\partial v_{1}^{l}}\right)=\{\zeta(k)+1\}+O\left(\varepsilon_{0}\right) \neq 0 .
$$

It then follows that $\operatorname{det}\left\{\frac{d X_{\mathrm{cl}}\left(s ; s_{1}, X_{\mathrm{cl}}\left(s_{1} ; t, x, v\right), v^{\prime}\right)}{d v^{\prime}}\right\} \neq$ 0 for these special cycles.

This crucial observation is then combined with analyticity of ξ to conclude that the set of $\operatorname{det}\left\{\frac{d X_{\mathrm{cl}}\left(s_{;} ; X_{\mathrm{cl}}\left(s_{1}, x, v\right), v^{\prime}\right)}{d v^{\prime}}\right\}=0$ is arbitrarily small.

2.6.4 Diffuse Reflection:

Let $\left(t_{0}, x_{0}, v_{0}\right)=(t, x, v),\left(t_{k+1}, x_{k+1}, v_{k+1}\right)$ is
$\left(t_{k}-t_{\mathbf{b}}\left(x_{k}, v_{k}\right), x_{\mathbf{b}}\left(x_{k}, v_{k}\right), v_{k+1}\right)$; for $v_{k+1} \cdot n\left(x_{k+1}\right)$
>0; and $X_{\text {cl }}(s ; t, x, v)$ is

$$
\begin{aligned}
& \sum_{k} \mathbf{1}_{\left[t_{k+1}, t_{k}\right)}(s)\left\{x_{k}+\left(s-t_{k}\right) v_{k}\right\}, \\
& V_{\mathbf{c l}}(s ; t, x, v)=\sum_{k} \mathbf{1}_{\left[t_{k+1}, t_{k}\right)}(s) v_{k} .
\end{aligned}
$$

Difficulty: Similar change of variable is expected with respect to one of such independent variables. However, the main difficulty in this case is the L^{∞} control of $G(t)$ which satisfies (26). The most natural L^{∞} estimate: for weight $w=\mu^{-\frac{1}{2}}:($ bad for linear theory) $h(t, x, v)=c_{\mu} \int_{v^{\prime} \cdot n(x)>0} h\left(t, x, v^{\prime}\right) \mu\left(v^{\prime}\right)\left\{v^{\prime} \cdot n(x)\right\} d v^{\prime}$.
L^{∞} for weaker weight $\backsim \mu^{-\frac{1}{2}}$: The measure of those particles can not reach initial plane after k-bounces is small when k is large (non-zero!!)

Lemma 7 Let the probability measure $d \sigma=$ $d \sigma(x)$ is given by

$$
\begin{equation*}
d \sigma(x)=c_{\mu} \mu\left(v^{\prime}\right)\left\{n(x) \cdot v^{\prime}\right\} d v^{\prime} \tag{29}
\end{equation*}
$$

For any $\varepsilon>0$, there exists $k_{0}\left(\varepsilon, T_{0}\right)$ such that for $k \geq k_{0}$, for all $(t, x, v), 0 \leq t \leq T_{0}, x \in \bar{\Omega}$ and $v \in \mathbf{R}^{3}$,

$$
\begin{gathered}
\int_{\Pi_{l=1}^{k-1}\left\{v_{l}: v_{l} \cdot n\left(x_{l}\right)>0\right\}} 1_{\left\{t_{k}\left(t, x, v, v_{1}, v_{2} \ldots, v_{k-1}\right)>0\right\}} \Pi_{l=1}^{k-1} \\
d \sigma\left(x_{l}\right) \leq \varepsilon .
\end{gathered}
$$

We therefore can obtain an approximate representation formula for $G(t)$ by the initial datum, with only finite number of bounces.

