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1. Boltzmann Equation (1872)

OF 4+ v - Vo F = Q(F, F) (1)

where F(t,z,v) > 0 is the distribution function
for the gas particles at time ¢t > 0, position
r €, and v e R3, Q(Fy, F») (hard-sphere) is

/R3 /SQ v — u|Fy (u") Fo(v')] cos 0| dwdu

_/R3 /82 v — u|F1(u)Fo(v)| cosfldwdu  (2)
where

/

U ut+(v—u) wv=v—(v—u)- w,cosb

(u—v) - w/lu—ml.



The Maxwellian distribution: u(v) = e~ */2
Global Solutions Near Maxwellian: Let

F O VT
{0y +v-Ve+L}f C(f, f)

where the standard linear Boltzmann operator
IS given by

Lf=vf—Kf= —iu{@(u, VED + QWS 1)},

v
(3)

and
F(f1, o) = %Q(\/ﬁfl,\/ﬁfz)zrgam(fl,fz)
—IMoss(f1, f2). (4)

T he collision invariant and H—T heorem implies
that L > 0, and

ker L = {a(t,z)y/B,  b(t,x)vy/h, ct,z)|v]?E}
Here for fixed (t,x), the standard projection P

onto the hydrodynamic (macroscopic) part is
given by

Pf={as(t,z) +bp(t,z) v+ cs(t, a;)|v|2}\/,u(v).



Energy Estimate:

1d
“— |12+ (LS f) =

2dt

we only know

| [ n.

If (Lf, f) > 6||f||%, global small solutions. But

(LT, f) > 3|{I - P}f||?,

It suffices to estimate Pf in terms of {I-P}f:
{Or+v-Va} Pf=T(f,f)—{0%+v -V + L {I-P}f

to get

Ve

oic+ V- b
O;b) + ;b
otb + Vza
ora

where g; «~ 0{I — P} f+high order. We deduce

that

g1
g2
g3
g4
g5

Ab ~ 82{I — P}J.
We hence have ellipticity for b.



2. Boundary Value Problem

One basic problem in the Boltzmann study:
Uniqueness, Time-decay toward e—1v1°/2  with
physical boundary conditions in a general do-
main 2.

Let @ = {z : &(x) < 0} is connected, and
bounded with £(x) smooth. The outward nor-
mal vector at 0€2 is given by

VE(x)
— (5)
[VE ()

We say €2 is real analytic if £ is real analytic in

x. We define 2 is strictly convex if there exists
ce > O such that

Dij€ ()¢ > eel¢f? (6)
for all z such that &(z) < 0, and all ¢ € R3. We

say that €2 has a rotational symmetry, if there
are vectors zg and w, such that for all z € 9¥2

{(x —xg) X w} -n(x) =0. (7)

n(x) =



We denote the phase boundary in the space
QxR3as~y=00xR3:

vi = {(z,v) €Q xR>: n(z) v >0 outgoing},
v = {(z,v) €2 xR3>: n(z)- v < 0 incoming},
0 {(z,v) € 92 x R>: n(z)-v=0 grazing}.

Given (t,x,v), let the trajectory (or the char-
acteristics) for the Boltzmann equation:

[X(s5),V(s)] = [X(s;t,z,v),V(s;t,x,v)]

= [z 4+ (s — t)v,v] (8)
with the initial condition: [X(¢;t, xz,v), V(¢ t, 2, v)]
= [z,v]. For any (z,v) such that z € Q,v # 0,
we define its backward exit time ¢, (x,v) > 0
to be the the last moment at which the back-
time straight line [X(s;0,z,v),V (s;0,x,v)] re-
mains in $2 :

tp(z,v) =sup{r >0:x—T1v € N}



Four Basic Types of Boundary Conditions:

(1) In-flow:

f|’7— — g(t7 L, U) (9)

(2) Bounce-back:

ftz,0)ly. = f(t, 2, —v) (10)

(3) Specular reflection: for x € 092, let

R(zx)v =v —2(n(x) -v)n(x), (11)
and
f@zv)y = flz,v,v—2(n(z) - v)n(z))
= f(z,v, R(z)v) (12)

(4) Diffusive reflection:

fhe vl = an/u@) [, |t

n(x)>0

vV (V) {ng - v'}dv'. (13)



2.1 Previous Work

In 1977, Asano and Shizuta's announcement.

Desvillettes and Villani (2005) establish almost
exponential decay rate with large amplitude,
provided certain a-priori strong Sobolev esti-
mates can be verified.

2.2 Difficulties

T he validity of these a-priori estimates is com-
pletely open even local in time, in a bounded
domain. As a matter of fact, such kind of
strong Sobolev estimates are not be expected
for a general non-convex domain.

Characteristic Boundary: This is because
even for simplest kinetic equations with the



differential operator v - V;, the phase bound-
ary 0<2 X R3 is always characteristic but not
uniformly characteristic at the grazing set

Yo = {(z,v) : x € 92, and v -n(x) = 0}.

The complication of the geometry makes it
difficult to employ spatial Fourier transforms
in x.

Bouncing Characteristics: particles interact-
ing with the boundary repeatedly.

Strategy: To develop an unified L2 — L™® the-
ory.



2.3 Main Results

We introduce the weight function
w(v) = (1 + plo[2)BeflvP, (14)
where 0 <6 < £,p> 0 and 8 € R™.

Theorem 1 Assumew 2{14|v|}3 € L1. There
exists 6 > 0 such that if Fo = p+ /nfo > 0O,
and
lwfollso + sup e*![[wg(t)]]oo < 6,
0<t<oo

with Ao > O, then there there exists a unique
solution F(t,x,v) = p+ /pf > 0 to the inflow
boundary value problem (9) for the Boltzmann
equation (1). There exists 0 < X\ < Ag Such
that

sup eM[wf(t)lle < Cfllwfollo
0<t<oo

sup 0| lwg(t)]|so}-
0<t<oo

_|_



Moreover, if Q2 is strictly convex (6), and if
fo(x,v) is continuous except on ~qg, and g(t, x,v)
is continuous in [0, 00) x{82xR3\~o} satisfying

fo(z,v) = g(z,v) on -,
then f is continuous in [0,00) x {€2 x R3\ o}

Theorem 2 Assume w=2{1 + |v|}3 € L1. As-
sume the conservations of mass and enerqgy are
valid for fo. Then there exists 6 > O such that
if Fo(z,v) =+ /ifo(z,v) > 0 and |[wfo|lsc <
9, there exists a unique solution F(t,z,v) = pu+
Vif(t,xz,v) > 0 to the bounce-back boundary
value problem (10) for the Boltzmann equation
(1) such that
sup eM[[wf(1)]lco < Cllw/olloo-

0<t<oo
Moreover, if Q2 is strictly convex (6), and if
initially fo(x,v) is continuous except on ~vg and

fo(z,v) = fo(z, —v) on 99 x R\ g,
then f is continuous in [0,00) x {€2 x R3\ o}



Theorem 3 Assume w™2{1 4+ |[v|}3 € L1. As-
sume that £ is both strictly convex (6) and an-
alytic, and the mass and enerqgy are conserved
for fo. In the case of €2 has any rotational sym-
metry (7), we require that the corresponding
angular momentum is conserved for fo. Then
there exists § > 0 such that if Fo(x,v) = u+
Virfo(z,v) > 0 and ||lwfol|leo < 6, there exists a
unique solution F(t,z,v) = p+ /uf(t,z,v) >0
to the specular boundary value problem (12)
for the Boltzmann equation (1) such that
sup eMjwf(®)]loo < Cllw folloo.
0<t<oo

Moreover, if fo(x,v) is continuous except on
Yo and

fo(z,v) = fo(z, R(z)v) on O

then f is continuous in [0,00) x {2 x R3\ 1o}



Theorem 4 There is 65(vg) > 0 such that

Oo(vp) < 6 < % , and p is sufficiently small

(15)
for weight function w. Assume the mass con-
servation is valid for fo. If Fo(xz,v) = p+
Vitfo(z,v) > 0 and ||lwfollec < & sufficiently
small, then there exists a unique solution F(t,x,v) =
w4+ /rf(t,z,v) > 0 to the diffuse boundary
value problem (14) for the Boltzmann equa-
tion (1) such that

sup _eM[wf(Blloo < Cllwfolloc.

<t<oo

Moreover, if £ is strictly convex, and if fo(x,v)
IS continuous except on g with

folz,v)|v= = cuv/p >O}fo($,v’)

{ngv

V@) {n() - v'}ydv’

then f is continuous in [0,00) x {€2 x R3\ ~p}.



2.4 Velocity Lemma

Lemma 5 Let €2 be strictly convex defined in
(6). Along the trajectories dX(S) = V(s), dV(S)
O in (8), define:

a(s) = £2(X(s)) + [V(s) - VE(X (s))]?

—2{V(s) - V2¢(X(5)) - V(s)}(X(s)). (16)

Let X(s) € Q forty < s<to. Then there exists
constant Cg > 0 such that

CelVQIIHDt o (1) < Ce(VEDIFDI2,(1,).

e~ CelVDI+Dt (1) > e~ CeVEDI+Dt2, (4,).
(17)



This lemma implies that in a strictly convex
domain (6), the singular set g can not be
reached via the trajectory ‘é—f = v, % = 0 from
interior points inside €2, and hence ~g does
not really participate or interfere with the inte-
rior dynamics. No singularity would be created
from ~g9 and it is possible to perform calculus
for the back-time exit time t,(z,v). History and

Vliasov-Poisson (Hwang and Velazquez 2007)



2.5 L2 Decay Theory

It suffices to establish the following finite-time
estimate

1 2 1 2
 Ipseolas < { [ - Py

+boundary contributions} (18)

for any solution f to the linear Boltzmann
equation with boundary conditions.

It is challenging to estimate L2 of b
Ab = §%{I — P}/,

with b - n(x) = 0 (bounce-back and specular)
or b =0 (inflow and diffuse) at 0%2.



Hyperbolic (Transport) Feature: If not, the

normalized Z.(t,z,v) = Ji(t,2,0) satisfies
VILIPf(o)|Rds

Jo lIPZ,(s)||2ds = 1, and

1 5 1
LIA-P)z()Zds <7 (19)

Denote a weak limit of Z;, to be Z, we expect
that Z = PZ = 0, by each of the four boundary
conditions. The key is to prove that Z;, — Z.

No Concentration in Interior 2 : By the av-
eraging Lemma, we know that Z.(s) — Z.

No Concentration Near 02 : On the Non-
Grazing Set v-n(x) # 0 : Since Z,, is a solution
to a transport equation, non-grazing point can
be reached via a trajectory from the interior of
C2.

Almost Grazing Set v - n(x) ~ 0, thanks to
the fact (19) no concentration for

Zy ~ PZy, = {ap(t, 2) by (t, ©)-vtcg (L, z) o[ 1/ ()



2.6 L°° Decay Theory

We denote a weight function A(t,z,v) = w(v)
f(t,z,v). Let U(t)h solves

{8 +v-Voe+v—Kyth=0, (20)
where Kyh = wK(%). Consider G(t)h solves

(04 v-Vi+vIh =0, (21)

U(t) = G(t) —I—/OtG(t—sl)KwU(sl)dsl. (22)
By Vidav's (1970), (two iterations):

U@ =G0+ | "Gt — 51) KuG(s1)ds1+

t rsq
/O/O G(t—s1)KwG(s1—s)KywU(s)dsds1. (23)

To estimate the last double integral in terms

of the L2 norm of f =2
w



2.6.1 Inflow boundary condition (9):

With the compact property of K,,, we are led
to the main contribution in (28) roughly of the
form

t . ; . / /!
/O/O /,U/,U,,|h(37X(3:SlaX(Sl,t,ﬂU,v),v),v )|

dv'dv" dsds1. (24)

The v/ integral is estimated by a change of vari-
able introduced in Vidav (A-smoothing 1970,
Liu-Yu 2007)

y = X(s;s1,X(s1;t,2,0),0)
= x—(t—s1)v—(s1—s)v. (25)
Since det(%) % 0 almost always true, the v/
and v”—integration in (29) can be bounded by

/Q v bounded h(s, y,v")|dydv”

1/2
<C/ 0D Pdyde” )
o ( Q,v"” bounded |f(8 SY )| Y



For bounce-back, specular or diffuse reflections,
the characteristic trajectories repeatedly inter-
act with the boundary. Instead of X(s;t,x,v),
we should use the generalized characteristics,
Xe1(s;t,z,v). To determine the change of vari-

able
Yy = Xcl(s;817Xcl(81;t7xav)7vl)7 (26)

always almost have

dX.(s;s1,X t,x,v),v
o St Xalsitm ) o




2.6.2 The Bounce-Back Reflection:

Let (to,z0,v0) = (t,7,v), (Tg41,Tp41,Vk41) IS
(tk — tb(xk,vk),xb(xk,vk), _Uk); and

XCI(S; t,x, U) = Z 1[tk+1,tk)(8){xk + (3 - tk)vk}a
k

Vo(sit,z,v) = Zl[tk+1,tk)(8)vk'
k

The bounce-back cycles X (s;t,z,v) from a
given point (¢,z,v) is relatively simple.



2.6.3 Specular Reflection:

Let (to,7o,v0) = (¢, 2,v), ({41, Tht1, Vk41) IS
(tr — tp(Tp, V), Tp(Tg, v ), R(TR41)vE); and
Xalsit,z,v) = gLy, ) (OHar + (s — L) vk},
V(s t,z,v) = 3% 1[tk_|_1,tk.)(3)vk'

Difficulty: The specular cycles X (s;t,z,v)
reflect repeatedly with the boundary in general,
and chl(S;Sl’XC‘i‘}U(,Sl;t’x"")’”/) is very complicated
to compute and (32) is extremely difficult to
verify. This is non-standard in the billiard lit-

erature (z and v are not symmetric!)




Small almost tangential bounces:

Let (0,x1,v1) and sy, = ty,(xp,v) fork =1,2,3 ...
so that £(xq — s1v1) = 0, 20 = 1 — sqv1 € 02
and for k > 2: =z = xp_1 — spv € 0L2.

k

E(x1 — ) sv;) =0, vy = R(zg)vg_1.
j=1

Proposition 6 For any finite k > 1,
Ovl, _
5=

ovy
where ((k) is an even integer so that

51i + C(k)n'(z1)nl(z1) + O(eg), (28)

det (25) = {C(k) + 1} + O(cq) # 0.

vl

. . /
It then follows that det{Xa(sis1.Xalsiitav)v)y o
. dv
O for these special cycles.

T his crucial observation is then combined with
analyticity of & to conclude that the set of

. /
det{chl(S'XCégfl’x’”)’” )} = 0 is arbitrarily small.




2.6.4 Diffuse Reflection:

Let (to,z0,v0) = (t,7,v), (Tg41,Tp41,VE41) IS
(tx—tp(xk, vg), o (Tk, V), VE41): FOr vgg1-n(Tgy1)
> 0; and X (s;t,z,v) is

Z ]‘[tk_|_1,tk)(8){xk‘ _I_ (S - tk.)’l)k.},
k

Vals;t,z,v) =) 1[tk_|_1,tk.)(3)vk'
k

Difficulty: Similar change of variable is ex-
pected with respect to one of such indepen-
dent variables. However, the main difficulty in
this case is the L°° control of G(t) which satis-
fies (26). The most natural L°° estimate: for

N|—

weight w = =2 : (bad for linear theory)

h(t,z,v) = cy /v’-n(:c)>0 h(t,z, v (@) {v n(z)}d'.



1
L°° for weaker weight -~ = 2 : The measure of
those particles can not reach initial plane after
k—bounces is small when k is large (non-zero!!)

Lemma 7 Let the probability measure do =
do(x) is given by
do(x) = cun@){n(z) - v'}dv’. (29)

For any € > 0, there exists kg(e,Ty) such that
for k > kg, for all (t,z,v),0 <t <Ty, x € Q2 and
v € R3,

/ k—1 1{tk(t T,0,01,V2...,Vk 1)>O}Hé€:_1
M, —1{v: vyn(z)>0} TR e R

do(x;) < e.
We therefore can obtain an approximate repre-

sentation formula for G(t) by the initial datum,
with only finite number of bounces.



