Shock Reflection-Diffraction Phenomena Transonic Flow Free Boundary Problems

Gui-Qiang Chen

Department of Mathematics, Northwestern University, USA Email: gqchen@math.northwestern.edu
Website: http://www.math.northwestern.edu/~gqchen/preprints

Mikhail Feldman University of Wisconsin-Madison, USA

Conference on Nonlinear Phenomena in Mathematical Physics Dedicated to Cathleen Synge Morawetz on her 85th birthday

Fields Institute for Research in Mathematical Sciences, Toronto, Canada September 18–20, 2008

Some of Cathleen's Work on Transonic Flow I

Cathleen Synge Morawetz

On the non-existence of continuous transonic flows past profiles I

Comm. Pure Appl. Math. 9 (1956), 45-68

On the non-existence of continuous transonic flows past profiles II

Comm. Pure Appl. Math. 10 (1957), 107–131;

On the non-existence of continuous transonic flows past past profiles III

Comm. Pure Appl. Math. 11 (1958), 129-144.

Some of Cathleen's Work on Transonic Flow II

Cathleen Synge Morawetz

- On a weak solution for a transonic flow problem Comm. Pure Appl. Math. 38 (1985), 797–818.
- On steady transonic flow by compensated compactness Methods Appl. Anal. 2 (1995), 257–268.

Irene M. Gamba & Cathleen Synge Morawetz

A viscous approximation for a 2-D steady semiconductor or transonic gas dynamic flow: existence theorem for potential flow

Comm. Pure Appl. Math. 49 (1996), 999-1049.

Some of Cathleen's Work on Transonic Flow III

Cathleen Synge Morawetz

Potential theory for regular and Mach reflection of a shock at a wedge Comm. Pure Appl. Math. 47 (1994), 593–624.

- ullet Explored the nature of the shock reflection-diffraction patterns for weak incident shocks (strength b) and small wedge angles $2\theta_w$ through potential theory, a number of different scalings, a study of mixed equations and matching asymptotics for the different scalings;
- Recognized an important parameter

$$\beta = \beta(b, \theta_w, c_1, \gamma) \in [0, \infty)$$

to determine some shock reflection-diffraction patterns, for c_1 the sound speed behind the incident shock for polytropic gas with adiabatic exponent $\gamma > 1$;

- Discovered new features and phenomena;
- · · · · · · ·

Shock Reflection-Diffraction Phenomena Transonic Flow Free Boundary Problems

Gui-Qiang Chen

Department of Mathematics, Northwestern University, USA Email: gqchen@math.northwestern.edu
Website: http://www.math.northwestern.edu/~gqchen/preprints

Mikhail Feldman University of Wisconsin-Madison, USA

Conference on Nonlinear Phenomena in Mathematical Physics Dedicated to Cathleen Synge Morawetz on her 85th birthday

Fields Institute for Research in Mathematical Sciences, Toronto, Canada September 18–20, 2008

? Shock Wave Patterns around a Wedge (airfoils, inclined ramps, ...)

Complexity of Reflection-Diffraction Configurations Was First Identified and Reported by Ernst Mach 1879

Experimental Analysis: 1940s von Neumann, Bleakney, Bazhenova Glass, Takyama, Henderson, · · ·

A New Mach Reflection-Diffraction Pattern:

A. M. Tesdall and J. K. Hunter: TSD, 2002

A. M. Tesdall, R. Sanders, and B. L. Keyfitz: NWE, 2006; Full Euler, 2008

B. Skews and J. Ashworth: J. Fluid Mech. 542 (2005), 105-114

Shock Reflection-Diffraction Patterns

 Gabi Ben-Dor Shock Wave Reflection Phenomena Springer-Verlag: New York, 307 pages, 1992.

Experimental results before 1991 Various proposals for transition criteria

Milton Van Dyke An Album of Fluid Motion
 The parabolic Press: Stanford, 176 pages, 1982.

Various photographs of shock wave reflection phenomena

 Richard Courant & Kurt Otto Friedrichs Supersonic Flow and Shock Waves
 Springer-Verlag: New York, 1948.

Scientific Issues

- Structure of the Shock Reflection-Diffraction Patterns
- Transition Criteria among the Patterns
- Dependence of the Patterns on the Parameters wedge angle θ_w , adiabatic exponent $\gamma \geq 1$ incident-shock-wave Mach number M_s
-

Interdisciplinary Approaches:

- Experimental Data and Photographs
- Large or Small Scale Computing
 Colella, Berger, Deschambault, Glass, Glaz, Woodward,....
 Anderson, Hindman, Kutler, Schneyer, Shankar, ...
 Yu. Dem'yanov, Panasenko,
- Asymptotic Analysis
 Lighthill, Keller, Majda, Hunter, Rosales, Tabak, Gamba, Harabetian..
- Morawetz: CPAM 1994
- Rigorous Mathematical Analysis?? (Global Solutions)
 Existence, Stability, Regularity, Bifurcation,

2-D Riemann Problem for Hyperbolic Conservation Laws

$$\partial_t U + \nabla_{\mathbf{x}} \cdot F(U) = 0, \qquad \mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$$

Numerical Solutions: Glimm-Klingenberg-McBryan-Plohr-Sharp-Yaniv 1985 Lax-Liu 1998, Schulz-Rinne-Collins-Glaz 1993, Chang-Chen-Yang 1995, 2000 Kurganov-Tadmor 2002, · · ·

Books and Survey Articles: Chang-Hsiao 1989, Glimm-Majda 1991 Li-Zhang-Yang 1998, Zheng 2001, Chen-Wang 2002, Serre 2005, Chen 2005,...

Theoretical Roles: Asymptotic States and Attractors
Local Structure and Building Blocks...

Full Euler Equations: $(t, \mathbf{x}) \in \mathbb{R}^3_+ := (0, \infty) \times \mathbb{R}^2$

$$\begin{cases} \partial_t \, \rho + \nabla_{\mathbf{x}} \cdot (\rho \mathbf{v}) = 0 \\ \partial_t (\rho \mathbf{v}) + \nabla_{\mathbf{x}} \cdot (\rho \mathbf{v} \otimes \mathbf{v}) + \nabla p = 0 \\ \partial_t (\frac{1}{2} \rho |\mathbf{v}|^2 + \rho e) + \nabla_{\mathbf{x}} \cdot ((\frac{1}{2} \rho |\mathbf{v}|^2 + \rho e + p) \mathbf{v}) = 0 \end{cases}$$

Constitutive Relations: $p = p(\rho, e)$

- ρ -density, $\mathbf{v} = (v_1, v_2)^{\top}$ -fluid velocity, p-pressure
- e-internal energy, θ -temperature, S-entropy

For a polytropic gas:
$$p = (\gamma - 1)\rho e$$
, $e = c_v \theta$, $\gamma = 1 + \frac{R}{c_v}$

$$p = p(\rho, S) = \kappa \rho^{\gamma} e^{S/c_{\nu}}, \qquad e = e(\rho, S) \frac{\kappa}{\gamma - 1} \rho^{\gamma - 1} e^{S/c_{\nu}},$$

- R > 0 may be taken to be the universal gas constant divided by the effective molecular weight of the particular gas
- ullet $c_{v} > 0$ is the specific heat at constant volume
- ullet $\gamma>1$ is the adiabatic exponent, $\kappa>0$ is any constant under scaling

Euler Equations for Potential Flow: $\mathbf{v} = \nabla \Phi$

$$\left\{ \begin{array}{ll} \partial_t \rho + \nabla_{\mathbf{x}} \cdot \left(\rho \nabla_{\mathbf{x}} \Phi \right) = 0, & \text{(conservation of mass)} \\ \partial_t \Phi + \frac{1}{2} |\nabla_{\mathbf{x}} \Phi|^2 + \frac{\rho^{\gamma-1}}{\gamma-1} = \frac{\rho_0^{\gamma-1}}{\gamma-1}, & \text{(Bernoulli's law);} \end{array} \right.$$

or, equivalently,

$$\partial_t \rho (\partial_t \Phi, \nabla_{\mathbf{x}} \Phi, \rho_0) + \nabla_{\mathbf{x}} \cdot (\rho (\partial_t \Phi, \nabla_{\mathbf{x}} \Phi, \rho_0) \nabla_{\mathbf{x}} \Phi) = 0,$$

with

$$\rho(\partial_t \Phi, \nabla_{\mathbf{x}} \Phi, \rho_0) = \left(\rho_0^{\gamma - 1} - (\gamma - 1)(\partial_t \Phi + \frac{1}{2} |\nabla_{\mathbf{x}} \Phi|^2)\right)^{\frac{1}{\gamma - 1}}.$$

Celebrated steady potential flow equation of aerodynamics:

$$\nabla_{\mathbf{x}} \cdot (\rho(\nabla_{\mathbf{x}} \Phi, \rho_0) \nabla_{\mathbf{x}} \Phi) = 0.$$

This approximation is well-known in transonic aerodynamics.

We will see the Euler equations for potential flow is actually EXACT in an important region of the solution to the shock reflection problem.

Discontinuities of Solutions

$$\partial_t U + \nabla_{\mathbf{x}} \cdot F(U) = 0, \quad \mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$$

An oriented surface Γ with unit normal $\mathbf{n}=(n_t,n_1,n_2)\in\mathbb{R}^3$ in the (t,\mathbf{x}) -space is a discontinuity of a piecewise smooth entropy solution U with

$$U(t, \mathbf{x}) = egin{cases} U_+(t, \mathbf{x}), & (t, \mathbf{x}) \cdot \mathbf{n} > 0, \\ U_-(t, \mathbf{x}), & (t, \mathbf{x}) \cdot \mathbf{n} < 0, \end{cases}$$

if the Rankine-Hugoniot Condition is satisfied

$$(U_{+} - U_{-}, F(U_{+}) - F(U_{-})) \cdot \mathbf{n} = 0$$
 along Γ .

The surface (Γ, \mathbf{n}) is called a Shock Wave if the Entropy Condition (i.e., the Second Law of Thermodynamics) is satisfied:

$$(\eta(U_+) - \eta(U_-), q(U_+) - q(U_-)) \cdot \mathbf{n} \ge 0$$
 along Γ ,

where $(\eta(U), q(U)) = (-\rho S, -\rho \mathbf{v} S)$.

Shock Waves vs Vortex Sheets

Initial-Boundary Value Problem: $0 < \rho_0 < \rho_1, v_1 > 0$

Initial condition at t = 0:

$$(\mathbf{v}, p, \rho) = \begin{cases} (0, 0, p_0, \rho_0), & |x_2| > x_1 \tan \theta_w, x_1 > 0, \\ (v_1, 0, p_1, \rho_1), & x_1 < 0; \end{cases}$$

Slip boundary condition on the wedge bdry: $\mathbf{v} \cdot \mathbf{\nu} = 0$.

Invariant under the Self-Similar Scaling: $(t, \mathbf{x}) \longrightarrow (\alpha t, \alpha \mathbf{x}), \quad \alpha \neq 0$

Seek Self-Similar Solutions

$$\begin{aligned} (\mathbf{v}, \rho, \rho)(t, \mathbf{x}) &= (\mathbf{v}, \rho, \rho)(\xi, \eta), \quad (\xi, \eta) = (\frac{x_1}{t}, \frac{x_2}{t}) \\ \begin{cases} (\rho U)_{\xi} + (\rho V)_{\eta} + 2\rho &= 0, \\ (\rho U^2 + \rho)_{\xi} + (\rho UV)_{\eta} + 3\rho U &= 0, \\ (\rho UV)_{\xi} + (\rho V^2 + \rho)_{\eta} + 3\rho V &= 0, \\ (U(\frac{1}{2}\rho q^2 + \frac{\gamma \rho}{\gamma - 1}))_{\xi} + (V(\frac{1}{2}\rho q^2 + \frac{\gamma \rho}{\gamma - 1}))_{\eta} + 2(\frac{1}{2}\rho q^2 + \frac{\gamma \rho}{\gamma - 1}) &= 0, \end{aligned}$$

where
$$q=\sqrt{U^2+V^2}$$
 and $(U,V)=(v_1-\xi,v_2-\eta)$ is the pseudo-velocity.

Eigenvalues:
$$\lambda_0 = \frac{V}{U}$$
 (repeated), $\lambda_{\pm} = \frac{UV \pm c\sqrt{q^2 - c^2}}{U^2 - c^2}$, where $c = \sqrt{\gamma p/\rho}$ is the **sonic speed**

When the flow is pseudo-subsonic: q < c, the system is hyperbolic-elliptic composite-mixed

Euler Equations in Self-Similar Coordinates

Entropy: $S = c_v \ln(p\rho^{\gamma})$

Pseudo-velocity Angle: $\lambda_0 = V/U = \tan \Theta$

Pseudo-velocity Magnitude: $q = \sqrt{U^2 + V^2}$

$$\begin{cases} S_{\xi} + \lambda_0 S_{\eta} = 0, \\ \rho q(q_{\xi} + \lambda_0 q_{\eta}) + p_{\xi} + \lambda_0 p_{\eta} = -\rho(U + \lambda_0 V), \\ (U^2 - c^2) p_{\xi\xi} + 2UV p_{\xi\eta} + (V^2 - c^2) p_{\eta\eta} + A_1 p_{\xi} + A_2 p_{\eta} + \dots = 0, \\ (U^2 - c^2) \lambda_{0\xi\xi} + 2UV \lambda_{0\xi\eta} + (V^2 - c^2) \lambda_{0\eta\eta} + A_1 \lambda_{0\xi} + A_2 \lambda_{0\eta} + \dots = 0. \end{cases}$$

When the flow is pseudo-subsonic: q < c, the system consists of

- 2-transport equations
- 2-nonlinear equations of hyperbolic-elliptic mixed type

Boundary Value Problem in the Unbounded Domain

Slip boundary condition on the wedge boundary:

$$(U,V)\cdot \nu=0$$
 on ∂D

Asymptotic boundary condition as $\xi^2 + \eta^2 \to \infty$:

$$(U+\xi, V+\eta, p, \rho) \rightarrow \begin{cases} (0, 0, p_0, \rho_0), & \xi > \xi_0, \eta > \xi \tan \theta_w, \\ (v_1, 0, p_1, \rho_1), & \xi < \xi_0, \eta > 0. \end{cases}$$

Normal Reflection

When $\theta_w = \pi/2$, the reflection becomes the normal reflection, for which the incident shock normally reflects and the reflected shock is also a plane.

von Neumann Criteria & Conjectures (1943)

Local Theory for Regular Reflection (cf. Chang-C. 1986)

 $\exists \, \theta_d = \theta_d(M_s, \gamma) \in (0, \frac{\pi}{2}) \text{ such that, when } \theta_W \in (\theta_d, \frac{\pi}{2}), \text{ there exist two states } (2) = (U_2^a, V_2^a, p_2^a, \rho_2^a) \text{ and } (U_2^b, V_2^b, p_2^b, \rho_2^b) \text{ such that } |(U_2^a, V_2^a)| > |(U_2^b, V_2^b)| \text{ and } |(U_2^b, V_2^b)| < c_2^b.$

Stability as $\theta_W \to \frac{\pi}{2}$: Choose $\varphi_2 = \varphi^a$.

Detachment Conjecture: There exists a Regular Reflection Configuration when the wedge angle $\theta_W \in (\theta_d, \frac{\pi}{2})$.

Sonic Conjecture: There exists a Regular Reflection Configuration when $\theta_W \in (\theta_s, \frac{\pi}{2})$, for $\theta_s > \theta_d$ such that $|(U_2^a, V_2^a)| > c_2^a$ at A.

Detachment Criterion vs Sonic Criterion $\theta_c > \theta_s$: $\gamma = 1.4$

Courtesy of W. Sheng and G. Yin: ZAMP, 2008

Global Theory?

Euler Eqs. under Decomposition: $(U, V) = \nabla \varphi + W, \ \nabla \cdot W = 0$

$$\begin{cases} \nabla \cdot (\rho \nabla \varphi) + 2\rho + \nabla \cdot (\rho \nabla W) = 0, \\ \nabla (\frac{1}{2} |\nabla \varphi|^2 + \varphi) + \frac{1}{\rho} \nabla \rho = (\nabla \varphi + W) \cdot \nabla W + (\nabla^2 \varphi + I)W, \\ (\nabla \varphi + W) \cdot \nabla \omega + (1 + \Delta \varphi)\omega = 0 \iff \nabla \cdot ((\nabla \varphi + W)\omega) + \omega = 0, \\ (\nabla \varphi + W) \cdot \nabla S = 0. \end{cases}$$

where $S = c_v \ln(p\rho^{-\gamma})$ -Entropy; $\omega = \operatorname{curl} W = \operatorname{curl}(U,V)$ -Vorticity When $\omega = 0$, S = const., and W = 0 on a curve transverse to the fluid direction, then, in the region of the fluid trajectories past the curve,

$$W=0, S=const. \Rightarrow W=0, p=const. \rho^{\gamma}$$

Then we obtain the Potential Flow Equation (by scaling):

$$\begin{cases} \nabla \cdot (\rho \nabla \varphi) + 2\rho = 0, \\ \frac{1}{2} (|\nabla \varphi|^2 + \varphi) + \frac{\rho^{\gamma - 1}}{\gamma - 1} = \textit{const.} > 0. \end{cases}$$

J. Hadamard: Lecons sur la Propagation des Ondes, Hermann: Paris 1903

Potential Flow Dominates the Regular Reflection, provided that $\varphi \in C^{1,1}$ across the Sonic Circle

Potential Flow Equation

$$\left\{ \begin{array}{l} \nabla \cdot (\rho \nabla \varphi) + 2\rho = 0, \\ \frac{1}{2} |\nabla \varphi|^2 + \varphi + \frac{\rho^{\gamma - 1}}{\gamma - 1} = \frac{\rho_0^{\gamma - 1}}{\gamma - 1} \end{array} \right.$$

Potential Flow Equation

$$\nabla \cdot (\rho(\nabla \varphi, \varphi, \rho_0) \nabla \varphi) + 2\rho(\nabla \varphi, \varphi, \rho_0) = 0$$

- Incompressible: $\rho = const. \Longrightarrow \Delta \varphi + 2 = 0$
- Subsonic (Elliptic):

$$|
abla arphi| < c_*(arphi,
ho_0) := \sqrt{rac{2}{\gamma+1}(
ho_0^{\gamma-1} - (\gamma-1)arphi)}$$

Supersonic (Hyperbolic):

$$|
abla arphi| > c_*(arphi,
ho_0) := \sqrt{rac{2}{\gamma+1}(
ho_0^{\gamma-1} - (\gamma-1)arphi)}$$

Linear and Nonlinear Models

Linear Models

Lavrentyev-Bitsadze Equation: $\partial_{xx}u + \text{sign}(x)\partial_{yy}u = 0$;

Tricomi Equation: $u_{xx} + xu_{yy} = 0$ (Hyperbolic Degeneracy at x = 0);

Keldysh Equation: $xu_{xx} + u_{yy} = 0$ (Parabolic Degeneracy at x = 0).

Nonlinear Models

• Transonic Small Disturbance Equation:

$$\left((u-x)u_x+\frac{u}{2}\right)_x+u_{yy}=0$$

or, for v = u - x,

$$v v_{xx} + v_{yy} + I.o.t. = 0.$$

Morawetz, Hunter, Canic-Keyfitz-Lieberman-Kim, · · ·

- Pressure-Gradient Equations, Nonlinear Wave Equations
 - Y. Zheng, Canic-Keyfitz-Kim-Jegdic, · · ·

Global Theory?

Setup of the Problem for $\psi := \varphi - \varphi_2$ in Ω

- div $(\rho(\nabla \psi, \psi, \xi, \eta, \rho_0)(\nabla \psi + \mathbf{v}_2 (\xi, \eta)) + 1.o.t. = 0$ (*)
- $\nabla \psi \cdot \nu|_{wedge} = 0$
- $\psi|_{\Gamma_{sonic}} = 0 \Longrightarrow \psi_{\nu}|_{\Gamma_{sonic}} = 0$
- Rankine-Hugoniot Conditions on Shock S:

$$[\psi]_{S} = 0$$

$$[\rho(\nabla \psi, \psi, \xi, \eta, \rho_{0})(\nabla \psi + \mathbf{v}_{2} - (\xi, \eta)) \cdot \nu]_{S} = 0$$
(**)

Free Boundary Problem

• $\exists S = \{\xi = f(\eta)\}$ such that $f \in C^{1,\alpha}, f'(0) = 0$ and

$$\Omega_+ = \{\xi > f(\eta)\} \cap D = \{\psi < \varphi_1 - \varphi_2\} \cap \mathbf{D}$$

- ullet ψ satisfy the free boundary condition (**) along ${\it S}$
- $\psi \in C^{1,\alpha}(\overline{\Omega_+}) \cap C^2(\Omega_+)$ $\begin{cases} \text{ solves (*) in } \Omega_+, \\ \text{ is subsonic in } \Omega_+ \end{cases}$ with $(\psi, \psi_{\nu})|_{\Gamma_{\text{cons}}} = 0, \quad \nabla \psi \cdot \nu|_{\text{wedge}} = 0$

Theorem (Global Theory for Shock Reflection-Diffraction C.–Feldman: PNAS 2005; Ann. Math. accepted on Oct. 3, 2006)

 $\exists \ \theta_c = \theta_c(\rho_0, \rho_1, \gamma) \in (0, \frac{\pi}{2})$ such that, when $\theta_W \in (\theta_c, \frac{\pi}{2})$, there exist (φ, f) satisfying

- $\varphi \in C^{\infty}(\Omega) \cap C^{1,\alpha}(\bar{\Omega})$ and $f \in C^{\infty}(P_1P_2) \cap C^2(\{P_1\})$;
- $\varphi \in C^{1,1}$ across the sonic circle P_1P_4
- $\varphi \longrightarrow \varphi_{NR}$ in $W_{loc}^{1,1}$ as $\theta_W \to \frac{\pi}{2}$.
- $\Rightarrow \Phi(t, \mathbf{x}) = t\varphi(\frac{\mathbf{x}}{t}) + \frac{|\mathbf{x}|^2}{2t}, \ \rho(t, \mathbf{x}) = \left(\rho_0^{\gamma 1} (\gamma 1)(\Phi_t + \frac{1}{2}|\nabla\Phi|^2)\right)^{\frac{1}{\gamma 1}}$ form a solution of the IBVP.

Optimal Regularity and Sonic Conjecture

Theorem (Optimal Regularity; Bae–C.–Feldman 2007): $\varphi \in C^{1,1} \text{ but NOT in } C^2 \text{ across } P_1P_4; \\ \varphi \in C^{1,1}(\{P_1\}) \cap C^{2,\alpha}(\bar{\Omega} \setminus (\{P_1\} \cup \{P_3\})) \cap C^{1,\alpha}(\{P_3\}) \cap C^{\infty}(\Omega); \\ f \in C^2(\{P_1\}) \cap C^{\infty}(P_1P_2).$

Optimal Regularity and Sonic Conjecture

- Theorem (Optimal Regularity; Bae–C.–Feldman 2007): $\varphi \in C^{1,1} \text{ but NOT in } C^2 \text{ across } P_1P_4;$ $\varphi \in C^{1,1}(\{P_1\}) \cap C^{2,\alpha}(\bar{\Omega} \setminus (\{P_1\} \cup \{P_3\})) \cap C^{1,\alpha}(\{P_3\}) \cap C^{\infty}(\Omega);$ $f \in C^2(\{P_1\}) \cap C^{\infty}(P_1P_2).$
- \implies The optimal regularity and the global existence hold up to the sonic wedge-angle θ_s for any $\gamma \geq 1$ for $u_1 < c_1$; $u_1 \geq c_1$. (the von Neumann's sonic conjecture)

Approach for the Large-Angle Case

- Cutoff Techniques by Shiffmanization
 - \Rightarrow Elliptic Free-Boundary Problem with Elliptic Degeneracy on Γ_{sonic}
- Domain Decomposition

Near Γ_{sonic} Away from Γ_{sonic}

Iteration Scheme

C.-Feldman, J. Amer. Math. Soc. 2003

- $C^{1,1}$ Parabolic Estimates near the Degenerate Elliptic Curve Γ_{sonic} ;
- Corner Singularity Estimates

In particular, when the Elliptic Degenerate Curve Γ_{sonic} Meets the Free Boundary, i.e., the Transonic Shock

Removal of the Cutoff

Require the Elliptic-Parabolic Estimates

?? Extend the Large-Angle to the Sonic-Angle θ_s ??

Elliptic Degeneracy

Linear

$$2x\psi_{xx}+rac{1}{c_2^2}\psi_{yy}-\psi_x\sim 0$$
 $\psi\sim Ax^{3/2}+h.o.t.$ when $x\sim 0$

Nonlinear

nlinear
$$\begin{cases} \left(2x-(\gamma+1)\psi_{\mathsf{x}}\right)\psi_{\mathsf{xx}}+\frac{1}{c_2^2}\psi_{\mathsf{yy}}-\psi_{\mathsf{x}}\sim o(x^2)\\ \Psi|_{x=0}=0 \end{cases}$$

Ellipticity: $\psi_x \leq \frac{2x}{\gamma+1}$ Apriori Estimate: $|\psi_x| \leq \frac{4x}{3(\gamma+1)}$

$$\psi \sim \frac{x^2}{2(\gamma+1)} + h.o.t.$$
 when $x \approx 0$

Large Angles \Longrightarrow Sonic Angle θ_s : Method of Continuity

It suffices to prove that, for any $\theta_c \in (\theta_s, \frac{\pi}{2})$, a global regular reflection solution exists for all wedge angles $\theta_w \in [\theta_c, \frac{\pi}{2})$.

- Design $\mathcal{M} \subset [\theta_c, \frac{\pi}{2})$ to be a set of all wedge angles for which a global regular reflection solution exists and satisfies certain properties;
- ullet Show that the set ${\mathcal M}$ is nonempty

Existence result for the large-angle case;

- Prove that \mathcal{M} is relatively open in $[\theta_c, \frac{\pi}{2}]$;
- Prove that \mathcal{M} is relatively closed in $[\theta_c, \frac{\pi}{2}]$;

$$\longrightarrow \mathcal{M} = [\theta_c, \frac{\pi}{2}).$$

⇒ von Neumann's Sonic Conjecture

Mach Reflection: Full Euler Equations

- ? Right space for vorticity ω ?
- ? Chord-arc $z(s) = z_0 + \int_0^s e^{ib(s)} ds$, $b \in BMO$?

Some of Other Recent Related Efforts and Developments

- **S.-X. Chen**: Local Stability of Mach Configurations · · ·
- D. Serre: Multi-D Shock Interaction for a Chaplygin Gas
- S. Canic, B. Keyfitz, K. Jegdic, E. H. Kim:

 Self-Similar Solutions of 2D Conservation Laws

 Semi-Global Solutions for Shock Reflection Problems · · ·
- V. Elling and T.-P. Liu:

 Supersonic Flow onto a Solid Wedge (Prandtl Conjecture)

 Counterexamples to the Sonic and Detachment Criteria ...
- Y. Zheng+al: Solutions to Some 2-D Riemann Problems · · ·

```
Steady Transonic Flow: Morawetz 1956–58, 1985–95

Transonic Nozzles: C.–Feldman, S. Chen, J. Chen, Xin-Yin, Yuan,...

Wedge or Conical Body: S. Chen, B. Fang, C.–Fang, · · ·

Transonic Flow past an Obstacle: Gamba-Morawetz, Gamba,

C.–Dafermos-Slemrod-Wang, C.–Slemrod-Wang, · · ·
```

Shock Reflection-Diffraction vs New Mathematics

- Free Boundary Techniques
- Mixed and Composite Eqns. of Hyperbolic-Elliptic Type

```
Degenerate Elliptic Techniques
Degenerate Hyperbolic Techniques
Transport Equations with Rough Coefficients
```

- Regularity Estimates when a Free Boundary Meets a Degenerate Curve
- Boundary Harnack Inequalities
- Spaces for Compressible Vortex Sheets
- More Efficient Numerical Methods · · ·
-

Happy 85th Birthday

To Cathleen