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The (isotropic) Ginzburg—Landau model

A classical and highly successful model of superconductivity is the
Ginzburg-Landau model.

o State of SC occupying Q C R3 is described by:
u € C and vector potential, A (vector field), h = V x A magnetic
field.

@ Ginzburg-Landau free energy,

1 1
Ge(u, A) = S|\Vu—iAuf + —(Ju)® = 1)* + |h — hex|?
(wA) = [ {3190 0+ 251l =2+ 10— heo

@ hey is a given external applied field, depending on ¢
e 1 = 1/2 G-L parameter, study London limit = — 0
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Vortex lattices

@ For |hex| small, the SC expells the magnetic field (no vortices;
“Meissner effect”.)
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@ Above the lower critical field Hc1 ~ |In | magnetic flux penetrates
through vortices: line singularities, oriented along direction of hgy.
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@ For |hex| small, the SC expells the magnetic field (no vortices;
“Meissner effect”.)

@ Above the lower critical field Hc1 ~ |In | magnetic flux penetrates
through vortices: line singularities, oriented along direction of hgy.

@ In the absence of boundaries or inhomogeneity (“pinning”), vortex
lattice appears periodic. (Abrikosov lattice)
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Vortex lattices

@ For |hex| small, the SC expells the magnetic field (no vortices;
“Meissner effect”.)

@ Above the lower critical field Hc1 ~ |In | magnetic flux penetrates
through vortices: line singularities, oriented along direction of hgy.

@ In the absence of boundaries or inhomogeneity (“pinning”), vortex
lattice appears periodic. (Abrikosov lattice)

1/2

@ Vortex core radius ~ ¢, separated by distance ~ he'” ~ | In 5|_1/2
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Anisotropic superconductors

High- T¢ superconductors are characterized by a

high degree of anisotropy:
electrons pass easily in the CuO; planes, must

tunnel through insulating gaps.
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Anisotropic superconductors

High-T¢ superconductors are characterized by a

high degree of anisotropy:
electrons pass easily in the CuO; planes, must

tunnel through insulating gaps.

There are two preferred models:

@ The anisotropic Ginzburg—Landau model, or effective mass model.
“Effective mass tensor” M = diag(ma, mp, mc). In G-L, replace
|Vu—iAul> « (Vu—iAu)- M~ (Vu — iAu)
@ The Lawrence—Doniach model
The LD model replaces 3D solid SC — weakly coupled 2D SC planes

Question: How are the lower critical field H-; and the orientation of the
vortex lattices affected by anisotropy?
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The anisotropic Ginzburg—Landau model

e u € C and vector potential, A (vector field or 1-form),
h = dA (= V x A) magnetic field.
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e u € C and vector potential, A (vector field or 1-form),
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h = dA (= V x A) magnetic field.
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Ginzburg-Landau free energy,
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hex is a given external applied field,
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Magnetic field energy is measured in the Euclidean norm
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The anisotropic Ginzburg—Landau model

e u € C and vector potential, A (vector field or 1-form),
h = dA (= V x A) magnetic field.

Effective mass tensor M «~ Riemannian metric tensor g = (gj «)

Ginzburg-Landau free energy,

1 1
Ge(u,A) = Z|du — iAul2 + 5 (Jul? = 1)® + |h — hex|?
0 A) = [ {2 L1l = 1+ = e

|du — iAu\é =ik g/ K (Oju — iAju, Oku — iAu)
hex is a given external applied field,
r = 1/ G-L parameter, study London limit = — 0

Magnetic field energy is measured in the Euclidean norm

Still expect a dense lattice of vortex lines for he, ~ Hep = O(]Inel)
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Floquet periodic boundary conditions
G(u,A) = [o {3ldu — iAul} + 75 (lul* = 1)> + |h — he[*}

@ Period domain Q = [0,1]®
@ (u, A) periodic up to gauge transformation:
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Floquet periodic boundary conditions
Go(u, A) = [ {31du — iAul2 + 2 (|u]2 = 1)? + |h — heu?}
@ Period domain Q = [0,1]®
@ (u, A) periodic up to gauge transformation:
> u€ HL (R C), A€ H (R A(R?))

loc
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Floquet periodic boundary conditions
Go(u, A) = [ {31du — iAul2 + 2 (|u]2 = 1)? + |h — heu?}
@ Period domain Q = [0,1]®
@ (u, A) periodic up to gauge transformation:
> u€ HL (R C), A€ H (R AL(R?))

loc

» There exist functions w; € H2 (R®) (j = 1,2,3) so that

R g = U@
A% + &) = A(R) + duy(%)
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Floquet periodic boundary conditions
Ge(u, A) = fQ {%|du — iAu|§, + é(|u|2 —1)2+|h— hex\2}
@ Period domain Q = [0,1]3
@ (u, A) periodic up to gauge transformation:
» u€ H} (R3C), A€ Hj (R3AY(R?))

loc

» There exist functions w; € H2 (R®) (j = 1,2,3) so that

R g = U@
A% + &) = A(R) + duy(%)

o Gauge-invariant quantities, h = dA, |u|, j = Im {@, (du — iAu)}, are

Q-periodic.
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Floquet periodic boundary conditions
Ge(u, A) = fQ {%|du — iAu|§, + é(|u|2 —1)2+|h— hex\2}
Period domain Q = [0, 1]3
(u, A) periodic up to gauge transformation:
» u€ H} (R3C), A€ Hj (R3AY(R?))

loc

» There exist functions w; € H2 (R®) (j = 1,2,3) so that

R g = U@
A% + &) = A(R) + duy(%)

o Gauge-invariant quantities, h = dA, |u|, j = Im {@, (du — iAu)}, are
Q-periodic.

In any plane P, if (u, A) is Floquet-Periodic on Q C P, magnetic flux
is quantized:

/h-nd527rD,
JQ

|u[?

where D = deg (i 89), the winding number of the phase of u.
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Lower bound on the energy

We evaluate the energy by a slicing method.
Assume (u, A) is Floquet-Periodic on Q C P. Call dSg the surface
measure on P in the metric g.
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We evaluate the energy by a slicing method.
Assume (u, A) is Floquet-Periodic on Q C P. Call dSg the surface
measure on P in the metric g.

Vortex-balls (Sandier—Serfaty): For any given r >> ¢, 3 finitely many balls
{B¢} of total radius r, & degrees d; € Z so that
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Lower bound on the energy

We evaluate the energy by a slicing method.
Assume (u, A) is Floquet-Periodic on Q C P. Call dSg the surface
measure on P in the metric g.

Vortex-balls (Sandier—Serfaty): For any given r >> ¢, 3 finitely many balls
{B¢} of total radius r, & degrees d; € Z so that

1 1 r
“\du — iAul® + —(|u]* = 1)? Y dS, > 7D, In -
/LJ,'B/CP{2| ! : U|g+ 482(’u’ ) Sg ~ e n6

1
N2/h ndSe | Ing|

Integrate over the normal to the planes P, use dS, = |n|g71, and optimize
with respect to the normal vector n; we get:

)
£
5
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Lower bound on the energy

We evaluate the energy by a slicing method.
Assume (u, A) is Floquet-Periodic on Q C P. Call dSg the surface
measure on P in the metric g.

Vortex-balls (Sandier—Serfaty): For any given r >> ¢, 3 finitely many balls
{B¢} of total radius r, & degrees d; € Z so that

1 1 r
“\du — iAul® + —(|u]* = 1)? Y dS, > 7D, In -
/LJ,'B/CP{2| ! : U|g+ 482(’u’ ) Sg ~ e n6

1
N2/h ndSe | Ing|

Integrate over the normal to the planes P, use dS, = |n|g71, and optimize
with respect to the normal vector n; we get:

1 1
G-(u,A Q) 2 = /h |In5|+/ |h—heX|2.
21/q 2 Jq
g
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Minimizing periodic anisotropic GL

GE(U,A):/ {%\du—iAu\z,Jr4712(|u|2,1)2+|h7hex|2}
Q £

Let he = V x Ac, current j. = (ue, da, uc), Jacobian J. = 3[dj. + hc]
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Minimizing periodic anisotropic GL

Go(u, A) = / {l\du AR+ (P~ 124 A - hex|2}
o L2 4e
Let h. =V x A., current jo = (uc, da_uc), Jacobian J. = 1[dj + he]
Theorem (A-B-S '07)

Let hex = Hex |Ing|, with Hex constant, and (ue, A:) periodic minimizers
of G.. Then:

y
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Minimizing periodic anisotropic GL

Go(u, A) = / {l\du AR+ (P~ 124 A - hex|2}
o L2 4e
Let h. =V x A., current jo = (uc, da_uc), Jacobian J. = 1[dj + he]
Theorem (A-B-S '07)
Let hex = Hex |Ing|, with Hex constant, and (ue, A:) periodic minimizers
of G.. Then:
h€ RN H, j&'
|In€ Inel

2.
Inel

—0in L2(Q);

— H as measures.

y
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Minimizing periodic anisotropic GL

Gu(u, A) = / {%\du A + rlz(\u\z 124 h— hex|2}
Q £

Let h. =V x A., current jo = (uc, da_uc), Jacobian J. = 1[dj + he]
Theorem (A-B-S '07)

Let hex = Hex |Ing|, with Hex constant, and (ue, A:) periodic minimizers
of G.. Then:
h ] ) 2J,
c_ . H, B 0 in L2 . — H as measures.
|In€ Inel gl
. G, JA)
° I|m€—>0%_%{fQ’H Hex|2+|H‘g}'

v
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Minimizing periodic anisotropic GL

Go(u, A) = / {l\du — AR+ (P — 1)+ |- hex|2}
o L2 4e
Let h. =V x A., current jo = (uc, da_uc), Jacobian J. = 1[dj + he]
Theorem (A-B-S '07)
Let hex = Hex |Ing|, with Hex constant, and (ue, A:) periodic minimizers
of G.. Then:
hE RN H, j€
|In€ Inel

Ge(ue,Ae
|(Ina|2 = % {fQ ’H— Hex|2 + |H‘g} :

e H is constant in R3 and minimizes

2J.

Inel

—0in L2(Q);

— H as measures.

@ lim._g

min {|H — Hex|? + |H|g}

v
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Minimizing periodic anisotropic GL

Go(u, A) = / {l\du — AR+ (P — 1)+ |- hex|2}
o L2 4e
Let h. =V x A., current jo = (uc, da_uc), Jacobian J. = 1[dj + he]
Theorem (A-B-S '07)
Let hex = Hex |Ing|, with Hex constant, and (ue, A:) periodic minimizers
of G.. Then:
hE RN H, j€
|In€ Inel

Ge(ue,Ae
|(Ing|2 = % {fQ ’H— Hex|2 + |H‘g} :

e H is constant in R3 and minimizes

2J.

Inel

—0in L2(Q);

— H as measures.

@ lim._g

: . 1
min {|H — Hex|[? + |H|g} = min {|H|2 + [Hex|? i |H — Hex|g—1 < 2}

by duality

v
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min {|H — Hex|? + |H|g} = min {|H|? + [Hex|> = |H = Hex|g1 < 5}
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min {|H — Hex|? + |H|g} = min {|H|? + [Hex|> = |H = Hex|g1 < 5}
&> 1,

ab

Typical anisotropy: g = diag (map, Map, mc), me =
so
|du — iAul} = m V' u — iAu? + mZ0,u — iAul.
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min {|H — Hex|? + |H|g} = min {|H|? + [Hex|> = |H = Hex|g1 < 5}

Typical anisotropy: g = diag (map, Map, mc), me =

SO

1
m2 > 11

ab

|du — iAul? = m V' u — iAu? + mZ0,u — iAul.

@ The constraint set is a solid ellipsoid

determined by g
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min {|H — Hex|? + |H|g} = min {|H|? + [Hex|> = |H = Hex|g1 < 5}

Typical anisotropy: g = diag (map, Map, mc), me =

SO

1
m?2 > 11

ab

|du — iAul? = m V' u — iAu? + mZ0,u — iAul.

@ The constraint set is a solid ellipsoid

determined by g

@ The limiting internal field H will not
lie in the same direction as Hey !! hi
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min {|H — Hex|? + |H|g} = min {|H|? 4+ |Hex|? : |H = Hex|g-1 < 5}
> L

ab

Typical anisotropy: g = diag (map, Map, mc), me =

so
|du — iAul? = m V' u — iAu? + mZ0,u — iAul.

@ The constraint set is a solid ellipsoid
determined by g

@ The limiting internal field H will not
lie in the same direction as Hey !!

@ The lower critical field as a function
of the angle of Hey to the “easy”
plane is

Cmmmmmme >
[\]
3

|Ingl

Hc(0) =

2 cos? 6 + sin® 6

Map mec

R
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The Lawrence—Doniach model (1971)
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The Lawrence—Doniach model (1971)

Let @ = [0,1]° ¢ ®?, and
P, an array of N I
horizontal planes with
spacing s = 1/N,
P,=10,1?> x {z = z,},

Zp = NS.
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The Lawrence—Doniach model (1971)

Let @ = [0,1]° ¢ ®?, and

P, an array of N

horizontal planes with

spacing s = 1/N,
P,=1[0,1]?> x {z = z,},

Zp = NS.

o Planes P, are superconducting: u, : P, — C order parameter
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The Lawrence—Doniach model (1971)

Let @ = [0,1]° ¢ ®®, and
P, an array of N I
horizontal planes with
spacing s = 1/N,
P,=10,1?> x {z = z,},

Zp = NS.

o Planes P, are superconducting: u, : P, — C order parameter
@ Magnetic field h = V x A, with A, h: @ — R in the entire cube Q
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The Lawrence—Doniach model (1971)

Let @ = [0,1]° ¢ ®®, and

P, an array of N I
horizontal planes with
spacing s = 1/N,
P,=10,1?> x {z = z,},

Zp = NS.

o Planes P, are superconducting: u, : P, — C order parameter
e Magnetic field h = V x A, with A, h: @ — R? in the entire cube Q

o External applied field (given constant), h., € R?
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The Lawrence—Doniach model (1971)

Let @ = [0,1]° ¢ ®®, and
P, an array of N I
horizontal planes with
spacing s = 1/N,
P,=10,1?> x {z = z,},

Zp = NS.

o Planes P, are superconducting: u, : P, — C order parameter
e Magnetic field h = V x A, with A, h: @ — R? in the entire cube Q
o External applied field (given constant), h., € R?

@ We will be interested in how energy-minimizing Q-periodic
configurations depend on the angle between he, and the planes.
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The Lawrence—Doniach functional

N
1 1
LD(u,, A) = SZ/P {2V’u,, — iA u,? + 2 (1- |u,,|2)2} dx dy
n=1 n

o
+s —/
2% ),

2

'fzzn’LI Az(x,y,z) dz dx dy

1
u, — up—1€

+/ |v><A-hex|2 dXdde
Q
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The Lawrence—Doniach functional

N
1 . >, 1 212
LD(un,A):an:l/Pn{zV/u,,—/A/un| +4—€2(1—|u,,| ) }dxdy
"o
L
2% ),

; 2
u, — up—1€

dx dy

Jor Adlxy.z)dz

+/ |v><A-hex|2 dXdde
Q

@ u,: P, — C complex order parameters on planes
e A: Q — R3 magnetic vector potential,
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The Lawrence—Doniach functional

N
1 1
LD(u,,,A):sZ/P {2v’un—iA’un|2+ 2 (1- |un2)2}dxdy
n=1 n

o
+s —/
2% ),

2

I Ax(xy.z) dz dx dy

1
u, — up—1€

+/ IV x A— he|? dx dy dz
Q

@ u,: P, — C complex order parameters on planes
e A: Q — R3 magnetic vector potential,
o V' =(0x,0y), A = (Ac(x.y,zn). Ay (x. ¥, Zn)).
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The Lawrence—Doniach functional

N
1 1
LD(u,,,A):sZ/P {2V’un—iA’u,,|2+ 27 (1- |un2)2}dxdy
n=1 n

o
+s —/
2% ),

2

I Ax(xy.z) dz dx dy

1
u, — up—1€

+/ IV x A— he|? dx dy dz
Q

up : P, — C complex order parameters on planes
e A: Q — R3 magnetic vector potential,

o V' = (0x,0y), A = (Ac(x.y,2n), Ay(X, ¥, Zn)).

Il

ex’

External field has components h,,, h3, parallel and perp to the SC
planes Pp:

- 1 -
hex = hex e + hex €3
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The Lawrence—Doniach functional

N
1 1
LD(u,,,A):sZ/P {2V’un—iA'un|2+ 27 (1- |un2)2}dxdy
n=1 n

o
+s —/
2% ),

2

.fzzntl A (x,y,z)dz dx dy

1
u, — up—1€

+/ IV x A— he|? dx dy dz
Q

up : P, — C complex order parameters on planes
e A: Q — R3 magnetic vector potential,
o V' = (0x,0y), A = (Ac(x.y,2n), Ay(X, ¥, Zn)).

@ External field has components h!x, h%, parallel and perp to the SC
planes Pp:
hex — h!X 51 + hé} e??;
@ Assume hey = Hex|Ine| for constant Hey independent of &
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Mathematical results on LD

e Chapman, Du, & Gunzburger (1995). Formulation of the model and
convergence s — 0 of LD (other parameters fixed.)
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Mathematical results on LD

e Chapman, Du, & Gunzburger (1995). Formulation of the model and
convergence s — 0 of LD (other parameters fixed.)

@ Bauman & Ko (2005). Regularity of solutions, rigorous variational
formulation for bounded domains in R3.
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Mathematical results on LD

e Chapman, Du, & Gunzburger (1995). Formulation of the model and
convergence s — 0 of LD (other parameters fixed.)

@ Bauman & Ko (2005). Regularity of solutions, rigorous variational
formulation for bounded domains in R3.

e Alama, Berlinsky, & L.B. (2001) Treatment of interlayer vortices in a
parallel applied field, in limit as A; — oco. Find optimum lattice
geometry in periodic setting.
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e Chapman, Du, & Gunzburger (1995). Formulation of the model and
convergence s — 0 of LD (other parameters fixed.)

@ Bauman & Ko (2005). Regularity of solutions, rigorous variational
formulation for bounded domains in R3.

e Alama, Berlinsky, & L.B. (2001) Treatment of interlayer vortices in a
parallel applied field, in limit as A; — oco. Find optimum lattice
geometry in periodic setting.

e Alama, L.B., & Sandier. (2004) Profile of isolated interlayer vortices
(parallel to planes) in limit ¢ < O(s) — 0

Lia Bronsard (with Alama, Sandier) Anisotropic Superconductors Cathleen Morawetz féte, 2008 12 /19



Mathematical results on LD

e Chapman, Du, & Gunzburger (1995). Formulation of the model and
convergence s — 0 of LD (other parameters fixed.)

@ Bauman & Ko (2005). Regularity of solutions, rigorous variational
formulation for bounded domains in R3.

e Alama, Berlinsky, & L.B. (2001) Treatment of interlayer vortices in a
parallel applied field, in limit as A; — oco. Find optimum lattice
geometry in periodic setting.

e Alama, L.B., & Sandier. (2004) Profile of isolated interlayer vortices
(parallel to planes) in limit ¢ < O(s) — 0

e With Alama, Sandier we study many regimes, depending on the
direction of hey, and the quantity hexS2.
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|| — J_ —
ex €1 + hex €3

Oblique applied field, he, = h

How do vortices penetrate a layered superconductor in an oblique field?
Two possibilities suggested by physicists:
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Oblique applied field, he, = h. & + ht &

How do vortices penetrate a layered superconductor in an oblique field?
Two possibilities suggested by physicists:

3

1. Decoupled lattices.
Vertical array of pancake
vortices overlaps horizontal =
array of interlayer vortices
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Oblique applied field, he, = h. & + ht &

How do vortices penetrate a layered superconductor in an oblique field?
Two possibilities suggested by physicists:

|

1. Decoupled lattices.
Vertical array of pancake
vortices overlaps horizontal
array of interlayer vortices

A
&
LI
A
mw‘ =

Work in progress: this happens when
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Oblique applied field, hex = h) & + hk &
The second possibility suggested by physicists:

el 2. Staircase vortices.

/ Vortices are inclined, but
/ flux lines prefer to pass L

through planes, and lie
/ (nearly) horizontal in
_— gaps.
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Oblique applied field, hex = h) & + hk &
The second possibility suggested by physicists:

el 2. Staircase vortices.

-

- Vortices are inclined, but
/ flux lines prefer to pass L
through planes, and lie
/ (nearly) horizontal in
—— gaps.

7

—

o Consider the asymptotic regime:

s=c" 0<a<1, he = O(|Ine]).
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Oblique applied field, hex = h) & + hk &
The second possibility suggested by physicists:

¢ 2. Staircase vortices.
_— Vortices are inclined, but
7 flux lines prefer to pass L
through planes, and lie
— (nearly) horizontal in

o gaps.

o Consider the asymptotic regime:

s=c" 0<a<1, he = O(|Ine]).

@ We derive matching upper and lower bounds on minimizers consistent
with a staircase lattice.
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Oblique applied field, hex = h) & + hk &
The second possibility suggested by physicists:

¢ 2. Staircase vortices.
_— Vortices are inclined, but
7 flux lines prefer to pass L
through planes, and lie
— (nearly) horizontal in

o gaps.

o Consider the asymptotic regime:

s=c" 0<a<1, he = O(|Ine]).
@ We derive matching upper and lower bounds on minimizers consistent

with a staircase lattice.
hex| << 1/52

@ Note in this regime,
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Staircase vortices: regime s =c*, 0 < a <1

Lia Bronsard (with Alama, Sandier) Anisotropic Superconductors



Staircase vortices: regime s =%, 0 < a <1

Inside the tube, radius s:

Vortex energy from D “pancake
vortices” (core radius £) in each
plane P,:

7D In(s/z) ~ Lin(s/2) ‘an hL]

Lia Bronsard (with Alama, Sandier) Anisotropic Superconductors Cathleen Morawetz féte, 2008 15 /19



Staircase vortices: regime s =%, 0 < a <1

— Inside the tube, radius s:

Vortex energy from D “pancake

_— vortices” (core radius £) in each

plane P,:

- 7D In(s/e) ~ 3In(s/z) ‘an hL’

QOutside tube, radius s:
LD ~ GLg with GL-parameter s — as before, vortex energy outside tube

~ 7D In(1/s) ~ Lin(1/s) ‘fQ h‘
(slicing by oblique planes as we did for Aniso GL!)
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Staircase vortices: regime s =%, 0 < a <1

— Inside the tube, radius s:

Vortex energy from D “pancake

_— vortices” (core radius £) in each

plane P,:

- 7D In(s/e) ~ 3In(s/z) ‘an hL’

QOutside tube, radius s:
LD ~ GLg with GL-parameter s — as before, vortex energy outside tube

~ 7D In(1/s) ~ Lin(1/s) ‘fQ h‘
(slicing by oblique planes as we did for Aniso GL!)

=> LD ~ 3In(s/e) ’fo hL’ +3In(1/s) ‘fo h‘ + 2 Jo lh = he?.
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Staircase vortices: Theorem
Assume ho, — (H"él + HY&)|Inel, s =2, (u,, A) minimizes LD,
h =YV x A. Then,

° ||:E| —~Hin L% (ase—0)
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Staircase vortices: Theorem
Assume ho, = (H'& + H'&)|Ine|, s = £, (u,. A) minimizes LD,
h =YV x A. Then,

° ||:E| —~Hin L% (ase—0)

o lim.o o1zt — 1(1—a) ‘fQHL‘jL a‘fQH’+2fQ|H H|?.

[Ingl?
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Staircase vortices: Theorem

Assume ho, — (HH€1 + HY&)|Inel, s =2, (u,, A) minimizes LD,
h =YV x A. Then,
°

T~ Hin L2 (ase —0)
i

- LD(un,A

o lim._g ||(n€"|2) =

%(1_a)(fQHL‘+%a\fQH\+%fQ|H_H|2
@ H is a constant vector, which minimizes

[H = Hex|? + (1 — a) [H| + a|H]
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Staircase vortices: Theorem

Assume ho, — (H"él + HY&)|Inel, s =2, (u,, A) minimizes LD,
h =YV x A. Then,

ﬁéHin L? (ase —0.)
o lim._o 2nA)

1 1 1
mep = 3(l—a) ‘fo HL‘ + 30 ‘fQH‘ +3 JoIH—HP.
@ H is a constant vector, which minimizes

[H = Hex|? + (1 — a) [H| + a|H]

e Equivalently, H € K, is the point of the convex set K, (below) which
is closest to the origin.
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Staircase vortices: limiting field H, examples

Fix an angle 6, consider Hex = |Hex|(cos 6,0, sin 6)
ht

When I:Iex is close enough to zero, then 0 € K, so H=0 = we are
below the critical field Hc1(0).
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Staircase vortices: limiting field H, examples
Fix an angle 6, consider Hex = |Hex|(cos 6,0, sin 6)

ht1

When 0 lies outside K, He K, chooses the closest point. The angle is
small enough so H is chosen along the h'-axis
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Staircase vortices: limiting field H, examples

Fix an angle 6, consider P/ex = |Hex|(cos 6, 0,sin 0)

ht1

When 0 lies outside K, He K, chooses the closest point. The angle is
small enough so H is chosen along the h'-axis
This will never happen for Aniso GL!
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Staircase vortices: limiting field H, examples

Fix an angle 6, consider Ho = |Hex|(cos 6, 0, sin 0)
hJ.

Even for a small angle, eventually the closest point H has an ht

component.
The angle of the induced field H is generally not the same as the applied

field Hey.
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