On the mixed state in anisotropic superconductors

Lia Bronsard

McMaster University

Work in progress with Stan Alama & Etienne Sandier

A classical and highly successful model of superconductivity is the Ginzburg-Landau model.

A classical and highly successful model of superconductivity is the Ginzburg–Landau model.

• State of SC occupying $Q \subset \mathbb{R}^3$ is described by: $u \in \mathbb{C}$ and vector potential, A (vector field), $h = \nabla \times A$ magnetic field.

A classical and highly successful model of superconductivity is the Ginzburg-Landau model.

- State of SC occupying $Q \subset \mathbb{R}^3$ is described by: $u \in \mathbb{C}$ and vector potential, A (vector field), $h = \nabla \times A$ magnetic field.
- Ginzburg-Landau free energy,

$$G_{arepsilon}(u,A) = \int_{Q} \left\{ rac{1}{2} |
abla u - iAu|^2 + rac{1}{4arepsilon^2} (|u|^2 - 1)^2 + |h - h_{\mathsf{ex}}|^2
ight\}$$

A classical and highly successful model of superconductivity is the Ginzburg-Landau model.

- State of SC occupying $Q \subset \mathbb{R}^3$ is described by: $u \in \mathbb{C}$ and vector potential, A (vector field), $h = \nabla \times A$ magnetic field.
- Ginzburg-Landau free energy,

$$G_{\varepsilon}(u,A) = \int_{Q} \left\{ \frac{1}{2} |\nabla u - iAu|^2 + \frac{1}{4\varepsilon^2} (|u|^2 - 1)^2 + |h - h_{\mathrm{ex}}|^2 \right\}$$

ullet h_{ex} is a given external applied field, depending on arepsilon

A classical and highly successful model of superconductivity is the Ginzburg-Landau model.

- State of SC occupying $Q \subset \mathbb{R}^3$ is described by: $u \in \mathbb{C}$ and vector potential, A (vector field), $h = \nabla \times A$ magnetic field.
- Ginzburg-Landau free energy,

$$G_{\varepsilon}(u,A) = \int_{Q} \left\{ \frac{1}{2} |\nabla u - iAu|^2 + \frac{1}{4\varepsilon^2} (|u|^2 - 1)^2 + |h - h_{\mathrm{ex}}|^2 \right\}$$

- h_{ex} is a given external applied field, depending on ε
- $\kappa = 1/\varepsilon$ G–L parameter, study London limit $\varepsilon \to 0$

• For $|h_{ex}|$ small, the SC expells the magnetic field (no vortices; "Meissner effect".)

- For $|h_{ex}|$ small, the SC expells the magnetic field (no vortices; "Meissner effect".)
- Above the lower critical field $H_{c1} \sim |\ln \varepsilon|$ magnetic flux penetrates through vortices: line singularities, oriented along direction of h_{ex} .

- For $|h_{ex}|$ small, the SC expells the magnetic field (no vortices; "Meissner effect".)
- Above the lower critical field $H_{c1} \sim |\ln \varepsilon|$ magnetic flux penetrates through vortices: line singularities, oriented along direction of h_{ex} .

- For $|h_{ex}|$ small, the SC expells the magnetic field (no vortices; "Meissner effect".)
- Above the lower critical field $H_{c1} \sim |\ln \varepsilon|$ magnetic flux penetrates through vortices: line singularities, oriented along direction of h_{ex} .

- For $|h_{ex}|$ small, the SC expells the magnetic field (no vortices; "Meissner effect".)
- Above the *lower critical field* $H_{c1} \sim |\ln \varepsilon|$ magnetic flux penetrates through vortices: line singularities, oriented along direction of h_{ex} .

• In the absence of boundaries or inhomogeneity ("pinning"), vortex lattice appears periodic. (Abrikosov lattice)

- For $|h_{ex}|$ small, the SC expells the magnetic field (no vortices; "Meissner effect".)
- Above the *lower critical field* $H_{c1} \sim |\ln \varepsilon|$ magnetic flux penetrates through vortices: line singularities, oriented along direction of $h_{\rm ex}$.

- In the absence of boundaries or inhomogeneity ("pinning"), vortex lattice appears periodic. (Abrikosov lattice)
- Vortex core radius $\sim \varepsilon$, separated by distance $\sim h_{\rm ex}^{-1/2} \sim |\ln \varepsilon|^{-1/2}$

High- T_C superconductors are characterized by a high degree of anisotropy: electrons pass easily in the CuO₂ planes, must tunnel through insulating gaps.

There are two preferred models:

High- T_C superconductors are characterized by a high degree of anisotropy: electrons pass easily in the CuO₂ planes, must tunnel through insulating gaps.

• The anisotropic Ginzburg-Landau model, or effective mass model.

High- T_C superconductors are characterized by a high degree of anisotropy: electrons pass easily in the CuO₂ planes, must tunnel through insulating gaps.

There are two preferred models:

• The anisotropic Ginzburg–Landau model, or effective mass model. "Effective mass tensor" $M = \text{diag}(m_a, m_b, m_c)$. In G–L, replace $|\nabla u - iAu|^2 \leftrightarrow (\nabla u - iAu) \cdot M^{-1}(\nabla u - iAu)$

High- T_C superconductors are characterized by a high degree of anisotropy: electrons pass easily in the CuO₂ planes, must tunnel through insulating gaps.

There are two preferred models:

- The anisotropic Ginzburg–Landau model, or effective mass model. "Effective mass tensor" $M = \text{diag}(m_a, m_b, m_c)$. In G–L, replace $|\nabla u iAu|^2 \leftrightarrow (\nabla u iAu) \cdot M^{-1}(\nabla u iAu)$
- The Lawrence–Doniach model
 The LD model replaces 3D solid SC → weakly coupled 2D SC planes

High- T_C superconductors are characterized by a high degree of anisotropy: electrons pass easily in the CuO_2 planes, must tunnel through insulating gaps.

There are two preferred models:

- The anisotropic Ginzburg–Landau model, or effective mass model. "Effective mass tensor" $M = \text{diag}(m_a, m_b, m_c)$. In G–L, replace $|\nabla u iAu|^2 \leftrightarrow (\nabla u iAu) \cdot M^{-1}(\nabla u iAu)$
- \bullet The Lawrence–Doniach model The LD model replaces 3D solid SC \to weakly coupled 2D SC planes

Question: How are the lower critical field H_{c1} and the orientation of the vortex lattices affected by anisotropy?

• $u \in \mathbb{C}$ and vector potential, A (vector field or 1-form), h = dA (= $\nabla \times A$) magnetic field.

- $u \in \mathbb{C}$ and vector potential, A (vector field or 1-form), h = dA (= $\nabla \times A$) magnetic field.
- Effective mass tensor $M \iff$ Riemannian metric tensor $g = (g_{i,k})$

- $u \in \mathbb{C}$ and vector potential, A (vector field or 1-form), h = dA (= $\nabla \times A$) magnetic field.
- Effective mass tensor $M \iff$ Riemannian metric tensor $g = (g_{i,k})$
- Ginzburg-Landau free energy,

$$G_{\varepsilon}(u,A) = \int_{Q} \left\{ \frac{1}{2} |du - iAu|_{g}^{2} + \frac{1}{4\varepsilon^{2}} (|u|^{2} - 1)^{2} + |h - h_{\mathrm{ex}}|^{2} \right\}$$

- $u \in \mathbb{C}$ and vector potential, A (vector field or 1-form), h = dA (= $\nabla \times A$) magnetic field.
- Effective mass tensor $M \iff$ Riemannian metric tensor $g = (g_{i,k})$
- Ginzburg–Landau free energy,

$$G_{\varepsilon}(u,A) = \int_{Q} \left\{ \frac{1}{2} |du - iAu|_{g}^{2} + \frac{1}{4\varepsilon^{2}} (|u|^{2} - 1)^{2} + |h - h_{ex}|^{2} \right\}$$

• $|du - iAu|_g^2 = \sum_{j,k} g^{j,k} (\partial_j u - iA_j u, \partial_k u - iA_k u)$

- $u \in \mathbb{C}$ and vector potential, A (vector field or 1-form), h = dA (= $\nabla \times A$) magnetic field.
- Effective mass tensor $M \iff$ Riemannian metric tensor $g = (g_{i,k})$
- Ginzburg-Landau free energy,

$$G_{\varepsilon}(u,A) = \int_{Q} \left\{ \frac{1}{2} |du - iAu|_{g}^{2} + \frac{1}{4\varepsilon^{2}} (|u|^{2} - 1)^{2} + |h - h_{ex}|^{2} \right\}$$

- $|du iAu|_g^2 = \sum_{j,k} g^{j,k} (\partial_j u iA_j u, \partial_k u iA_k u)$
- h_{ex} is a given external applied field,

- $u \in \mathbb{C}$ and vector potential, A (vector field or 1-form), h = dA (= $\nabla \times A$) magnetic field.
- Effective mass tensor $M \iff$ Riemannian metric tensor $g = (g_{i,k})$
- Ginzburg-Landau free energy,

$$G_{\varepsilon}(u,A) = \int_{Q} \left\{ \frac{1}{2} |du - iAu|_{g}^{2} + \frac{1}{4\varepsilon^{2}} (|u|^{2} - 1)^{2} + |h - h_{ex}|^{2} \right\}$$

- $|du iAu|_g^2 = \sum_{j,k} g^{j,k} (\partial_j u iA_j u, \partial_k u iA_k u)$
- h_{ex} is a given external applied field,
- $\kappa = 1/\varepsilon$ G–L parameter, study London limit $\varepsilon \to 0$

- $u \in \mathbb{C}$ and vector potential, A (vector field or 1-form), h = dA (= $\nabla \times A$) magnetic field.
- Effective mass tensor $M \iff$ Riemannian metric tensor $g = (g_{i,k})$
- Ginzburg-Landau free energy,

$$G_{\varepsilon}(u,A) = \int_{Q} \left\{ \frac{1}{2} |du - iAu|_{g}^{2} + \frac{1}{4\varepsilon^{2}} (|u|^{2} - 1)^{2} + |h - h_{ex}|^{2} \right\}$$

- $|du iAu|_g^2 = \sum_{j,k} g^{j,k} (\partial_j u iA_j u, \partial_k u iA_k u)$
- h_{ex} is a given external applied field,
- $\kappa = 1/\varepsilon$ G–L parameter, study London limit $\varepsilon \to 0$
- Magnetic field energy is measured in the Euclidean norm

- $u \in \mathbb{C}$ and vector potential, A (vector field or 1-form), h = dA (= $\nabla \times A$) magnetic field.
- Effective mass tensor $M \iff$ Riemannian metric tensor $g = (g_{i,k})$
- Ginzburg-Landau free energy,

$$G_{\varepsilon}(u,A) = \int_{Q} \left\{ \frac{1}{2} |du - iAu|_{g}^{2} + \frac{1}{4\varepsilon^{2}} (|u|^{2} - 1)^{2} + |h - h_{ex}|^{2} \right\}$$

- $|du iAu|_g^2 = \sum_{j,k} g^{j,k} (\partial_j u iA_j u, \partial_k u iA_k u)$
- h_{ex} is a given external applied field,
- $\kappa = 1/arepsilon$ G–L parameter, study London limit arepsilon o 0
- Magnetic field energy is measured in the Euclidean norm
- Still expect a dense lattice of vortex lines for $h_{\rm ex} \sim H_{c1} = O(|\ln \varepsilon|)$

$$G_{\varepsilon}(u,A) = \int_{Q} \left\{ \frac{1}{2} |du - iAu|_{g}^{2} + \frac{1}{4\varepsilon^{2}} (|u|^{2} - 1)^{2} + |h - h_{ex}|^{2} \right\}$$

- Period domain $Q = [0, 1]^3$
- \bullet (u, A) periodic up to gauge transformation:

$$G_{\varepsilon}(u,A) = \int_{Q} \left\{ \frac{1}{2} |du - iAu|_{g}^{2} + \frac{1}{4\varepsilon^{2}} (|u|^{2} - 1)^{2} + |h - h_{ex}|^{2} \right\}$$

- Period domain $Q = [0, 1]^3$
- (u, A) periodic up to gauge transformation:
 - $u \in H^1_{loc}(\mathbb{R}^3; \mathbb{C}), A \in H^1_{loc}(\mathbb{R}^3; \Lambda^1(\mathbb{R}^3))$

$$G_{\varepsilon}(u,A) = \int_{Q} \left\{ \frac{1}{2} |du - iAu|_{g}^{2} + \frac{1}{4\varepsilon^{2}} (|u|^{2} - 1)^{2} + |h - h_{ex}|^{2} \right\}$$

- Period domain $Q = [0, 1]^3$
- \bullet (u, A) periodic up to gauge transformation:
 - $u \in H^1_{loc}(\mathbb{R}^3; \mathbb{C}), A \in H^1_{loc}(\mathbb{R}^3; \Lambda^1(\mathbb{R}^3))$
 - ► There exist functions $\omega_j \in H^2_{loc}(\mathbb{R}^3)$ (j=1,2,3) so that

$$u(\vec{x} + \vec{e}_j) = u(\vec{x})e^{i\omega_j(\vec{x})}$$

$$A(\vec{x} + \vec{e}_j) = A(\vec{x}) + d\omega_j(\vec{x})$$

$$j = 1, 2, 3$$

$$G_{\varepsilon}(u,A) = \int_{Q} \left\{ \frac{1}{2} |du - iAu|_{g}^{2} + \frac{1}{4\varepsilon^{2}} (|u|^{2} - 1)^{2} + |h - h_{ex}|^{2} \right\}$$

- Period domain $Q = [0, 1]^3$
- \bullet (u, A) periodic up to gauge transformation:
 - $u \in H^1_{loc}(\mathbb{R}^3; \mathbb{C}), A \in H^1_{loc}(\mathbb{R}^3; \Lambda^1(\mathbb{R}^3))$
 - ▶ There exist functions $\omega_j \in H^2_{loc}(\mathbb{R}^3)$ (j=1,2,3) so that

$$u(\vec{x} + \vec{e}_j) = u(\vec{x})e^{i\omega_j(\vec{x})}$$

$$A(\vec{x} + \vec{e}_j) = A(\vec{x}) + d\omega_j(\vec{x})$$

$$j = 1, 2, 3$$

• Gauge-invariant quantities, h=dA, |u|, $j=\operatorname{Im}\{\bar{u},(du-iAu)\}$, are Q-periodic.

$$G_{\varepsilon}(u,A) = \int_{Q} \left\{ \frac{1}{2} |du - iAu|_{g}^{2} + \frac{1}{4\varepsilon^{2}} (|u|^{2} - 1)^{2} + |h - h_{\mathrm{ex}}|^{2} \right\}$$

- Period domain $Q = [0, 1]^3$
- \bullet (u, A) periodic up to gauge transformation:
 - $u \in H^1_{loc}(\mathbb{R}^3; \mathbb{C}), A \in H^1_{loc}(\mathbb{R}^3; \Lambda^1(\mathbb{R}^3))$
 - ▶ There exist functions $\omega_j \in H^2_{loc}(\mathbb{R}^3)$ (j=1,2,3) so that

$$\left. \begin{array}{l} u(\vec{x} + \vec{e}_j) = u(\vec{x})e^{i\omega_j(\vec{x})} \\ A(\vec{x} + \vec{e}_j) = A(\vec{x}) + d\omega_j(\vec{x}) \end{array} \right\} \quad j = 1, 2, 3$$

- Gauge-invariant quantities, h=dA, |u|, $j=\operatorname{Im}\{\bar{u},(du-iAu)\}$, are Q-periodic.
- In any plane P, if (u, A) is Floquet-Periodic on $\Omega \subset P$, magnetic flux is quantized:

$$\int_{\Omega} h \cdot n \, dS = 2\pi D,$$

where $D = \deg\left(\frac{u}{|u|}, \partial\Omega\right)$, the winding number of the phase of u.

We evaluate the energy by a slicing method.

Assume (u, A) is Floquet-Periodic on $\Omega \subset P$. Call dS_g the surface measure on P in the metric g.

We evaluate the energy by a slicing method.

Assume (u, A) is Floquet-Periodic on $\Omega \subset P$. Call dS_g the surface measure on P in the metric g.

Vortex-balls (Sandier–Serfaty): For any given $r >> \varepsilon$, \exists finitely many balls $\{B_i^{\varepsilon}\}$ of total radius r, & degrees $d_i \in \mathbb{Z}$ so that

We evaluate the energy by a slicing method.

Assume (u, A) is Floquet-Periodic on $\Omega \subset P$. Call dS_g the surface measure on P in the metric g.

Vortex-balls (Sandier–Serfaty): For any given $r >> \varepsilon$, \exists finitely many balls $\{B_i^{\varepsilon}\}$ of total radius r, & degrees $d_i \in \mathbb{Z}$ so that

$$\int_{\cup_i B_i \subset P} \left\{ \frac{1}{2} |du - iAu|_g^2 + \frac{1}{4\varepsilon^2} (|u|^2 - 1)^2 \right\} dS_g \gtrsim \pi D_\varepsilon \ln \frac{r}{\varepsilon}$$

We evaluate the energy by a slicing method.

Assume (u, A) is Floquet-Periodic on $\Omega \subset P$. Call dS_g the surface measure on P in the metric g.

Vortex-balls (Sandier–Serfaty): For any given $r >> \varepsilon$, \exists finitely many balls $\{B_i^{\varepsilon}\}$ of total radius r, & degrees $d_i \in \mathbb{Z}$ so that

$$\int_{\cup_{i}B_{i}\subset P} \left\{ \frac{1}{2} |du - iAu|_{g}^{2} + \frac{1}{4\varepsilon^{2}} (|u|^{2} - 1)^{2} \right\} dS_{g} \gtrsim \pi D_{\varepsilon} \ln \frac{r}{\varepsilon}$$

$$\gtrsim \frac{1}{2} \int_{\Omega} h \cdot n \, dS_{e} |\ln \varepsilon|$$

We evaluate the energy by a slicing method.

Assume (u, A) is Floquet-Periodic on $\Omega \subset P$. Call dS_g the surface measure on P in the metric g.

Vortex-balls (Sandier–Serfaty): For any given $r >> \varepsilon$, \exists finitely many balls $\{B_i^{\varepsilon}\}$ of total radius r, & degrees $d_i \in \mathbb{Z}$ so that

$$\int_{\cup_{i}B_{i}\subset P} \left\{ \frac{1}{2} |du - iAu|_{g}^{2} + \frac{1}{4\varepsilon^{2}} (|u|^{2} - 1)^{2} \right\} dS_{g} \gtrsim \pi D_{\varepsilon} \ln \frac{r}{\varepsilon}$$

$$\gtrsim \frac{1}{2} \int_{\Omega} h \cdot n \, dS_{e} |\ln \varepsilon|$$

Integrate over the normal to the planes P, use $dS_g = |n|_{g^{-1}}$, and optimize with respect to the normal vector n; we get:

We evaluate the energy by a slicing method.

Assume (u, A) is Floquet-Periodic on $\Omega \subset P$. Call dS_g the surface measure on P in the metric g.

Vortex-balls (Sandier–Serfaty): For any given $r >> \varepsilon$, \exists finitely many balls $\{B_i^{\varepsilon}\}$ of total radius r, & degrees $d_i \in \mathbb{Z}$ so that

$$\int_{\cup_{i}B_{i}\subset P} \left\{ \frac{1}{2} |du - iAu|_{g}^{2} + \frac{1}{4\varepsilon^{2}} (|u|^{2} - 1)^{2} \right\} dS_{g} \gtrsim \pi D_{\varepsilon} \ln \frac{r}{\varepsilon}$$

$$\gtrsim \frac{1}{2} \int_{\Omega} h \cdot n \, dS_{e} |\ln \varepsilon|$$

Integrate over the normal to the planes P, use $dS_g = |n|_{g^{-1}}$, and optimize with respect to the normal vector n; we get:

$$G_{arepsilon}(u,A;Q)\gtrsim rac{1}{2}\left|\int_{Q}h
ight|_{\mathbf{g}}\left|\lnarepsilon
ight|+rac{1}{2}\int_{Q}\left|h-h_{\mathrm{ex}}
ight|^{2}.$$

$$G_{\varepsilon}(u,A) = \int_{Q} \left\{ \frac{1}{2} |du - iAu|_{g}^{2} + \frac{1}{4\varepsilon^{2}} (|u|^{2} - 1)^{2} + |h - h_{\mathrm{ex}}|^{2} \right\}$$

Let $h_{\varepsilon}=
abla imes A_{\varepsilon}$, current $j_{\varepsilon}=ig(u_{\varepsilon},d_{A_{\varepsilon}}u_{\varepsilon}ig)$, Jacobian $J_{\varepsilon}=rac{1}{2}[dj_{\varepsilon}+h_{\varepsilon}]$

$$G_{\varepsilon}(u,A) = \int_{Q} \left\{ \frac{1}{2} |du - iAu|_{g}^{2} + \frac{1}{4\varepsilon^{2}} (|u|^{2} - 1)^{2} + |h - h_{\mathrm{ex}}|^{2} \right\}$$

Let $h_{\varepsilon}=
abla imes A_{\varepsilon}$, current $j_{\varepsilon}=\left(u_{\varepsilon},d_{A_{\varepsilon}}u_{\varepsilon}
ight)$, Jacobian $J_{\varepsilon}=rac{1}{2}[dj_{\varepsilon}+h_{\varepsilon}]$

Theorem (A-B-S '07)

Let $h_{\rm ex}=H_{\rm ex}\,|\ln\varepsilon|$, with $H_{\rm ex}$ constant, and $(u_{\varepsilon},A_{\varepsilon})$ periodic minimizers of G_{ε} . Then:

$$G_{\varepsilon}(u,A) = \int_{Q} \left\{ \frac{1}{2} |du - iAu|_{g}^{2} + \frac{1}{4\varepsilon^{2}} (|u|^{2} - 1)^{2} + |h - h_{\mathrm{ex}}|^{2} \right\}$$

Let $h_{\varepsilon}=
abla imes A_{\varepsilon}$, current $j_{\varepsilon}=ig(u_{\varepsilon},d_{A_{\varepsilon}}u_{\varepsilon}ig)$, Jacobian $J_{\varepsilon}=rac{1}{2}[dj_{\varepsilon}+h_{\varepsilon}]$

Theorem (A-B-S '07)

•
$$\frac{h_{\varepsilon}}{|\ln \varepsilon|} \rightharpoonup H$$
, $\frac{j_{\varepsilon}}{|\ln \varepsilon|} \rightharpoonup 0$ in $L^2(Q)$; $\frac{2J_{\varepsilon}}{|\ln \varepsilon|} \rightharpoonup H$ as measures.

$$G_{\varepsilon}(u,A) = \int_{Q} \left\{ \frac{1}{2} |du - iAu|_{g}^{2} + \frac{1}{4\varepsilon^{2}} (|u|^{2} - 1)^{2} + |h - h_{\mathrm{ex}}|^{2} \right\}$$

Let $h_{\varepsilon}=
abla imes A_{\varepsilon}$, current $j_{\varepsilon}=ig(u_{\varepsilon},d_{A_{\varepsilon}}u_{\varepsilon}ig)$, Jacobian $J_{\varepsilon}=rac{1}{2}[dj_{\varepsilon}+h_{\varepsilon}]$

Theorem (A-B-S '07)

- $\frac{h_{\varepsilon}}{|\ln \varepsilon|} \rightharpoonup H$, $\frac{j_{\varepsilon}}{|\ln \varepsilon|} \rightharpoonup 0$ in $L^2(Q)$; $\frac{2J_{\varepsilon}}{|\ln \varepsilon|} \rightharpoonup H$ as measures.
- $\bullet \ \lim_{\varepsilon \to 0} \tfrac{\textit{G}_{\varepsilon}(\textit{u}_{\varepsilon},\textit{A}_{\varepsilon})}{|\ln \varepsilon|^2} = \tfrac{1}{2} \left\{ \int_{\textit{Q}} |\textit{H} \textit{H}_{\text{ex}}|^2 + |\textit{H}|_{\textit{g}} \right\}.$

$$G_{arepsilon}(u,A) = \int_Q \left\{ rac{1}{2} |du - iAu|_g^2 + rac{1}{4arepsilon^2} (|u|^2 - 1)^2 + |h - h_{ ext{ex}}|^2
ight\}$$

Let $h_{\varepsilon}=
abla imes A_{\varepsilon}$, current $j_{\varepsilon}=ig(u_{\varepsilon},d_{A_{\varepsilon}}u_{\varepsilon}ig)$, Jacobian $J_{\varepsilon}=rac{1}{2}[dj_{\varepsilon}+h_{\varepsilon}]$

Theorem (A-B-S '07)

- $\frac{h_{\varepsilon}}{|\ln \varepsilon|} \rightharpoonup H$, $\frac{j_{\varepsilon}}{|\ln \varepsilon|} \rightharpoonup 0$ in $L^2(Q)$; $\frac{2J_{\varepsilon}}{|\ln \varepsilon|} \rightharpoonup H$ as measures.
- $\bullet \ \lim_{\varepsilon \to 0} \tfrac{G_\varepsilon(u_\varepsilon,A_\varepsilon)}{|\ln \varepsilon|^2} = \tfrac{1}{2} \left\{ \int_Q |H H_{\rm ex}|^2 + |H|_g \right\}.$
- H is constant in \mathbb{R}^3 and minimizes

$$\min\{|H - H_{ex}|^2 + |H|_g\}$$

$$G_{arepsilon}(u,A) = \int_{Q} \left\{ rac{1}{2} |du - iAu|_{g}^{2} + rac{1}{4arepsilon^{2}} (|u|^{2} - 1)^{2} + |h - h_{\mathrm{ex}}|^{2}
ight\}$$

Let $h_{\varepsilon}=
abla imes A_{\varepsilon}$, current $j_{\varepsilon}=\left(u_{\varepsilon},d_{A_{\varepsilon}}u_{\varepsilon}
ight)$, Jacobian $J_{\varepsilon}=rac{1}{2}[dj_{\varepsilon}+h_{\varepsilon}]$

Theorem (A-B-S '07)

- $\frac{h_{\varepsilon}}{|\ln \varepsilon|} \rightharpoonup H$, $\frac{j_{\varepsilon}}{|\ln \varepsilon|} \rightharpoonup 0$ in $L^2(Q)$; $\frac{2J_{\varepsilon}}{|\ln \varepsilon|} \rightharpoonup H$ as measures.
- $\bullet \ \lim_{\varepsilon \to 0} \tfrac{G_\varepsilon(u_\varepsilon,A_\varepsilon)}{|\ln \varepsilon|^2} = \tfrac{1}{2} \left\{ \int_Q |H H_{\rm ex}|^2 + |H|_g \right\}.$
- H is constant in \mathbb{R}^3 and minimizes

$$\min \left\{ |H - H_{\text{ex}}|^2 + |H|_g \right\} = \underbrace{\min \left\{ |H|^2 + |H_{\text{ex}}|^2 : |H - H_{\text{ex}}|_{g^{-1}} \le \frac{1}{2} \right\}}_{\text{by duality}}$$

 $\min\left\{|H - H_{\text{ex}}|^2 + |H|_g\right\} = \min\left\{|H|^2 + |H_{\text{ex}}|^2 : |H - H_{\text{ex}}|_{g^{-1}} \le \frac{1}{2}\right\}$

$$\min \left\{ |H - H_{\rm ex}|^2 + |H|_g \right\} = \min \left\{ |H|^2 + |H_{\rm ex}|^2 : |H - H_{\rm ex}|_{g^{-1}} \le \frac{1}{2} \right\}$$
 Typical anisotropy: $g = \operatorname{diag} \left(m_{ab}, m_{ab}, m_c \right), \ m_c = \frac{1}{m_{ab}^2} > 1,$ so
$$|du - iAu|_g^2 = m_{ab}^{-1} |\nabla' u - iA'u|^2 + m_c^{-1} |\partial_z u - iA_z u|^2.$$

SO

$$\min \left\{ |H - H_{\rm ex}|^2 + |H|_g \right\} = \min \left\{ |H|^2 + |H_{\rm ex}|^2 : |H - H_{\rm ex}|_{g^{-1}} \le \frac{1}{2} \right\}$$
 Typical anisotropy: $g = \operatorname{diag} \left(m_{ab}, m_{ab}, m_c \right), \ m_c = \frac{1}{m_{ab}^2} > 1,$ so
$$|du - iAu|_g^2 = m_{ab}^{-1} |\nabla' u - iA'u|^2 + m_c^{-1} |\partial_z u - iA_z u|^2.$$

• The constraint set is a solid ellipsoid determined by *g*

$$\begin{split} \min \left\{ |H - H_{\text{ex}}|^2 + |H|_g \right\} &= \min \left\{ |H|^2 + |H_{\text{ex}}|^2 \ : \ |H - H_{\text{ex}}|_{g^{-1}} \leq \frac{1}{2} \right\} \\ \text{Typical anisotropy: } g &= \operatorname{diag} \left(m_{ab}, m_{ab}, m_c \right), \ m_c = \frac{1}{m_{ab}^2} > 1, \end{split}$$

$$|du - iAu|_g^2 = m_{ab}^{-1} |\nabla' u - iA'u|^2 + m_c^{-1} |\partial_z u - iA_z u|^2.$$

- The constraint set is a solid ellipsoid determined by *g*
- The limiting internal field H will not lie in the same direction as H_{ex} !!

SO

$$\min \left\{ |H - H_{\text{ex}}|^2 + |H|_g \right\} = \min \left\{ |H|^2 + |H_{\text{ex}}|^2 : |H - H_{\text{ex}}|_{g^{-1}} \le \frac{1}{2} \right\}$$

Typical anisotropy: $g = \text{diag}(m_{ab}, m_{ab}, m_c)$, $m_c = \frac{1}{m_{ab}^2} > 1$,

so $|du - iAu|_{\sigma}^{2} = m_{ab}^{-1} |\nabla' u - iA'u|^{2} + m_{c}^{-1} |\partial_{z}u - iA_{z}u|^{2}.$

- The constraint set is a solid ellipsoid determined by *g*
- The limiting internal field H will not lie in the same direction as H_{ex} !!
- The lower critical field as a function of the angle of H_{ex} to the "easy" plane is

$$H_{c1}(\theta) = \frac{|\ln \varepsilon|}{2\sqrt{\frac{\cos^2 \theta}{m_{ab}} + \frac{\sin^2 \theta}{m_c}}}$$

Let
$$Q = [0,1]^3 \subset \mathbb{R}^3$$
, and P_n an array of N horizontal planes with spacing $s = 1/N$, $P_n = [0,1]^2 \times \{z = z_n\}$, $z_n = ns$.

• Planes P_n are superconducting: $u_n: P_n \to \mathbb{C}$ order parameter

- Planes P_n are superconducting: $u_n: P_n \to \mathbb{C}$ order parameter
- Magnetic field $h = \nabla \times A$, with $A, h : Q \to \mathbb{R}^3$ in the entire cube Q

- Planes P_n are superconducting: $u_n: P_n \to \mathbb{C}$ order parameter
- Magnetic field $h = \nabla \times A$, with $A, h : Q \to \mathbb{R}^3$ in the entire cube Q
- External applied field (given constant), $h_{ex} \in \mathbb{R}^3$

- Planes P_n are superconducting: $u_n: P_n \to \mathbb{C}$ order parameter
- Magnetic field $h = \nabla \times A$, with $A, h : Q \to \mathbb{R}^3$ in the entire cube Q
- External applied field (given constant), $h_{ex} \in \mathbb{R}^3$
- We will be interested in how energy-minimizing Q-periodic configurations depend on the angle between h_{ex} and the planes.

$$LD(u_{n}, A) = s \sum_{n=1}^{N} \int_{P_{n}} \left\{ \frac{1}{2} |\nabla' u_{n} - iA' u_{n}|^{2} + \frac{1}{4\varepsilon^{2}} \left(1 - |u_{n}|^{2} \right)^{2} \right\} dx dy$$

$$+ s \sum_{n=1}^{N} \frac{1}{\lambda_{J}^{2} s^{2}} \int_{P_{n}} \left| u_{n} - u_{n-1} e^{i \int_{z_{n-1}}^{z_{n}} A_{z}(x, y, z) dz} \right|^{2} dx dy$$

$$+ \int_{Q} |\nabla \times A - h_{ex}|^{2} dx dy dz$$

$$\begin{split} LD(u_n,A) &= s \sum_{n=1}^{N} \int_{P_n} \left\{ \frac{1}{2} |\nabla' u_n - iA' u_n|^2 + \frac{1}{4\varepsilon^2} \left(1 - |u_n|^2 \right)^2 \right\} dx \, dy \\ &+ s \sum_{n=1}^{N} \frac{1}{\lambda_J^2 s^2} \int_{P_n} \left| u_n - u_{n-1} e^{i \int_{z_{n-1}}^{z_n} A_z(x,y,z) \, dz} \right|^2 \, dx \, dy \\ &+ \int_{Q} |\nabla \times A - h_{ex}|^2 \, dx \, dy \, dz \end{split}$$

- $u_n: P_n \to \mathbb{C}$ complex order parameters on planes
- $A: Q \to \mathbb{R}^3$ magnetic vector potential,

$$\begin{split} LD(u_n,A) &= s \sum_{n=1}^N \int_{P_n} \left\{ \frac{1}{2} |\nabla' u_n - i A' u_n|^2 + \frac{1}{4\varepsilon^2} \left(1 - |u_n|^2\right)^2 \right\} dx \, dy \\ &+ s \sum_{n=1}^N \frac{1}{\lambda_J^2 s^2} \int_{P_n} \left| u_n - u_{n-1} e^{i \int_{z_{n-1}}^{z_n} A_z(x,y,z) \, dz} \right|^2 \, dx \, dy \\ &+ \int_{Q} |\nabla \times A - h_{ex}|^2 \, dx \, dy \, dz \end{split}$$

- $u_n: P_n \to \mathbb{C}$ complex order parameters on planes
- $A: Q \to \mathbb{R}^3$ magnetic vector potential,
- $\bullet \ \nabla' = (\partial_x, \partial_y), \ A' = (A_x(x, y, \mathbf{z_n}), A_y(x, y, \mathbf{z_n})).$

$$\begin{split} LD(u_n,A) &= s \sum_{n=1}^N \int_{P_n} \left\{ \frac{1}{2} |\nabla' u_n - i A' u_n|^2 + \frac{1}{4\varepsilon^2} \left(1 - |u_n|^2\right)^2 \right\} dx \, dy \\ &+ s \sum_{n=1}^N \frac{1}{\lambda_J^2 s^2} \int_{P_n} \left| u_n - u_{n-1} e^{i \int_{z_{n-1}}^{z_n} A_z(x,y,z) \, dz} \right|^2 \, dx \, dy \\ &+ \int_{Q} |\nabla \times A - h_{ex}|^2 \, dx \, dy \, dz \end{split}$$

- $u_n: P_n \to \mathbb{C}$ complex order parameters on planes
- $A: Q \to \mathbb{R}^3$ magnetic vector potential,
- $\bullet \ \nabla' = (\partial_x, \partial_y), \ A' = (A_x(x, y, \mathbf{z_n}), A_y(x, y, \mathbf{z_n})).$
- External field has components h_{ex}^{\parallel} , h_{ex}^{\perp} parallel and perp to the SC planes P_n :

$$h_{\rm ex} = h_{\rm ex}^{||} \, \vec{e}_1 + h_{\rm ex}^{\perp} \, \vec{e}_3$$

$$\begin{split} LD(u_n,A) &= s \sum_{n=1}^N \int_{P_n} \left\{ \frac{1}{2} |\nabla' u_n - i A' u_n|^2 + \frac{1}{4\varepsilon^2} \left(1 - |u_n|^2\right)^2 \right\} dx \, dy \\ &+ s \sum_{n=1}^N \frac{1}{\lambda_J^2 s^2} \int_{P_n} \left| u_n - u_{n-1} e^{i \int_{z_{n-1}}^{z_n} A_z(x,y,z) \, dz} \right|^2 \, dx \, dy \\ &+ \int_{Q} |\nabla \times A - h_{ex}|^2 \, dx \, dy \, dz \end{split}$$

- $u_n: P_n \to \mathbb{C}$ complex order parameters on planes
- $A: Q \to \mathbb{R}^3$ magnetic vector potential,
- $\nabla' = (\partial_x, \partial_y)$, $A' = (A_x(x, y, \mathbf{z_n}), A_y(x, y, \mathbf{z_n}))$.
- External field has components $h_{ex}^{||}$, h_{ex}^{\perp} parallel and perp to the SC planes P_n :

$$h_{\rm ex} = h_{\rm ex}^{||} \, \vec{e}_1 + h_{\rm ex}^{\perp} \, \vec{e}_3$$

• Assume $h_{\rm ex}=H_{\rm ex}|\ln \varepsilon|$ for constant $H_{\rm ex}$ independent of ε

• Chapman, Du, & Gunzburger (1995). Formulation of the model and convergence $s \to 0$ of LD (other parameters fixed.)

- Chapman, Du, & Gunzburger (1995). Formulation of the model and convergence $s \to 0$ of LD (other parameters fixed.)
- Bauman & Ko (2005). Regularity of solutions, rigorous variational formulation for bounded domains in \mathbb{R}^3 .

- Chapman, Du, & Gunzburger (1995). Formulation of the model and convergence $s \to 0$ of LD (other parameters fixed.)
- Bauman & Ko (2005). Regularity of solutions, rigorous variational formulation for bounded domains in \mathbb{R}^3 .
- Alama, Berlinsky, & L.B. (2001) Treatment of interlayer vortices in a parallel applied field, in limit as $\lambda_J \to \infty$. Find optimum lattice geometry in periodic setting.

- Chapman, Du, & Gunzburger (1995). Formulation of the model and convergence $s \to 0$ of LD (other parameters fixed.)
- Bauman & Ko (2005). Regularity of solutions, rigorous variational formulation for bounded domains in \mathbb{R}^3 .
- Alama, Berlinsky, & L.B. (2001) Treatment of interlayer vortices in a parallel applied field, in limit as $\lambda_J \to \infty$. Find optimum lattice geometry in periodic setting.
- Alama, L.B., & Sandier. (2004) Profile of isolated interlayer vortices (parallel to planes) in limit $\varepsilon \leq O(s) \to 0$

- Chapman, Du, & Gunzburger (1995). Formulation of the model and convergence $s \to 0$ of LD (other parameters fixed.)
- Bauman & Ko (2005). Regularity of solutions, rigorous variational formulation for bounded domains in \mathbb{R}^3 .
- Alama, Berlinsky, & L.B. (2001) Treatment of interlayer vortices in a parallel applied field, in limit as $\lambda_J \to \infty$. Find optimum lattice geometry in periodic setting.
- Alama, L.B., & Sandier. (2004) Profile of isolated interlayer vortices (parallel to planes) in limit $\varepsilon \leq O(s) \to 0$
- With Alama, Sandier we study many regimes, depending on the direction of $h_{\rm ex}$ and the quantity $h_{\rm ex}s^2$.

Oblique applied field, $\vec{h}_{\text{ex}} = h_{\text{ex}}^{\parallel} \vec{e}_1 + h_{\text{ex}}^{\perp} \vec{e}_3$

How do vortices penetrate a layered superconductor in an oblique field? *Two possibilities suggested by physicists:*

Oblique applied field, $\vec{h}_{ex} = h_{ex}^{\parallel} \vec{e}_1 + h_{ex}^{\perp} \vec{e}_3$

How do vortices penetrate a layered superconductor in an oblique field? Two possibilities suggested by physicists:

1. Decoupled lattices. Vertical array of pancake vortices overlaps horizontal array of interlayer vortices

Oblique applied field, $\vec{h}_{ex} = h_{ex}^{||} \vec{e}_1 + h_{ex}^{\perp} \vec{e}_3$

How do vortices penetrate a layered superconductor in an oblique field? Two possibilities suggested by physicists:

1. Decoupled lattices.

Vertical array of pancake vortices overlaps horizontal array of interlayer vortices

Work in progress: this happens when $\frac{1}{s^2} \ll |h_{\rm ex}| \ll \frac{1}{\varepsilon^2}$

Oblique applied field, $\vec{h}_{ex} = h_{ex}^{||} \vec{e}_1 + h_{ex}^{\perp} \vec{e}_3$

The second possibility suggested by physicists:

2. Staircase vortices.

Vortices are inclined, but flux lines prefer to pass \bot through planes, and lie (nearly) horizontal in gaps.

Oblique applied field, $\vec{h}_{\rm ex} = h_{\rm ex}^{||} \vec{e}_1 + h_{\rm ex}^{\perp} \vec{e}_3$

The second possibility suggested by physicists:

2. Staircase vortices.

Vortices are inclined, but flux lines prefer to pass \bot through planes, and lie (nearly) horizontal in gaps.

Consider the asymptotic regime:

$$s = \varepsilon^{\alpha}$$
, $0 < \alpha < 1$, $h_{\text{ex}} = O(|\ln \varepsilon|)$.

Oblique applied field, $\vec{h}_{ex} = h_{ex}^{||} \vec{e}_1 + h_{ex}^{\perp} \vec{e}_3$

The second possibility suggested by physicists:

2. Staircase vortices.

Vortices are inclined, but flux lines prefer to pass \bot through planes, and lie (nearly) horizontal in gaps.

- Consider the asymptotic regime: $s = \varepsilon^{\alpha}$, $0 < \alpha < 1$, $h_{\text{ex}} = O(|\ln \varepsilon|)$.
- We derive matching upper and lower bounds on minimizers consistent with a staircase lattice.

Oblique applied field, $\vec{h}_{ex} = h_{ex}^{\parallel} \vec{e}_1 + h_{ex}^{\perp} \vec{e}_3$

The second possibility suggested by physicists:

2. Staircase vortices.

Vortices are inclined, but flux lines prefer to pass \bot through planes, and lie (nearly) horizontal in gaps.

- Consider the asymptotic regime: $s = \varepsilon^{\alpha}$, $0 < \alpha < 1$, $h_{\text{ex}} = O(|\ln \varepsilon|)$.
- We derive matching upper and lower bounds on minimizers consistent with a staircase lattice.
- Note in this regime, $|h_{ex}| << 1/s^2$

Inside the tube, radius s:

Vortex energy from D "pancake vortices" (core radius ε) in each plane P_n :

$$\pi D \ln(s/\varepsilon) \sim \frac{1}{2} \ln(s/\varepsilon) \left| \int_{P_n} h^{\perp} \right|$$

Inside the tube, radius s:

Vortex energy from D "pancake vortices" (core radius ε) in each plane P_n :

$$\pi D \ln(s/\varepsilon) \sim \frac{1}{2} \ln(s/\varepsilon) \left| \int_{P_n} h^{\perp} \right|$$

Outside tube, radius s:

 $LD \simeq GL_s$ with GL-parameter $s \Longrightarrow$ as before, vortex energy outside tube $\sim \pi \, D \, \ln(1/s) \sim \frac{1}{2} \ln(1/s) \left| \int_Q h \right|$

(slicing by oblique planes as we did for Aniso GL!)

Inside the tube, radius s:

Vortex energy from D "pancake vortices" (core radius ε) in each plane P_n :

$$\pi D \ln(s/\varepsilon) \sim \frac{1}{2} \ln(s/\varepsilon) \left| \int_{P_n} h^{\perp} \right|$$

Outside tube, radius 5:

 $LD \simeq GL_s$ with GL-parameter $s \Longrightarrow$ as before, vortex energy outside tube $\sim \pi \, D \, \ln(1/s) \sim \frac{1}{2} \ln(1/s) \left| \int_Q h \right|$

(slicing by oblique planes as we did for Aniso GL!)

$$\implies LD \sim rac{1}{2} \ln(s/arepsilon) \left| \int_Q h^\perp \right| + rac{1}{2} \ln(1/s) \left| \int_Q h \right| + rac{1}{2} \int_Q |h - h_{
m ex}|^2.$$

Assume $\vec{h}_{\rm ex}=(H^{||}\vec{e}_1+H^{\perp}\vec{e}_3)|\ln\varepsilon|$, $s=\varepsilon^{\alpha}$, (u_n,A) minimizes LD, $h=\nabla\times A$. Then,

• $\frac{h}{|\ln \varepsilon|} \rightharpoonup H$ in L^2 (as $\varepsilon \to 0$.)

Assume $\vec{h}_{\rm ex}=(H^{||}\vec{e}_1+H^{\perp}\vec{e}_3)|\ln\varepsilon|$, $s=\varepsilon^{\alpha}$, (u_n,A) minimizes LD, $h=\nabla\times A$. Then,

- $\frac{h}{|\ln \varepsilon|} \to H$ in L^2 (as $\varepsilon \to 0$.)
- $\lim_{\varepsilon \to 0} \frac{LD(u_n, A)}{|\ln \varepsilon|^2} = \frac{1}{2} (1 \alpha) \left| \int_Q H^{\perp} \right| + \frac{1}{2} \alpha \left| \int_Q H \right| + \frac{1}{2} \int_Q |H H|^2$.

Assume $\vec{h}_{ex} = (H^{||}\vec{e}_1 + H^{\perp}\vec{e}_3)|\ln \varepsilon|$, $s = \varepsilon^{\alpha}$, (u_n, A) minimizes LD, $h = \nabla \times A$. Then,

- $\frac{h}{|\ln \varepsilon|} \rightharpoonup H$ in L^2 (as $\varepsilon \to 0$.)
- $\lim_{\varepsilon \to 0} \frac{LD(u_n, A)}{|\ln \varepsilon|^2} = \frac{1}{2} (1 \alpha) \left| \int_Q H^{\perp} \right| + \frac{1}{2} \alpha \left| \int_Q H \right| + \frac{1}{2} \int_Q |H H|^2.$
- H is a constant vector, which minimizes

$$|H - H_{\text{ex}}|^2 + (1 - \alpha)|H^{\perp}| + \alpha |H|$$

Assume $\vec{h}_{\rm ex}=(H^{||}\vec{e}_1+H^{\perp}\vec{e}_3)|\ln\varepsilon|$, $s=\varepsilon^{\alpha}$, (u_n,A) minimizes LD, $h=\nabla\times A$. Then,

- $\frac{h}{|\ln \varepsilon|} \rightharpoonup H$ in L^2 (as $\varepsilon \to 0$.)
- $\lim_{\varepsilon \to 0} \frac{LD(u_n, A)}{|\ln \varepsilon|^2} = \frac{1}{2} (1 \alpha) \left| \int_Q H^{\perp} \right| + \frac{1}{2} \alpha \left| \int_Q H \right| + \frac{1}{2} \int_Q |H H|^2$.
- H is a constant vector, which minimizes $|H H_{\rm ex}|^2 + (1 \alpha)|H^{\perp}| + \alpha|H|$
- Equivalently, $H \in K_{\alpha}$ is the point of the convex set K_{α} (below) which is closest to the origin.

When \vec{H}_{ex} is close enough to zero, then $0 \in K_{\alpha}$, so $\vec{H} = 0 \implies$ we are below the critical field $H_{C1}(\theta)$.

Fix an angle θ , consider $\vec{H}_{ex} = |H_{ex}|(\cos \theta, 0, \sin \theta)$

When 0 lies outside K_{α} , $\vec{H} \in K_{\alpha}$ chooses the closest point. The angle is small enough so \vec{H} is chosen along the $h^{||}$ -axis

Fix an angle θ , consider $\vec{H}_{ex} = |H_{ex}|(\cos \theta, 0, \sin \theta)$

When 0 lies outside K_{α} , $\vec{H} \in K_{\alpha}$ chooses the closest point. The angle is small enough so \vec{H} is chosen along the $h^{||}$ -axis

This will never happen for Aniso GL!

Even for a small angle, eventually the closest point \vec{H} has an h^{\perp} component.

The angle of the induced field H is generally not the same as the applied field $\vec{H}_{\rm ex}$.