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Purpose of talk

The purpose of this talk is to give a

Large deviations principle

for probabilities of

configurations of zeros

of random holomorphic sections of line bundles
over Riemann surfaces.

Result: Zero configurations concentrate
exponentially fast around the equilibrium
measure



Empirical measure of zeros of a sec-
tion

Let LY — C be an ample line bundle of degree
N over a compact Riemann surface C of any
genus. Let HO(C,L) denote its holomorphic
sections.

The empirical measure of zeros of s € HO(C, L)
IS the probability measure on C defined by

Zs = dp; = % > d¢
{¢:s(¢)=0}

Here, 5@' is the Dirac point measure at ¢ € C.



Configuration spaces

Configurations of N points on C are points of
the Nth configuration space

CWN) = symNC :=C x---x C/Sy.
N
Here, Sy is the symmetric group on N letters.

The zero set of a section s is equally specified
by its empirical measure Zs and by its divisor

D(s) =¢1+ -+,
where D defines a map

D HO(M, LYY - W),



Configuration space versus the space
of measures

There is a natural embedding of any configu-
ration space Cc(N) to the space M(C) of prob-
ability measures on C-

T cWN) _, M(C),

. .1 N
H(Crtey) “= ¢ =y 2j=10¢;-

We view M(C) as the ‘large N limit' of (&)
and probability measures as generalized con-
figurations.



How probable is a given configura-
tion of zeros?

To make sense of this question, we need to in-
troduce probability measures v, on the spaces
HO(M, LY.

We first discuss genus zero. In this case, the
simplest and most natural v are the Gaussian
measures vy (h, ) which depend on the choice
of two objects:

e A (C°° Hermitian metric h on L;

e A probability measure v on C.



Hermitian inner products Gy (h,v) and
Gaussian measures yy(h, V)

The data (h,v) induce Hermitian inner prod-
ucts Hilby(h,v) on HO(CPL, O(N)),

2 N 2
15112 () = g 15 (2).

T he associated Gaussian measure is the proba-
bility measure on HO(CP!, O(N)) formally given

by

d _ _||S||§; (h,v)
vywv(h,v) =€ NV (s,



The Gaussian measures ~yy(h,v)

More precisely, let {S;} denote a Gyn(h,v) -
ONB (orthonormal basis) of HO(CP!, O(N)).
EXxpress each section as

dn

S — Z Cij, <Sj, Sk>GN(h,V) — 5jk'
j=1

Here, dy = dimHY(C,LN) =N — g+ 1.

In the complex coordinates c¢;,

dyn(h,v) := (277)_dNe_||c||2dc.

Equivalently, the cj are complex normal vari-
ables satisfying E(c;) = 0 = E(c¢jci), E(cjcg) =
5jk.



Why Gaussian measure?

e It is defined in terms of the coefficients of
s (relative to a basis). Studying zeros of
Gaussian random sections is studying the
map from coefficients ¢; to zeros (; of a
section.

e One studies this map probabilistically since
it is very complicated to study for individual
sections.

e Gaussian measure essentially means: pick
a section at random from the unit sphere
in HO(CPY, O(N)) wrt Gy (h,v).

e In higher genus, we use Abel-Jacobi theory
to define probability measures (later).
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Fubini-Study measures dVy(h,v) on
PHO(CPL, O(N))

This is an equivalent but more convenient prob-
ability measure: since zeros of s and cs are the
same, it is natural to work on PHO(CPL, O(N)).
The inner product Gy (h,v) then induces a Fubini-
Study metric and volume form

dV(h,v) on PHO(C,LY).
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PHO(CPL, O(N)) ~ (CPLH)(N),

Write P, = nszl(z — ;).

We define a line bundle Zy — (CPLYV): the
fiber of Zy at (3 4+ --- 4+ (y is the line CF;
of holomorphic sections of O(N) with zeros

(=Gt +CN

The Hermitian inner product Gy (h,r) defines
a Hermitian metric on Zy. dVn(h,v) is its
curvature volume form. It extends to all of
PHO(CPL, O(N)).
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EXxplicit formula

Let V denote a vector space of of dimension
d—+ 1. A Fubini-Study metric on PV corre-
sponds to an inner product ||f||4 L2. The as-
sociated Fubini-Study (1,1) form is

—1 _
wrs,q =~ 001og || fI[Z

The normalized volume form (of mass one) is
given by

A (09| £112)
WESG = (| fl12)1
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Joint probability current of zeros

The identification map D : PHO(CPL1, O(N)) ~
(CPHY(N) can be used to push forward the Fubini-
Study measure dVy(h,v) to (CPLHYV) The

image measure D«dVy(h,v) is called the JPC:
joint probability current.

It is Fubini-Study measure on coefficients ex-
pressed in terms of zeros. I.e. we rewrite the

probability measure on sections by changing
coordinates

coefficients — zeros.

It gives the probability density of zeros occur-

ring at ¢1 +---+ (N
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Joint probability current of zeros (2)

More precisely, the JPC is the (N, N) current
on (CPHYY defined by

KN, .., ¢N) =E(Zs(¢1) @ Zs(G) @ - -+ ® Zs(Cw))-

A calculation which is easy in genus zero but

hard in higher genera is that the JPC
=1 [A(CCn)[2d2¢ -2y
VO (a1 T 1G—¢ReNe@dn(2) )

where Zx(h) is the normalizing constant; in
the affine chart h = e~ %.

N+1

The Vandermonde in the numerator damps out
probability of multiple or near multiple zeros.
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Large N limit

We can now begin to state our problem more
rigorously: find the large N asymptotics of

KN(¢L,...,¢N). Le. the probability that ¢; +
-+ 4 (v is the zero set of a polynomial.

But: how can we take the large N limit when
the domain (CPH)Y) is changing with N7
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Large N limit and large deviations

This problem is solved by the map u : (CP1)(N) —
M(CP1) taking a configuration to its empirical
measure,

1 N
= L%

We will push forward dVy(h,v) again under
p to obtain a sequence of — probability mea-
sures Proby on the space M(CP!) of probabil-
ity measures. This is standard in large devia-
tions and explains why we are using this theory.

Proby = psDxdVy(h,v) = pKN.
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Main result

Our main results show that this sequence of
measures Probj; satisfies a large deviations prin-
ciple with speed N2 and with a rate func-
tional I reflecting the choice of (h,v). Roughly
speaking, an LDP means that for any Borel
subset E ¢ M(CP!), as N — oo,

1
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Main result

Theorem 1 Under a technical assumption on
v, the sequence of probability measures { Proby}
on M(CP1) satisfies a large deviations principle
with speed N2 and rate functional

(1)
1

"B (u) = —2&,(u) +supUF + E(h) — /sodd%-
2 K

Here,

() = [ 1 oo Cnzw)dp(2)du(w),

and Ul'(z) = Jep1 Gp(z, w)dp(w) is the Greens'’s
potential. This rate functional is LSC, proper
and convex, and there exists a unique measure
v € M(CPY) minimizing 1™, namely the
Green’s equilibrium measure of K with respect

to h
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Informally...

The empirical measures d#g of zeros of random

sections are highly concentrated in a shrink-
ing small ball around the equilibrium measure
th,K- The probability of the empirical mea-
sure being outside the ball decays exponentially
fast. The rate is given by the speed and rate
functional.

The Green’s function is defined by

dd°Gp(z,w) + 0 = wy,

Jopt Gr(z, w)wp(w) = 0.
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More precisely

Let B(o,8) denote the ball of radius § around
o € M(CP1) in the Wasserstein metric. Then

—inf e po(o.5) I (1)
< liminfy_ o ~2 109 Proby(B(0,6))
< limsupn_ o NQ log Proby (B(0,6))I(w)

< —inf 5.

neB(o0,9)
Here,

dw (u,v) = sup I/fdu—/deI-

Fllflip<1

20



Prior results

The model for results of this kind are results of
Ben-Arous-Guionnet and Ben-Arous-Zeitouni
on LDP for empirical empirical measures of
eigenvalues of random matrices.

This is the first LDP result on zeros of random
functions. There are overlaps in the methods
but several new features.

Afortiori, the expected value Edug — Vp K- This
was proved by: Shiffman-Zelditch '99 in the
case where the curvature (1,1) form of h is
positive; Shiffman-Z in dimension one where
h = 0O and dv was an analytic measure on
a domain 2 ¢ C or on its boundary; Bloom
in all dimensions for domains in C™ and v is
a Bernstein-Markov measure; R. Berman for
smooth A~ and BM dr on general Kahler mani-
folds.
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Heuristic proof

Write h = e~ % locally. Take % log of the JPC:

|Og |A(C197CN)|2

2
N (f@ Hé'\[:1 [(z—=¢j)|2e=Nedy

h,v i
)N—I—l — IN (H() -

h
= X n(pe) + TN (ue),
where (modulo less important terms)
> =/ 109 |7 — w|du(z)dp(w),
N = | 109z —wldp(z)dp(w)

and

A

IV (o) = Mliog (o1, (2 — ¢)Pe NP du(2)

N]\—le log feNth(z,w)d,uC(w)dV(z)

2

,UJ
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Heuristic proof

For any wu,
My ~ ~ 109 [eNU” (2)dv(2) = log eV ||LN(V)

T log ||6UM||Loo(V) = supy UH

monotonically as N — oo.

Thus, N2 log Kﬁ as a functional on measures

tends to ——£h(u) + supg Uh
It is not quite obvious that the only minimum

of this functional is the equilibrium measure,
which minimizes —&,(u) on M(K).
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Higher genus compared to genus zero

The main problem is to calculate the JPC in
higher genus. It involves the prime form and
Abel-Jacobi theory.

On a Riemann surface C' of genus g > 1, line
bundles of degree N are parametrized by the
Picard Variety Pz'cN(C), a complex torus of
dimension g. For ¢ € PicN(C), s € HO(C,¢)
has N zeros but the dimension of the space
is N —g—+ 1 is smaller than its number of ze-
ros, and the JPC of zeros of sections of £ is
a very singular on CV), 1Indeed, the config-
uration of zeros of sections of & lies on the
codimension g fiber over ¢ of the Abel-Jacobi
map AJ : c(N) _, picN.
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Higher genus

The solution is not to single out one line bun-
dle ¢ from each Pic, but rather to define the
ensemble of random sections to be the collec-
tion

(2) eN:= |J PHOC, &) ~ W)
E€PicN

of all HO(C,¢) as ¢ varies over Picy. The fiber
of

(3) an : EN — PicN

over ¢ is PHO(C, €).

25



Higher genus JPC

We define the probability measure, roughly,
by choosing a line bundle & at random from
PicN with respect to a probability measure on
this torus, and then choose a line of sections
[s] € PHO(C,¢) at random using Fubini-Study
measure. The JPC is

2

r 9 : JT. : :
L | T PG00 Tty PG|,y on

Zn(R) det(Bn(GiCk)) T e

(f(} ‘ngl ECE Z)‘izzg ' ‘Hé\;l E(¢, z)‘iN dz/(z))_N_l

Here, E is the prime form, and P; are the image

of {¢,} under the AJ map. By is a Bergman
kernel.
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Final comments

e [ he first key step was to find a formula
for the JPC in coordinates on configuration
space.

e Any higher dimensional generalization?

e The JPC is rewritten in terms of the em-
pirical measure and one takes the limit of
+ log of the JPC to get the rate functional.
The rate functional itself makes sense in all
dimensions.

e Many of the basic results of potential the-
ory are needed to analyze the rate func-
tional, in particular the term Ag(p) = supg U}
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