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Purpose of talk

The purpose of this talk is to give a

Large deviations principle

for probabilities of

configurations of zeros

of random holomorphic sections of line bundles

over Riemann surfaces.

Result: Zero configurations concentrate

exponentially fast around the equilibrium

measure
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Empirical measure of zeros of a sec-
tion

Let LN → C be an ample line bundle of degree

N over a compact Riemann surface C of any

genus. Let H0(C, L) denote its holomorphic

sections.

The empirical measure of zeros of s ∈ H0(C, L)

is the probability measure on C defined by

Zs := dµζ :=
1

N

∑
{ζ:s(ζ)=0}

δζ

Here, δζ is the Dirac point measure at ζ ∈ C.
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Configuration spaces

Configurations of N points on C are points of

the Nth configuration space

C(N) = SymNC := C × · · · × C︸ ︷︷ ︸
N

/SN .

Here, SN is the symmetric group on N letters.

The zero set of a section s is equally specified

by its empirical measure Zs and by its divisor

D(s) = ζ1 + · · ·+ ζN ,

where D defines a map

D : H0(M, LN) → C(N).
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Configuration space versus the space
of measures

There is a natural embedding of any configu-

ration space C(N) to the space M(C) of prob-

ability measures on C:

µ : C(N) →M(C),

µ(ζ1+···+ζN) := µζ := 1
N

∑N
j=1 δζj

.

We view M(C) as the ‘large N limit’ of C(N)

and probability measures as generalized con-

figurations.
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How probable is a given configura-
tion of zeros?

To make sense of this question, we need to in-

troduce probability measures γN on the spaces

H0(M, LN).

We first discuss genus zero. In this case, the

simplest and most natural γN are the Gaussian

measures γN(h, ν) which depend on the choice

of two objects:

• A C∞ Hermitian metric h on L;

• A probability measure ν on C.
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Hermitian inner products GN(h, ν) and
Gaussian measures γN(h, ν)

The data (h, ν) induce Hermitian inner prod-

ucts HilbN(h, ν) on H0(CP1,O(N)),

||s||2GN(h,ν) :=
∫
CP1

|s(z)|2
hNdν(z).

The associated Gaussian measure is the proba-

bility measure on H0(CP1,O(N)) formally given

by

dγN(h, ν) = e
−||s||2

GN(h,ν)ds.
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The Gaussian measures γN(h, ν)

More precisely, let {Sj} denote a GN(h, ν) -

ONB (orthonormal basis) of H0(CP1,O(N)).

Express each section as

s =
dN∑

j=1

cjSj, 〈Sj, Sk〉GN(h,ν) = δjk.

Here, dN = dimH0(C, LN) = N − g + 1.

In the complex coordinates cj,

dγN(h, ν) := (2π)−dNe−||c||
2
dc.

Equivalently, the cj are complex normal vari-

ables satisfying E(cj) = 0 = E(cjck), E(cjck) =

δjk.
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Why Gaussian measure?

• It is defined in terms of the coefficients of
s (relative to a basis). Studying zeros of
Gaussian random sections is studying the
map from coefficients cj to zeros ζk of a
section.

• One studies this map probabilistically since
it is very complicated to study for individual
sections.

• Gaussian measure essentially means: pick
a section at random from the unit sphere
in H0(CP1,O(N)) wrt GN(h, ν).

• In higher genus, we use Abel-Jacobi theory
to define probability measures (later).

9



Fubini-Study measures dVN(h, ν) on
PH0(CP1,O(N))

This is an equivalent but more convenient prob-

ability measure: since zeros of s and cs are the

same, it is natural to work on PH0(CP1,O(N)).

The inner product GN(h, ν) then induces a Fubini-

Study metric and volume form

dVN(h, ν) on PH0(C, LN).
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PH0(CP1,O(N)) ' (CP1)(N).

Write Pζ = ΠN
j=1(z − ζj).

We define a line bundle ZN → (CP1)(N): the

fiber of ZN at ζ1 + · · · + ζN is the line CPζ

of holomorphic sections of O(N) with zeros

ζ = ζ1 + · · ·+ ζN .

The Hermitian inner product GN(h, ν) defines

a Hermitian metric on ZN . dVN(h, ν) is its

curvature volume form. It extends to all of

PH0(CP1,O(N)).
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Explicit formula

Let V denote a vector space of of dimension

d + 1. A Fubini-Study metric on PV corre-

sponds to an inner product ||f ||2G L2. The as-

sociated Fubini-Study (1,1) form is

ωFS,G =

√
−1

π
∂∂̄ log ||f ||2G.

The normalized volume form (of mass one) is

given by

dVFS,G =

∧d
(
∂∂̄||f ||2G

)
(||f ||2G)d+1

.
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Joint probability current of zeros

The identification map D : PH0(CP1,O(N)) '
(CP1)(N) can be used to push forward the Fubini-

Study measure dVN(h, ν) to (CP1)(N). The

image measure D∗dVN(h, ν) is called the JPC:

joint probability current.

It is Fubini-Study measure on coefficients ex-

pressed in terms of zeros. I.e. we rewrite the

probability measure on sections by changing

coordinates

coefficients → zeros.

It gives the probability density of zeros occur-

ring at ζ1 + · · ·+ ζN .
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Joint probability current of zeros (2)

More precisely, the JPC is the (N, N) current

on (CP1)N defined by

~KN
N (ζ1, . . . , ζN) = E (Zs(ζ1)⊗ Zs(ζ2)⊗ · · · ⊗ Zs(ζN)).

A calculation which is easy in genus zero but

hard in higher genera is that the JPC

= 1
ZN(h)

|∆(ζ1,...,ζN)|2d2ζ1···d2ζN(∫
CP1

∏N
j=1 |(z−ζj)|2e−Nϕ(z)dν(z)

)N+1

where ZN(h) is the normalizing constant; in

the affine chart h = e−ϕ.

The Vandermonde in the numerator damps out

probability of multiple or near multiple zeros.

14



Large N limit

We can now begin to state our problem more

rigorously: find the large N asymptotics of
~KN

N (ζ1, . . . , ζN). I.e. the probability that ζ1 +

· · ·+ ζN is the zero set of a polynomial.

But: how can we take the large N limit when

the domain (CP1)(N) is changing with N?
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Large N limit and large deviations

This problem is solved by the map µ : (CP1)(N) →
M(CP1) taking a configuration to its empirical

measure,

dµζ =
1

N

N∑
j=1

δζj
.

We will push forward dVN(h, ν) again under

µ to obtain a sequence of – probability mea-

sures ProbN on the space M(CP1) of probabil-

ity measures. This is standard in large devia-

tions and explains why we are using this theory.

ProbN = µ∗D∗dVN(h, ν) = µ∗ ~KN
N .
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Main result

Our main results show that this sequence of

measures ProbN satisfies a large deviations prin-

ciple with speed N2 and with a rate func-

tional I reflecting the choice of (h, ν). Roughly

speaking, an LDP means that for any Borel

subset E ⊂M(CP1), as N →∞,

1

N2
logProbN{σ ∈M : σ ∈ E} → − inf

σ∈E
I(σ).
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Main result

Theorem 1 Under a technical assumption on

ν, the sequence of probability measures {ProbN}
on M(CP1) satisfies a large deviations principle

with speed N2 and rate functional

(1)

Ih,K(µ) = −
1

2
Eh(µ) + sup

K
U

µ
h + E(h)−

∫
ϕddcϕ.

Here,

Eh(µ) =
∫
CP1×CP1

Gh(z, w)dµ(z)dµ(w),

and U
µ
h (z) =

∫
CP1 Gh(z, w)dµ(w) is the Greens’s

potential. This rate functional is LSC, proper

and convex, and there exists a unique measure

νh,K ∈ M(CP1) minimizing Ih,K, namely the

Green’s equilibrium measure of K with respect

to h
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Informally...

The empirical measures dµζ of zeros of random

sections are highly concentrated in a shrink-

ing small ball around the equilibrium measure

dνh,K. The probability of the empirical mea-

sure being outside the ball decays exponentially

fast. The rate is given by the speed and rate

functional.

The Green’s function is defined by
ddcGh(z, w) + δz = ωh,

∫
CP1 Gh(z, w)ωh(w) = 0.
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More precisely

Let B(σ, δ) denote the ball of radius δ around

σ ∈M(CP1) in the Wasserstein metric. Then

− infµ∈Bo(σ,δ) Ih,K(µ)

≤ lim infN→∞
1

N2 logProbN(B(σ, δ))

≤ lim supN→∞
1

N2 logProbN(B(σ, δ))I(µ)

≤ − inf
µ∈B(σ,δ)

Ih,K(µ).

Here,

dW (µ, ν) = sup
f :||f ||Lip≤1

|
∫

fdµ−
∫

fdν|.
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Prior results

The model for results of this kind are results of
Ben-Arous-Guionnet and Ben-Arous-Zeitouni
on LDP for empirical empirical measures of
eigenvalues of random matrices.

This is the first LDP result on zeros of random
functions. There are overlaps in the methods
but several new features.

Afortiori, the expected value E dµζ → νh,K. This
was proved by: Shiffman-Zelditch ’99 in the
case where the curvature (1,1) form of h is
positive; Shiffman-Z in dimension one where
h = 0 and dν was an analytic measure on
a domain Ω ⊂ C or on its boundary; Bloom
in all dimensions for domains in Cm and ν is
a Bernstein-Markov measure; R. Berman for
smooth h and BM dν on general Kähler mani-
folds.
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Heuristic proof

Write h = e−ϕ locally. Take 1
N2 log of the JPC:

− 1
N2 log |∆(ζ1,...,ζN)|2(∫

C
∏N

j=1 |(z−ζj)|2e−Nϕdν
)N+1 = I

h,ν
N (µζ) :

= −ΣN(µζ) + J
h,ν
N (µζ),

where (modulo less important terms)

ΣN(µ) =
∫
C×C−∆

log |z − w|dµ(z)dµ(w),

and

J
h,ν
N (µζ) = N+1

N2 log
(∫

C
∏N

j=1 |(z − ζj)|2e−Nϕ(z)dν(z)
)

' N+1
N2 log

∫
eN

∫
Gh(z,w)dµζ(w)dν(z)

= N+1
N log ||eU

µζ
h ||LN(ν)
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Heuristic proof

For any µ,

limN→∞
1
N log

∫
eNUµ(z)dν(z) = log ||eUµ||LN(ν)

↑ log ||eUµ||L∞(ν) = supK Uµ

monotonically as N →∞.

Thus, 1
N2 log ~KN

N as a functional on measures

tends to −1
2Eh(µ) + supK U

µ
h .

It is not quite obvious that the only minimum

of this functional is the equilibrium measure,

which minimizes −Eh(µ) on M(K).
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Higher genus compared to genus zero

The main problem is to calculate the JPC in

higher genus. It involves the prime form and

Abel-Jacobi theory.

On a Riemann surface C of genus g ≥ 1, line

bundles of degree N are parametrized by the

Picard Variety PicN(C), a complex torus of

dimension g. For ξ ∈ PicN(C), s ∈ H0(C, ξ)

has N zeros but the dimension of the space

is N − g + 1 is smaller than its number of ze-

ros, and the JPC of zeros of sections of ξ is

a very singular on C(N). Indeed, the config-

uration of zeros of sections of ξ lies on the

codimension g fiber over ξ of the Abel-Jacobi

map AJ : C(N) → PicN .
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Higher genus

The solution is not to single out one line bun-

dle ξ from each PicN , but rather to define the

ensemble of random sections to be the collec-

tion

(2) EN :=
⋃

ξ∈PicN

PH0(C, ξ) ' C(N)

of all H0(C, ξ) as ξ varies over PicN . The fiber

of

(3) πN : EN → PicN

over ξ is PH0(C, ξ).
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Higher genus JPC

We define the probability measure, roughly,

by choosing a line bundle ξ at random from

PicN with respect to a probability measure on

this torus, and then choose a line of sections

[s] ∈ PH0(C, ξ) at random using Fubini-Study

measure. The JPC is

1
ZN(h)

∏r
k=1

∣∣∣ ∏g
j=1 E(Pj,ζk)·

∏
j:k 6=j E(ζj,ζk)

∣∣∣2
hD⊗hN

det(BN(ζj,ζk))
n
j,k=1

dζ ∧ dζ̄

(∫
C

∣∣∣∏g
j=1 E(Pj, z)

∣∣∣2
hg
·
∣∣∣∏N

j=1 E(ζj, z)
∣∣∣2
hN dν(z)

)−N−1

.

Here, E is the prime form, and Pj are the image

of {ζk} under the AJ map. BN is a Bergman

kernel.

26



Final comments

• The first key step was to find a formula
for the JPC in coordinates on configuration
space.

• Any higher dimensional generalization?

• The JPC is rewritten in terms of the em-
pirical measure and one takes the limit of
1
N log of the JPC to get the rate functional.
The rate functional itself makes sense in all
dimensions.

• Many of the basic results of potential the-
ory are needed to analyze the rate func-
tional, in particular the term ΛK(µ) = supK U

µ
h .
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