Global generation of the direct images of relative pluricanonical systems

Hajime TSUJI

November 20, 2008 Workshop on Complex Hyperbolic Geometry and Related Topics Fields Institute

Basic Question.

- Under what condition can one construct global holomorphic sections on semipositive vector bundles ?
- For a projective variety X with nonnegative Kodaira dimension, in general the canonical model (existence has been proven by B-C-H-M)

$$X_{can} := \operatorname{Proj} R(X, K_X)$$

does not encode the canonical ring $R(X, K_X)$ unless X is of general type. Can we encode the information of $R(X, K_X)$ by adding additional structure on X_{can} ? (eg. Orbifold structure (F. Campana))

 $f: X \longrightarrow Y$: algebraic fiber space, i.e.,

- X, Y are smooth projective varieties.
- f is projective surjective morphism with connected fibers.
- $K_{X/Y} := K_X \otimes f^* K_Y^{-1}$: the relative canonical bundle.

Semipositivity of the direct image of pluricanonical systems

The following theorem is fundamental in algebraic geometry.

Theorem 1 (Kawamata, 1982) If dim Y = 1, then for every m > 0, $f_*K_{X/Y}^{\otimes m}$ is semipositive in the sense that every quotient Q of $f_*K_{X/Y}^{\otimes m}$, deg $Q \ge 0$ holds. \Box

The proof depends on the variation of Hodge structure (VHS) due to Griffiths and Schumidt. The reason why we do not have the semipositive curvature property of $f_*K_{X/Y}^{\otimes m}$ is that the proof depends on the Finslar metric :

$$\mid \sigma \parallel := \left(\int_{X/Y} |\sigma|^{\frac{2}{m}} \right)^{\frac{m}{2}}$$

on $f_*K_{X/Y}^{\otimes m}$.

Viehweg's weak semipositivity

Definition 1 Let Y be a quasi-projective reduced scheme, $Y_0 \subseteq Y$ an open dense subscheme and let \mathcal{G} be locally free sheaf on Y, of finite constant rank. Then \mathcal{G} is **weakly positive** over Y_0 , if for an ample invertible sheaf \mathcal{H} on Y and for a given number $\alpha > 0$ there exists some $\beta > 0$ such that $S^{\alpha \cdot \beta}(\mathcal{G}) \otimes \mathcal{H}^{\beta}$ is globally generated over Y_0 . \Box

Definition 2 Let \mathcal{F} be a locally free sheaf and let \mathcal{A} be an invertible sheaf, both on a quasi-projective reduced scheme Y. We denote

$$\mathcal{F} \succeq \frac{b}{a} \cdot \mathcal{A},$$

if $S^a(\mathcal{F}) \otimes \mathcal{A}^{-b}$ is weakly positive over Y, where a, b are positive integers.

Theorem 2 (Viehweg 1995) $f : X \longrightarrow Y$: an algebric fiber space such that $K_{X/Y}$ is <u>f-semiample</u> over the complement of the discriminant locus Y° .

1. (Weak positivity) $f_*K^m_{X/Y}(m > 0)$ is weakly positive over Y° .

2. (Weak semistability) There exists e > 0 such that

$$f_*K_{X/Y}^{\otimes m} \succeq \frac{1}{e \cdot r(m)} \cdot \det(f_*K_{X/Y}^{\otimes m}) \quad on \ Y^{\circ}.$$

AZD (Analytic Zariki Decomposition)

Definition 3 Let X be a compact complex manifold and let L be a holomorphic line bundle on X. A singular hermitian metric h on L is said to be an analytic Zariski decomposition(AZD), if the followings hold.

- 1. Θ_h is a closed positive current,
- 2. for every $m \ge 0$, the natural inclusion $H^0(X, \mathcal{O}_X(mL) \otimes \mathcal{I}(h^m)) \to H^0(X, \mathcal{O}_X(mL))$ is an isomorphim. \square

Theorem 3 (Main Theorem) $f : X \longrightarrow Y$: algebraic fiber space and let Y° be the complement of the discriminant locus.

- 1. (Global generation) There exist positive integers b and m_0 (depending on $f: X \longrightarrow Y$) such that for every $m \ge m_0$, b|m, $f_*K_{X/Y}^{\otimes m}$ is globally generated over Y° .
- 2. (Weak semistability) There exist e > 0 and a singular hermitian metric $H_{m,e}$ on

$$K_{X/Y}^{\otimes m} \otimes (f^* \det f_* K_{X/Y}^{\otimes m})^{-e}$$

with semipositive curvature current such that for every $y \in Y^{\circ}$ $H_{m,e}|X_y$ is an AZD of $K_{X/Y}^{\otimes m} \otimes (f^* \det f_* K_{X/Y}^{\otimes m})^{-e}|X_y|$.

Main issue

Semipositivity of $f_*K_{X/Y}^{\otimes m} \Rightarrow$ Global generation of $f_*K_{X/Y}^{\otimes m}$

Main Idea

- Detect the null direction of the semipositivity in terms of Monge-Ampère foliations.
- Realize $f_*K_{X/Y}^{\otimes m}$ as the pull back of the strictly positive sheaf on some quasiprojective scheme.

The main advantage of Theorem 3 is that we can construct section of $f_*K_{X/Y}^{\otimes m}$ without tensorize ample line bundles. **Kodaira dimension**

$$\operatorname{Kod}(X) := \limsup_{m \to \infty} \frac{\log h^0(X, \mathcal{O}_X(mK_X))}{\log m} (= -\infty, 0, \cdots, \dim X)$$

Conjecture 1 (**Iitaka's conjecture**) Let $f : X \longrightarrow Y$ be an algebraic fiber space. Then

 $\operatorname{Kod}(X) \ge \operatorname{Kod}(Y) + \operatorname{Kod}(X/Y)$

holds, where Kod(X), Kod(Y) denote the Kodaira dimensions of X, Y resepectively and Kod(X/Y) denotes the Kodaira dimension of a general fiber of $f: X \longrightarrow Y$.

Corollary 1 *Iitaka's conjecture holds.*

Also the orbifold version of Iitaka's conjecture holds (see below).

X : smooth projective m >> 1

$$\Phi_{|m!K_X|}: X - \dots \to Y$$

is a fibration such that dim Y = Kod(X) and for a general fiber F, Kod(F) = 0 holds.

This fibration is called the **Iitaka fibration**.

KLT version

Theorem 4 Let $f : X \longrightarrow Y$ be an algebraic fiber space and let D be an effective \mathbb{Q} divisor on X such that (X, D) is KLT. Let Y° denote the complement of the discriminant locus of f. We set

 $Y_0 := \{ y \in Y | y \in Y^\circ, (X_y, D_y) \text{ is a KLT pair} \}$

• Let a be a minimal positive integer such that mD is Cartier. Then there exist a positive integers b and m_0 such that for every $m \ge m_0$, $b|m, m(K_{X/Y} + D)$ is Cartier and $f_*\mathcal{O}_X(m(K_{X/Y} + D))$ is globally generated over Y_0 . • Let r denote $rank f_* \mathcal{O}_X(\lfloor m(K_{X/Y} + D) \rfloor)$ and let $X^r := X \times_Y X \times_Y \dots \times_Y X$ be the r-times fiber product over Y and let $f^r : X^r \longrightarrow Y$ be the natural morphism. And let D^r denote the divior on X^r defined by $D^r = \sum_{i=1}^r \pi_i^* D$, where $\pi_i : X^r \longrightarrow X$ denotes the projection: $X^r \ni (x_1, \dots, x_n) \mapsto x_i \in X$.

There exists a canonically defined effective divisor Γ (depending on m) on X^r which does not conatin any fiber $X_y^r(y \in Y^\circ)$ such that if we we define the number δ_0 by

 $\delta_0 := \sup\{\delta \mid (X_u^r, D_u^r + \delta \Gamma_y) \text{ is KLT for all } y \in Y^\circ\},\$

then for every $\varepsilon < \delta_0$

 $f_*\mathcal{O}_X(\lfloor m(K_{X/Y} + D) \rfloor) \succeq \frac{m\varepsilon}{(1 + m\varepsilon)r} \cdot \det f_*\mathcal{O}_X(\lfloor m(K_{X/Y} + D) \rfloor)$ holds over Y_0 . • There exists a singular hermitian metric $H_{m,\varepsilon}$ on $(1+m\varepsilon)(K_{X^r/Y}+D^r) - \varepsilon \cdot f^* \det f_* \mathcal{O}_X(\lfloor m(K_{X/Y}+D) \rfloor)^{**}$ such that

1. $\sqrt{-1} \Theta_{H_{m,\varepsilon}} \geq 0$ holds on X in the sense of current.

2. For every $y \in Y_0$, $H_{m,\varepsilon}|X_y^r$ is well defined and is an AZD of $(1+m\varepsilon)(K_{X^r/Y}+D^r)-\varepsilon \cdot (f^r)^* \det f_*\mathcal{O}_X(\lfloor m(K_{X/Y}+D) \rfloor)^{**}|X_y$

Canonical measure (Generalized Kähler-Einstein metrics)

Let $f: X \longrightarrow Y$ be an Iitaka fibration such that $(f_*K_{X/Y}^{\otimes m!})^{**}$ is locally free on Y for some m (hence for every sufficiently large m), where ** denotes the double dual. We define the Q-line bundle

$$L := \frac{1}{m!} (f_* K_{X/Y}^{\otimes m!})^{**}$$

on Y. We note that L is independent of a sufficiently large m. L carries the natural singular hermitian metric h_L defined by

$$h_L^{m!}(\sigma,\sigma) = \left(\int_{X/Y} |\sigma|^{\frac{2}{m!}}\right)^{m!}$$

 (L, h_L) : Hodge Q-line bundle

Theorem 5 (Existence of canonical measures (Song-Tian, T-)) In the above notations, there exists a unique singular hermitian metric on h_K on $K_Y + L$ and a nonempty Zariski open subset U in Y such that

- 1. h_K is an AZD of $K_Y + L$.
- 2. h_K is real analytic on U.
- 3. $\omega_Y = \sqrt{-1} \Theta_{h_K}$ is a Kähler form on U.
- 4. $-\operatorname{Ric}_{\omega_Y} + \sqrt{-1} \Theta_{h_L} = \omega_Y$ holds on U.

The above equation:

$$-\operatorname{Ric}_{\omega_Y} + \sqrt{-1}\,\Theta_{h_L} = \omega_Y \tag{1}$$

is similar to the Kähler-Einstein equation :

 $-\operatorname{Ric}_{\omega_Y} = \omega_Y.$

The correction term $\sqrt{-1}\,\Theta_{h_L}$ represents the isomorphism :

$$R(X, K_X)^{(a)} = R(Y, K_Y + L)^{(a)}$$

for some positive integer a, where for a graded ring $R := \bigoplus_{i=0}^{\infty} R_i$, where for a graded ring $R := \bigoplus_{i=0}^{\infty} R_i$ and a positive integer b, we set

$$R^{(b)} := \bigoplus_{i=0}^{\infty} R_{bi}.$$

18

Canonical measure :

$$d\mu_{can} := f^* \left(\frac{\omega_Y^n}{n!} \cdot h_L^{-1} \right)$$

is called the canonical measure on X. $d\mu_{can}$ has the following properties.

- $d\mu_{can}$ is a bounded volume form on X which degenerates along subvarieties on X.
- $d\mu_{can}^{-1}$ is an AZD of K_X .
- $d\mu_{can}$ is unique and birationally invariant.

Relative canonical measure

Theorem 6 Let $f: X \longrightarrow S$ be a projective family such that X, S are smooth and f has connected fibers. And let D be an effective divisor on X such that (X, D) is KLT. Suppose that $f_*\mathcal{O}_S\left(\lfloor m(K_{X/S} + D) \rfloor\right) \neq$ 0 for some m > 0. Then there exists a singular hermitian metric h_K on $K_{X/Y} + D$ such that

- 1. Let us define $\omega_{X/S} := \sqrt{-1} \Theta_{h_K}$. Then $\omega_{X/S} \ge 0$ holds on X.
- 2. For a general smooth fiber $X_s := f^{-1}(s)$ such that (X_s, D_s) is KLT, $h_K|X_s$ is $d\mu_{can,(X_s,D_s)}^{-1}$, where $d\mu_{can,(X_s,D_s)}$ denotes the canonical measure on (X_s, D_s) . In particular $\omega_{X/S}|X_s$ is the canonical semipositive current on (X_s, D_s) constructed as in Theorem 3.

Bergman kernel

- X: a complex manifold,
- (L, h_L) : a singular hermitian line bundle on X.
- Hilbert space:

$$A^{2}(X, K_{X}+L) := \{ \sigma \in \Gamma(X, \mathcal{O}_{X}(K_{X}+L)) | (\sqrt{-1})^{n^{2}} \int_{X} h_{L} \sigma \wedge \overline{\sigma} < +\infty \}$$

• inner product:

$$(\sigma, \sigma') := (\sqrt{-1})^{n^2} \int_X h_L \cdot \sigma \wedge \overline{\sigma'}$$

• $\{\sigma_i\}$: a complete orthonormal basis of $A^2(X, K_X + L)$

• $K(X, K_X + L, h_L) = \sum_i |\sigma_i|^2$: Bergman kernel of $K_X + L$ with respect to h_L .

 $K(X, K_X + L, h_L)(x) = \sup\{|\sigma|^2(x); \sigma \in A^2(X, K_X + L, h_L), \|\sigma\| = 1\}$

Dynamical construction of the canonical measure

- $f: X \longrightarrow Y$: Iitaka fibration
- (L, h_L) : Hodge Q-line bundle
- A: sufficiently ample line bundle on Y
- h_A : C^{∞} hermitian metric on A
- a : least positive integer such that $aL \in Div(Y)$

$$K_{1} := \begin{cases} K(Y, K_{Y} + A, h_{A}), & \text{if } a > 1 \\ \\ K(Y, K_{Y} + A + L), h_{A} \cdot h_{L}), & \text{if } a = 1 \end{cases}$$

and $h_1 := 1/K_1$. Inductively we define $\{K_m\}$ and $\{h_m\}$ by

$$K_m := \begin{cases} K(Y, mK_Y + \lfloor \frac{m}{a} \rfloor aL + A, h_{m-1}), & \text{if } a \not | m \\ \\ K(Y, m(K_Y + L) + A, h_{m-1} \cdot h_L^a), & \text{if } a | m \end{cases}$$

Theorem 7 (Dynamical construction) Let X be a smooth projective variety of nonnegative Kodaira dimension and let $f : X \longrightarrow Y$ be the Iitaka fibration as above. Let m_0 and $\{h_m\}_{m \ge m_0}$ be the sequence of hermitian metrics as above and let n denote dim Y. Then

$$h_{\infty} := \liminf_{m \to \infty} \sqrt[m]{(m!)^n \cdot h_m}$$

is a singular hermitian metric on $K_Y + L$ such that

$$\omega_Y = \sqrt{-1} \,\Theta_{h_\infty}$$

holds, where ω_Y is the canonical Kähler current on Y as in Theorem 3 and $n = \dim Y$.

In particular $\omega_Y = \sqrt{-1} \Theta_{h_{\infty}}$ (in fact h_{∞}) is unique and is independent of the choice of A and h_{A} .

By Theorem 7, Theorem 5 follows from the following theorem.

Theorem 8 (Berndtsson, T-) Let $f : X \to Y$ be an algebraic fiber space and let (L,h_L) be a singular hermitian line bundle on X such that $\sqrt{-1}\Theta_{h_L} \ge 0$. Then the singular hermitian metric h on $K_{X/Y} + L$ defined by

 $h|X_y := K(X_y, K_{X_y} + L, h_L|X_y)^{-1} (y \in Y^\circ)$

has semipositive curvature on X, where Y° denotes the complement of the discriminant locus of $f_{\cdot \square}$

Scheme of the proof

- Plurisubharmonic variation of Canonical measures.
- Two Monge-Ampère foliations on the relative Iitaka fibrations and the base spaces induced by the –Ric of the relative canonical measure.
- Comparison of the two Monge-Ampère foliation in terms of the weak semistability
- Metrized canonical models are locally trivial along the leaves on the base.

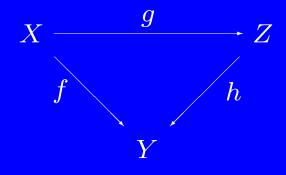
- Leaves are closed and are the fibers of the moduli map to the moduli of metrized canonical models.
- The family of canonical measures defines a positive Q-line bundle on the moduli space of the metrized canonical models.

Relative Iitaka fibration

 $f: X \longrightarrow Y$ be an algebraic fiber space such that $Kod(X/Y) \ge 0$. Let Z be the image of the relative pluricanonical map

$$\Phi: X - \cdots \longrightarrow \mathbb{P}(f_* K_{X/Y}^{\otimes m!})$$

for m >> 1.



For a sufficiently large m we see that a general fiber F of $g: X \rightarrow \cdots \rightarrow Z$ is connected and Kod(F) = 0. We call $g: X \rightarrow \cdots \rightarrow Z@a@relative$ **Iitaka fibration**. By taking a suitable modification of X, we may assume that g is a morphism. Let $f: X \longrightarrow Y$ be an algebraic fiber space and let $g: X \longrightarrow Z$ be a relative Iitaka fibration associated with $f_*K_{X/Y}^{\otimes m!}$. Taking a suitable modification we may and do assume the followings :

• g is a morphism,

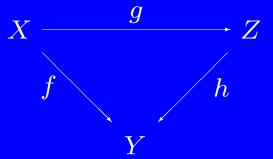
• Z is smooth.

• $(g_*K_{X/Z}^{\otimes m!})^{**}$ is a line bundle on Z.

Let $h: Z \longrightarrow Y$ be the natural morphism.

Regularity of relative canonical measure

Let $f: X \longrightarrow Y$ be an algebraic fiber space such that $Kod(X/Y) \ge 0$ and let $g: X \longrightarrow Z$ be the relative Iitaka fibration as above.



By the dynamical construction and the generalized Kähler-Einstein equation, we have the following lemma.

Lemma 1 Let $d\mu_{X/Y,can}$ is C^{ω} on a Zariski open subset of X. Also the relative canonical Kähler current $\omega_{Z/Y}$ is C^{ω} on a Zariski open subset of Z.

Monge-Ampère foliation

- Ω : domain in \mathbb{C}^n .
- $f \in C^3(\Omega)$: plurisubharmonic function such that $dd^c f$ has constant rank say r on Ω .

Then

$$\mathcal{F} := \{\xi \in T\Omega | dd^c f(\xi, \overline{\xi}) = 0\}$$

defines a foliation on Ω such that the leaves are complex submanifolds of dimension n - r. This foliation \mathcal{F} is said to be a Monge-Ampère foliation on Ω associated with $dd^c f$.

Two Monge-Ampère foliations on the relative canonical model

 $\omega_{Z/Y}$ defines a Monge-Ampère foliation \mathcal{F}_Z on the generic point of Z. Let us consider the singular hermitian line bundle (det $f_*K_{X/Y}^{\otimes m!}$, det h_m), where

$$h_m(\sigma,\sigma') := \int_{X/Y} \sigma \cdot \overline{\sigma'} \cdot d\mu_{X/Y,can}^{-(m!-1)}.$$

 $\Theta_{\det h_m}$ defines a Monge-Ampère foliation \mathcal{F}_Y on Y on the generic point of Y. The following is the key observation.

Lemma 2 $h_*\mathcal{F}_Z = \mathcal{F}_Y$ holds.

Weak stability

- $f: X \longrightarrow Y$: algebraic fiber space with $Kod(X/Y) \ge 0$.
- $r := \operatorname{rank} f_* \mathcal{O}_X(mK_{X/Y}).$
- $X^r := X \times_Y X \times_Y \cdots \times_Y X(r\text{-times}),$
- $f^r: X^r \longrightarrow Y$:the natural morphism.

• $f_*^r K_{X^r/Y}^{\otimes m} \simeq \otimes^r f_* K_{X/Y}^{\otimes m}$

• $\Gamma \in |K_{X^r/Y}^{\otimes m} \otimes (f^{r*} \det f_* K_{X/Y}^{\otimes m})^{-1}|$: corresponding to the inclusion : $(f^r)^* (\det f_* \mathcal{O}_X(mK_{X/Y})) \hookrightarrow (f^r)^* f_*^r \mathcal{O}_{X^r}(mK_{X^r/Y}) \hookrightarrow \mathcal{O}_{X^r}(mK_{X^r/Y}).$

 $\delta_0 := \sup\{\delta \mid (X_y^r, \delta \cdot \Gamma_y) \text{ is KLT for all } y \in Y^\circ\},\$

• For every
$$\varepsilon < \delta_0$$

 $f_*\mathcal{O}_X(mK_{X/Y}) \succeq \frac{m\varepsilon}{(1+m\varepsilon)r} \cdot \det f_*\mathcal{O}_X(mK_{X/Y})$
holds over Y° .

- There exists a singular hermitian metric $H_{m,\varepsilon}$ on $(1 + m\varepsilon)K_{X^r/Y} - \varepsilon \cdot (f^r)^* \det f_*\mathcal{O}_X(mK_{X/Y})^{**}$ such that $\sqrt{-1} \Theta_{H_{m,\varepsilon}} \geq 0$ holds on X^r in the sense of current.
- For every $y \in Y^{\circ}$, $H_{m,\varepsilon}|X_{y}^{r}$ is well defined and is an AZD of $(1 + m\varepsilon)K_{X^{r}/Y} - \varepsilon \cdot (f^{r})^{*} \det f_{*}\mathcal{O}_{X}(mK_{X/Y})^{**}|X_{y}.$

• Weak semistability $\Rightarrow \Theta_{h^* \det h_m} | \mathcal{F}_Z \equiv 0$

Since $h_K := (\omega_{Z/Y}^n)^{-1} \cdot h_L$ is an AZD of $K_{Z/Y} + L$,

$$(\omega_{Z/Y}^n)^{-1} \cdot h_L = O(H_{m,\varepsilon} \otimes (h^* \det h_m)^{\varepsilon})$$

holds. This implies that h_K is more positive than $(h^* \det h_m)^{\varepsilon}$. This implies the assertion.

• Along the leaves of \mathcal{F}_Y , $h: (Z, (L, h_L)) \longrightarrow Y$ is locally trivial. This is because $\sqrt{-1} \Theta_{h_m} \ge 0$ and trace $\Theta_{h_m} \equiv 0$ on \mathcal{F}_Y . Hence $\Theta_{h_m} \equiv 0$ along \mathcal{F}_Y

Then the parallel transport on $f_*K_{X/Y}^{\otimes m}$ trivialize $(Z, (L, h_L))$ along \mathcal{F}_Y .

Hence we have that $f_*\mathcal{F}_Z = \mathcal{F}_Y$

Metrized canonical models

- (X, D): KLT pair with Kod $(X, D) \ge 0$.
- $R(X, K_X + D) := \bigoplus_{m=0}^{\infty} \Gamma(X, \mathcal{O}_X(\lfloor m(K_X + D) \rfloor))$: the log canonical ring of (X, D): finitely generated.
- $Y := \operatorname{Proj} R(X, K_X + D)$: the canonical model of (X, D).
- $L := \frac{1}{m_0!} \left(f_* \mathcal{O}_X(m_0!(K_{X/Y} + D)) \right)^{**} (m_0 >> 1)$: the Hodge Q-line bundle.

- h_L : the Hodge metric on L.
- ω_Y : the canonical Kähler current.
- $h_K := n!(\omega_Y^n)^{-1} \cdot h_D(n = \dim Y)$: canonical metric on $K_Y + L$.

Definition 4 The pair $(Y, (L, h_L))$ is called the **metrized canonical** model associated with the KLT pair (X, D).

The moduli space of metrized canonical models

Let $(Z_y, (L, h_L)|Z_y)$ be the canonical model Z_y of X_y and the metrized Hodge bundle. The Hodge metric comes from a variation of Hodge structure on the canonical cyclic cover $W_y^{\circ} \longrightarrow Z_y^{\circ}$.

$$\mathcal{M} = \{(Z_y, (L, h_L)|Z_y)\} / \sim$$

where the equivalece \sim is defined by

$$\varphi: Z_{y} \longrightarrow Z_{y'}$$

covered by the biholomorphism $\tilde{\varphi} : W_y^\circ \longrightarrow W_{y'}^\circ$ which induces an isomorphism between flat bundles preserving the Hodge line bundles.

Theorem 9 \mathcal{M} has a structure of separable complex space and for m >> 1 (some multiple of) det $f_*\mathcal{O}_X(m!K_{X/Y})$ decends to a polarization of \mathcal{M} . In particular \mathcal{M} is quasiprojective. \Box

This theorem implies that the leaves of \mathcal{F}_Y is the fiber of the classifying map :

$$\Phi: Y^{\circ} \longrightarrow \mathcal{M}.$$

Then some symmetric power $S^r(f_*\mathcal{O}_X(m!K_{X/Y}))$ decends to a vector bundle on \mathcal{M} . Then by the **weak semistability**, we see that for m >> 1 $S^r(f_*\mathcal{O}_X(m!K_{X/Y}))$ decends to a very ample vector bundle on \mathcal{M} . Then $f_*\mathcal{O}_X(rm!K_{X/Y})$ is globally generated on Y° for m >> 1. This theorem gives an alternative proof of the following theorem.

Theorem 10 (Viehweg) Let $\mathcal{M}_{pol,min}$ be the polarized minimal algebraic varieties with semiample canonical divisors, then $\mathcal{M}_{pol,min}$ is quasiprojective .