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Divisibilities

Homework

Let a, b be integers ≥ 2. Assume that

an − 1 | bn − 1,

for all n ∈ N. Then b is a power of a.

Bugeaud, Corvaja, Zannier (2003)

Let a, b ∈ N be multiplicatively independent. Fix ε > 0. Then
there exists a c = c(a, b, ε) such that

log(gcd(an − 1, bn − 1)) ≤ εn + c ,

for all n ∈ N.
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Divisibility

Let K be a number field. For α, β ∈ K ∗, put

v+(α) := max{0, v(α)}

hgcd(α− 1, β − 1) :=
∑
v

min{v+(α− 1), v+(β − 1)}.

Corvaja-Zannier (2005)

Let S be a finite set of places of K and α, β ∈ OS . Then

hgcd(α− 1, β − 1) ≤ ε max{h(α), h(β)}+ c(K ,S , ε).
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Vojta’s conjecture

K number field, S finite set of places

X/K smooth, D ⊂ X normal crossings

L very ample divisor on X

Conjecture

For all P ∈ X (K ) \ Zε one has

hD,S(P) + hKX
(P) ≤ εhL(P).
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Vojta’s conjecture

Silverman (2004)

Let π : X̃ = BlY (X )→X = P1 × P1, with Y = (1, 1), and let E
be the exceptional divisor. Then

hgcd(α− 1, β − 1) = hX̃ ,E ((α, β)) + O(1),

for all α, β ∈ Q̄, 6= (1, 1).

When α, β ∈ OS are multiplicatively
independent, Vojta’s conjecture implies the theorem of
Corvaja-Zannier.

This instance of Vojta’s conjecture (on Gm × Gm ⊂ P1 × P1) is
proved using Schmidt’s subspace theorem.
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Recurrence sequences

R : N→C is a linear recurrence if

R(n + r) =
r−1∑
i=0

aiR(n + i),

for some ai ∈ C and all n ∈ N.

Equivalently,

R(n) =
∑
γ∈Γ0

cγ(n)γn,

where

cγ ∈ C[x ]

Γ0 ⊂ C∗ is a finite set of roots of R.

R is called simple if cγ ∈ C∗, for all γ ∈ Γ0.
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Recurrence sequences

Let Γ ⊂ C∗ be the group generated by Γ0. Assume that Γ is
torsion-free.

{γ1, . . . , γr}: a basis of Γ

C[Γ]: algebra of Laurent polynomials xγ =
∏r

j=1 x
gj

j , where

γ =
r∏

i=1

γgi
i ∈ Γ.

RΓ: ring of simple linear recurrences with roots in Γ.
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Recurrence sequences

Fact

RΓ is isomorphic to C[Γ].

R 7→ FR ∈ C[Γ]
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Recurrence sequences

Corvaja-Zannier, Inv. Math. (2002)

Let R and R̃ be simple linear recurrences such that

1 R(n), R̃(ñ) 6= 0, for all n, ñ � 0;

2 the subgroup Γ ⊂ C∗ generated by the roots of R and R̃ is
torsion-free;

3 there is a finitely-generated subring A ⊂ C with
R(n)/R̃(n) ∈ A, for infinitely many n ∈ N.

Then
Q : N → C

n 7→ R(n)/R̃(n)

is a simple linear recurrence. In particular, the FQ ∈ C[Γ] and

FQ · FR̃ = FR .
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Laurent polynomials

Lemma

Let Γ ⊂ C∗ be finitely-generated and torsion-free. Let C[Γ] be the
ring of Laurent polynomials.

If γ ∈ Γ is primitive then xγ − λ is irreducible in C[Γ].

For γ, γ′ ∈ Γ, the polynomials xγ − 1, xγ′ − 1 are not coprime
in C[Γ] if and only if γ, γ′ generate a cyclic subgroup in Γ.
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Recurrence sequences

X : smooth projective variety over Fq of dimension d

kn/k: unique extension of degree n

Fr: Frobenius on the étale cohomology H∗
et(X ,Q`), with ` - q

Γ0 := {αij}: corresponding eigenvalues

#X (kn) := tr(Frn) =
2d∑
i=0

(−1)icijα
n
ij ,

where cij ∈ C∗. This is a simple linear recurrence. Let ΓX ⊂ C∗ be
the multiplicative group generated by αij .
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Recurrence sequences

Theorem

Let X and X̃ be smooth projective varieties over a finite field k1,
resp. k̃1. Assume that

#X (kn) | #X̃ (k̃n),

for infinitely many n ∈ N. Then char(k1) = char(k̃1) and

ΓX ⊗ Q ⊆ ΓX̃ ⊗ Q.
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Abelian varieties

Let A be an abelian variety over k1 := Fq. Let {αj}j=1,...,2g be the
set of eigenvalues of Frobenius on H1

et(A,Q`), for ` 6= p. Let kn/k1

be the unique extension of degree n. The sequence

R(n) := #A(kn) =

2g∏
j=1

(αn
j − 1).

is a simple linear recurrence.

Theorem

Let A and Ã be abelian varieties of dimension g over finite fields
k1, resp. k̃1. Let R and R̃ be the corresponding recurrences.
Assume that ˜R(n) | R(n), for infinitely many n ∈ N. Then
char(k1) = char(k̃1) and A and Ã are isogenous.
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Sketch of proof

Assume that the group Γ generated by {αj} is torsion-free. Fix a
basis γ1, . . . , γr of Γ and write

αj =
∏

γ
aij

j .

Since all conjugates of αj have absolute value
√

q, we have

either αj = αj ′

or αj , αj ′ generate a subgroup of rank 2 in Γ.

Let {αj} = tt
s=1Is be a subdivision into subsets of equal elements,

t ≤ 2g. Put ds := #Is .
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Sketch of proof

Let Γ ⊂ C∗ be the group generated by {αj} and {α̃j}. Again, we
may assume that Γ is torsion free.
The Laurent polynomials for R(n), R̃(n) have the form:

F (x) :=
t∏

s=1

(
r∏

i=1

xais
i − 1)ds , F̃ (x) :=

t̃∏
s̃=1

(
r∏

i=1

x ãi s̃
i − 1)ds̃ .

Lemma

gcd(
r∏

i=1

xais
i − 1,

r∏
i=1

x
ais′
i − 1) = 1,

for s 6= s ′.

Same holds for F̃ .
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Sketch of proof

Using Lemma above, have t = t̃. Order indices so that #Is = #Ĩs
and so that the multiplicative sugroups generated by αs ∈ Is and
α̃s ∈ Ĩs have rank 1, for all s = 1, . . . , t.

It follows that α̃s = αu
s , where u ∈ Q depends only on k1 and k̃1.

Thus some powers of the Frobenius morphisms Fr, F̃r have the
same sets of eigenvalues with equal multiplicities.
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A theorem of Tate

Hom(A, Ã)⊗ Z` = HomZ`[Fr](T`(A),T`(Ã)).

In particular, A and Ã are isogenous (the characteristic polynomials
of Fr and F̃r coincide).
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Curves and their Jacobians

Let k be any field and C/k a smooth curve over k of genus
g(C ) ≥ 2, with C (k) 6= ∅. For each n ∈ N, we have

(c1, . . . , cn) // (c1 + · · ·+ cn)

Cn // Symn(C )

λn

��
Jn

Choosing c0 ∈ C (k), we may identify Jn ' J.

Image(λg−1) = Θ ⊂ J, the Theta divisor

Torelli: the pair (J,Θ) determines C , up to isomorphism

for n ≥ 2g − 1, λn is a Pn−g-bundle
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Curves and their Jacobians: Equidistribution

Let k be a finite field, #k � 1 (e.g., ∼ 2g2). Choose a point
x ∈ J(k).

Symn(C )(k)

P
n−g
x

��
J(k) 3 x

1 There exists a y ∈ Px(k) such that the zero-cycle
y = c1 + · · ·+ cn is completely split over k.

2 There exists a y ∈ Px(k) such that y = c1 + · · ·+ cn is
irreducible over k.
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Curves and their Jacobians: Applications

Let k be a (sufficiently large) finite field and k̄ its algebraic closure.
Recall

J(k̄) = p-part⊕
⊕
` 6=p

(Q`/Z`)
2g.

1 J(k) is generated by C (k).

2 J(k̄) =
⋃

n∈N n · C (k̄).
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Curves and their Jacobians

Let
k = k1 ⊂ k2 ⊂ . . . ⊂ kn ⊂ . . .

be the tower of degree 2 extensions.

Let C be a nonhyperelliptic curve of genus g(C ) ≥ 3. By (1), to
characterize J(kn) it suffices to characterize C (kn).

Inductive characterization of J(kn), n ∈ N

J(kn) is generated by points c ∈ C (k̄) such that

c /∈ C (kn−1)

there exists a point c ′ ∈ C (k̄) with

c + c ′ ∈ J(kn−1).
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Curves and their Jacobians

Let C̃ be another smooth projective curve and J̃ its Jacobian.
Isomorphism of pairs:

φ : (C , J)→(C̃ , J̃)

J(k̄)

φ0

��

J1(k̄)

φ1

��

C (k̄)
j1oo

φs

��
J̃(k̄) J̃1(k̄) C̃ (k̄)

j̃1oo

where

φ0: isomorphism of abstract abelian groups;

φ1: isomorphism of homogeneous spaces, compatible with φ0;

the restriction φs : C (k̄)→C̃ (k̄) of φ1 is a bijection of sets.
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Curves and their Jacobians: Torelli

Theorem

Let (C , J) → (C̃ , J̃) be an isomorphism of pairs. Then J is
isogenous to J̃.

Proof.

1 Choose k1, k̃1 (sufficiently large) such that φ(J(k1)) ⊂ J̃(k̃1)

2 Define C (kn), resp. C̃ (k̃n), intrinsically, as above.

3 Have φ(J(kn)) ⊂ J̃(k̃n), for all n ∈ N.

4 #J(kn) | #J̃(k̃n)
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Specifying the curve

n-string: an ordered set Sn = {s1, . . . , sn} of integers sj > 1, with
p - sj for all j .

Sn-configuration on C (k)’: ordered subset {c0, c1, . . . , cn} ⊂ C (k)
such that ord(cj − c0) = sj , for all j .

Theorem

Let C be a curve over k = F̄p of genus g > 1. Then there exists a
string Sn, with n < 2g such that

C (k) ⊂ J(k) contains an Sn-configuration,

there exist at most finitely many nonisomorphic curves of
genus g containing an Sn-configuration, modulo Frobenius
twists.
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Reconstructing the isogeny

Let
φ : (C , J) → (C̃ , J̃)

be an isomorphism of pairs.

Theorem

Some powers of the endomorphisms φ(Fr), F̃r ∈ End(J̃) commute.
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Applications to anabelian geometry

Let k = F̄p and K = k(C ). Let GK be the absolute Galois group
of K . Let

IK := {Ia
ν},

the set of inertia subgroups Ia
ν ⊂ G a

K of nontrivial divisorial
valuations of K (i.e., points of C ).

Theorem

Assume that g(C ) > 2 and that

(G a
K , IK ) ' (G a

K̃
, IK̃ ).

Then
J ∼ J̃.
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Curves and their Jacobians

Symn(C )(k)

P
n−g
x

��
J(k) 3 x

Recall that there exist

y = c1 + · · ·+ cn ∈ Pn−g
x (k)

such that the zero-cycle is k-irreducible.

Then

x =
n∑

i=1

Frj(c1) ∈ J(k̄).
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Curves and their Jacobians

Lift Fr to an element in Endk(J) and put

Ψ :=
n∑

i=1

Frj .

Then x = Ψ(c1) and

J(k) ⊂ Ψ(C )(k̄).

For any finite set of points x1, . . . , xr ∈ J(k̄) we can find a Ψ such
that

{x1, . . . , xr} ⊂ Ψ(C )(k̄).

A similar argument allows to replace Ψ by the endomorphism
multiplication by n.
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K3 surfaces in positive characteristic

Let X = Ã/G be a Kummer K3 surface: a desingularization of the
quotient of an abelian surface by the action of a finite group
G = Z/2,Z/3, ... (there is a finite list of groups and actions).

For example,

X :
3∑

i=0

x4
i = 0.

A Kummer K3 surface X is uniruled (or unirational) iff X is
supersingular, i.e., A is supersingular (Shioda, Katsura).

Theorem (Rudakov-Shafarevich)

If the characteristic of k equals 2 then a K3 surface is
supersingular if and only if it is unirational.
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K3 surfaces over finite fields

Theorem (Bogomolov-T. 2005)

Let X = Ã/G be a Kummer surface defined over a (sufficiently
large) finite field k. For every finite set of algebraic points
{x1, . . . , xn} in the complement to exceptional curves there exists a
geometrically irreducible rational curve R, defined over k, with

{x1, . . . , xn} ⊂ R(k̄).

This gives examples of “rationally connected”, non-uniruled K3
surfaces over finite fields.
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Proof

Let G = Z/2, and let k be sufficiently large, finite. Let C be a
hyperelliptic curve of genus 2, fix c0 ∈ C (k) (a ramification point
under the standard involution). We have an embedding

C ↪→ A

c 7→ c − c0

into the Jacobian A of C . We know that A(k̄) = ∪nn · C (k̄). The
image of C in A/G is a rational curve.

Same holds for the images
of n · C . Thus every algebraic point on X lies on a rational curve.
Similar arguments work for finitely many points and other groups
G .
Same for Calabi-Yau varieties built from abelian varieties or K3
surfaces.
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Surfaces of general type

We work over a finite field of characteristic ≥ 3. Consider the
diagram

X1 → X

↓ ↓
P2 → X0

,

where

X0 is a unirational surface of general type, P2 → X0

X1 → P2 is a double cover ramified in a curve of degree 6; it
is a K3 surface. Moreover, we may assume that X1 is a
non-supersingular (and thus non-uniruled) Kummer surface.

Then X is

rationally connected,

of general type,

non-uniruled.
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