A Torelli theorem over finite fields

November 2008

Divisibilities

Homework

Let a, b be integers ≥ 2 . Assume that

$$a^{n}-1 \mid b^{n}-1,$$

for all $n \in \mathbb{N}$. Then b is a power of a.

Divisibilities

Homework

Let a, b be integers ≥ 2 . Assume that

$$a^{n}-1 \mid b^{n}-1$$
,

for all $n \in \mathbb{N}$. Then b is a power of a.

Bugeaud, Corvaja, Zannier (2003)

Let $a,b\in\mathbb{N}$ be multiplicatively independent. Fix $\epsilon>0$. Then there exists a $c=c(a,b,\epsilon)$ such that

$$\log(\gcd(a^n-1,b^n-1)) \le \epsilon n + c,$$

for all $n \in \mathbb{N}$.

Divisibility

Let K be a number field. For $\alpha, \beta \in K^*$, put

$$v^+(\alpha) := \max\{0, v(\alpha)\}$$

$$h_{\sf gcd}(\alpha-1,\beta-1) := \sum_{v} \min\{v^+(\alpha-1),v^+(\beta-1)\}.$$

Corvaja-Zannier (2005)

Let S be a finite set of places of K and $\alpha, \beta \in \mathcal{O}_S$. Then

$$h_{\text{gcd}}(\alpha - 1, \beta - 1) \le \epsilon \max\{h(\alpha), h(\beta)\} + c(K, S, \epsilon).$$

- K number field, S finite set of places
- X/K smooth, $D \subset X$ normal crossings
- L very ample divisor on X

Conjecture

For all $P \in X(K) \setminus Z_{\epsilon}$ one has

$$h_{D,S}(P) + h_{K_X}(P) \le \epsilon h_L(P).$$

Silverman (2004)

Let $\pi: \tilde{X} = \mathrm{Bl}_Y(X) \rightarrow X = \mathbb{P}^1 \times \mathbb{P}^1$, with Y = (1,1), and let E be the exceptional divisor. Then

$$h_{\mathsf{gcd}}(\alpha - 1, \beta - 1) = h_{\tilde{X}, \mathcal{E}}((\alpha, \beta)) + O(1),$$

for all $\alpha, \beta \in \overline{\mathbb{Q}}, \neq (1, 1)$.

Silverman (2004)

Let $\pi: \tilde{X} = \mathrm{Bl}_Y(X) \rightarrow X = \mathbb{P}^1 \times \mathbb{P}^1$, with Y = (1,1), and let E be the exceptional divisor. Then

$$h_{\mathsf{gcd}}(\alpha - 1, \beta - 1) = h_{\tilde{X}, E}((\alpha, \beta)) + O(1),$$

for all $\alpha, \beta \in \overline{\mathbb{Q}}, \neq (1,1)$. When $\alpha, \beta \in \mathcal{O}_S$ are multiplicatively independent, Vojta's conjecture implies the theorem of Corvaja-Zannier.

Silverman (2004)

Let $\pi: \tilde{X} = \mathrm{Bl}_Y(X) \rightarrow X = \mathbb{P}^1 \times \mathbb{P}^1$, with Y = (1,1), and let E be the exceptional divisor. Then

$$h_{\mathsf{gcd}}(\alpha - 1, \beta - 1) = h_{\tilde{X}, E}((\alpha, \beta)) + O(1),$$

for all $\alpha, \beta \in \overline{\mathbb{Q}}, \neq (1,1)$. When $\alpha, \beta \in \mathcal{O}_S$ are multiplicatively independent, Vojta's conjecture implies the theorem of Corvaja-Zannier.

This instance of Vojta's conjecture (on $\mathbb{G}_m \times \mathbb{G}_m \subset \mathbb{P}^1 \times \mathbb{P}^1$) is proved using Schmidt's subspace theorem.

 $R: \mathbb{N} \rightarrow \mathbb{C}$ is a linear recurrence if

$$R(n+r) = \sum_{i=0}^{r-1} a_i R(n+i),$$

for some $a_i \in \mathbb{C}$ and all $n \in \mathbb{N}$.

 $R: \mathbb{N} \rightarrow \mathbb{C}$ is a linear recurrence if

$$R(n+r) = \sum_{i=0}^{r-1} a_i R(n+i),$$

for some $a_i \in \mathbb{C}$ and all $n \in \mathbb{N}$. Equivalently,

$$R(n) = \sum_{\gamma \in \Gamma^0} c_{\gamma}(n) \gamma^n,$$

where

- $\mathbf{c}_{\gamma} \in \mathbb{C}[x]$
- $\Gamma^0 \subset \mathbb{C}^*$ is a finite set of roots of R.

 $R: \mathbb{N} \rightarrow \mathbb{C}$ is a linear recurrence if

$$R(n+r) = \sum_{i=0}^{r-1} a_i R(n+i),$$

for some $a_i \in \mathbb{C}$ and all $n \in \mathbb{N}$. Equivalently,

$$R(n) = \sum_{\gamma \in \Gamma^0} c_{\gamma}(n) \gamma^n,$$

where

- $\mathbf{c}_{\gamma} \in \mathbb{C}[x]$
- \blacksquare $\Gamma^0 \subset \mathbb{C}^*$ is a finite set of roots of R.

R is called simple if $c_{\gamma} \in \mathbb{C}^*$, for all $\gamma \in \Gamma^0$.

Let $\Gamma \subset \mathbb{C}^*$ be the group generated by Γ^0 . Assume that Γ is torsion-free.

Let $\Gamma \subset \mathbb{C}^*$ be the group generated by Γ^0 . Assume that Γ is torsion-free.

- $\{\gamma_1,\ldots,\gamma_r\}$: a basis of Γ
- lacksquare $\mathbb{C}[\Gamma]$: algebra of Laurent polynomials $x^{\gamma} = \prod_{j=1}^r x_j^{g_j}$, where

$$\gamma = \prod_{i=1}^r \gamma_i^{g_i} \in \Gamma.$$

Let $\Gamma \subset \mathbb{C}^*$ be the group generated by Γ^0 . Assume that Γ is torsion-free.

- $\{\gamma_1,\ldots,\gamma_r\}$: a basis of Γ
- lacksquare $\mathbb{C}[\Gamma]$: algebra of Laurent polynomials $x^{\gamma} = \prod_{j=1}^r x_j^{g_j}$, where

$$\gamma = \prod_{i=1}^r \gamma_i^{g_i} \in \Gamma.$$

■ \mathfrak{R}_{Γ} : ring of simple linear recurrences with roots in Γ .

Fact

 \mathfrak{R}_Γ is isomorphic to $\mathbb{C}[\Gamma].$

Fact

 \mathfrak{R}_{Γ} is isomorphic to $\mathbb{C}[\Gamma]$.

$$R \mapsto F_R \in \mathbb{C}[\Gamma]$$

Corvaja-Zannier, Inv. Math. (2002)

Let R and \tilde{R} be simple linear recurrences such that

- **1** R(n), $\tilde{R}(\tilde{n}) \neq 0$, for all $n, \tilde{n} \gg 0$;
- **2** the subgroup $\Gamma \subset \mathbb{C}^*$ generated by the roots of R and \tilde{R} is torsion-free;
- **1** there is a finitely-generated subring $\mathfrak{A} \subset \mathbb{C}$ with $R(n)/\tilde{R}(n) \in \mathfrak{A}$, for infinitely many $n \in \mathbb{N}$.

Corvaja-Zannier, Inv. Math. (2002)

Let R and \tilde{R} be simple linear recurrences such that

- **1** R(n), $\tilde{R}(\tilde{n}) \neq 0$, for all $n, \tilde{n} \gg 0$;
- **2** the subgroup $\Gamma \subset \mathbb{C}^*$ generated by the roots of R and \tilde{R} is torsion-free;
- **3** there is a finitely-generated subring $\mathfrak{A} \subset \mathbb{C}$ with $R(n)/\tilde{R}(n) \in \mathfrak{A}$, for infinitely many $n \in \mathbb{N}$.

Then

$$Q: \mathbb{N} \to \mathbb{C}$$

$$n \mapsto R(n)/\tilde{R}(n)$$

is a simple linear recurrence. In particular, the $F_Q \in \mathbb{C}[\Gamma]$ and

$$F_Q \cdot F_{\tilde{R}} = F_R$$
.

Laurent polynomials

Lemma

Let $\Gamma \subset \mathbb{C}^*$ be finitely-generated and torsion-free. Let $\mathbb{C}[\Gamma]$ be the ring of Laurent polynomials.

■ If $\gamma \in \Gamma$ is primitive then $x^{\gamma} - \lambda$ is irreducible in $\mathbb{C}[\Gamma]$.

Laurent polynomials

Lemma

Let $\Gamma \subset \mathbb{C}^*$ be finitely-generated and torsion-free. Let $\mathbb{C}[\Gamma]$ be the ring of Laurent polynomials.

- If $\gamma \in \Gamma$ is primitive then $x^{\gamma} \lambda$ is irreducible in $\mathbb{C}[\Gamma]$.
- For $\gamma, \gamma' \in \Gamma$, the polynomials $x^{\gamma} 1, x^{\gamma'} 1$ are not coprime in $\mathbb{C}[\Gamma]$ if and only if γ, γ' generate a cyclic subgroup in Γ .

- **X**: smooth projective variety over \mathbb{F}_q of dimension d
- k_n/k : unique extension of degree n
- Fr: Frobenius on the étale cohomology $H^*_{et}(X, \mathbb{Q}_\ell)$, with $\ell \nmid q$
- $\Gamma^0 := \{\alpha_{ij}\}$: corresponding eigenvalues

- **X**: smooth projective variety over \mathbb{F}_q of dimension d
- k_n/k : unique extension of degree n
- Fr: Frobenius on the étale cohomology $H^*_{et}(X, \mathbb{Q}_\ell)$, with $\ell \nmid q$
- $\Gamma^0 := \{\alpha_{ij}\}:$ corresponding eigenvalues

$$\#X(k_n):=\operatorname{tr}(\operatorname{Fr}^n)=\sum_{i=0}^{2d}(-1)^ic_{ij}\alpha_{ij}^n,$$

where $c_{ij} \in \mathbb{C}^*$.

- **X**: smooth projective variety over \mathbb{F}_q of dimension d
- k_n/k : unique extension of degree n
- Fr: Frobenius on the étale cohomology $H^*_{et}(X, \mathbb{Q}_\ell)$, with $\ell \nmid q$
- $\Gamma^0 := \{\alpha_{ij}\}$: corresponding eigenvalues

$$\#X(k_n) := \operatorname{tr}(\operatorname{Fr}^n) = \sum_{i=0}^{2d} (-1)^i c_{ij} \alpha_{ij}^n,$$

where $c_{ij} \in \mathbb{C}^*$. This is a simple linear recurrence.

- **X**: smooth projective variety over \mathbb{F}_q of dimension d
- k_n/k : unique extension of degree n
- Fr: Frobenius on the étale cohomology $H^*_{et}(X, \mathbb{Q}_\ell)$, with $\ell \nmid q$
- $\Gamma^0 := \{\alpha_{ij}\}$: corresponding eigenvalues

$$\#X(k_n):=\operatorname{tr}(\operatorname{Fr}^n)=\sum_{i=0}^{2d}(-1)^ic_{ij}\alpha_{ij}^n,$$

where $c_{ij} \in \mathbb{C}^*$. This is a simple linear recurrence. Let $\Gamma_X \subset \mathbb{C}^*$ be the multiplicative group generated by α_{ij} .

Theorem

Let X and \tilde{X} be smooth projective varieties over a finite field k_1 , resp. \tilde{k}_1 . Assume that

$$\#X(k_n) \mid \#\tilde{X}(\tilde{k}_n),$$

for infinitely many $n \in \mathbb{N}$. Then $\mathrm{char}(k_1) = \mathrm{char}(\tilde{k}_1)$ and

$$\Gamma_X \otimes \mathbb{Q} \subseteq \Gamma_{\tilde{X}} \otimes \mathbb{Q}.$$

Abelian varieties

Let A be an abelian variety over $k_1 := \mathbb{F}_q$. Let $\{\alpha_j\}_{j=1,\dots,2g}$ be the set of eigenvalues of Frobenius on $H^1_{et}(A,\mathbb{Q}_\ell)$, for $\ell \neq p$. Let k_n/k_1 be the unique extension of degree n. The sequence

$$R(n) := \#A(k_n) = \prod_{j=1}^{2g} (\alpha_j^n - 1).$$

is a simple linear recurrence.

Abelian varieties

Let A be an abelian variety over $k_1 := \mathbb{F}_q$. Let $\{\alpha_j\}_{j=1,\dots,2g}$ be the set of eigenvalues of Frobenius on $H^1_{\mathrm{et}}(A,\mathbb{Q}_\ell)$, for $\ell \neq p$. Let k_n/k_1 be the unique extension of degree n. The sequence

$$R(n) := \#A(k_n) = \prod_{j=1}^{2g} (\alpha_j^n - 1).$$

is a simple linear recurrence.

Theorem

Let A and \tilde{A} be abelian varieties of dimension g over finite fields k_1 , resp. \tilde{k}_1 . Let R and \tilde{R} be the corresponding recurrences. Assume that $R(\tilde{n}) \mid R(n)$, for infinitely many $n \in \mathbb{N}$. Then $\operatorname{char}(k_1) = \operatorname{char}(\tilde{k}_1)$ and A and \tilde{A} are isogenous.

Assume that the group Γ generated by $\{\alpha_j\}$ is torsion-free. Fix a basis $\gamma_1, \ldots, \gamma_r$ of Γ and write

$$\alpha_j = \prod \gamma_j^{a_{ij}}.$$

Assume that the group Γ generated by $\{\alpha_j\}$ is torsion-free. Fix a basis γ_1,\ldots,γ_r of Γ and write

$$\alpha_j = \prod \gamma_j^{a_{ij}}.$$

Since all conjugates of α_i have absolute value \sqrt{q} , we have

- either $\alpha_i = \alpha_{i'}$
- or $\alpha_j, \alpha_{j'}$ generate a subgroup of rank 2 in Γ.

Assume that the group Γ generated by $\{\alpha_j\}$ is torsion-free. Fix a basis $\gamma_1, \ldots, \gamma_r$ of Γ and write

$$\alpha_j = \prod \gamma_j^{a_{ij}}.$$

Since all conjugates of α_i have absolute value \sqrt{q} , we have

- either $\alpha_i = \alpha_{i'}$
- **■** or $\alpha_j, \alpha_{j'}$ generate a subgroup of rank 2 in Γ.

Let $\{\alpha_j\} = \bigsqcup_{s=1}^t I_s$ be a subdivision into subsets of equal elements, $t \leq 2g$. Put $d_s := \#I_s$.

Let $\Gamma \subset \mathbb{C}^*$ be the group generated by $\{\alpha_j\}$ and $\{\tilde{\alpha}_j\}$. Again, we may assume that Γ is torsion free.

The Laurent polynomials for R(n), $\tilde{R}(n)$ have the form:

$$F(x) := \prod_{s=1}^t (\prod_{i=1}^r x_i^{a_{is}} - 1)^{d_s}, \quad \tilde{F}(x) := \prod_{\tilde{s}=1}^{\tilde{t}} (\prod_{i=1}^r x_i^{\tilde{a}_{i\tilde{s}}} - 1)^{d_{\tilde{s}}}.$$

Lemma

$$\gcd(\prod_{i=1}^r x_i^{a_{is}} - 1, \prod_{i=1}^r x_i^{a_{is'}} - 1) = 1,$$

for $s \neq s'$.

Let $\Gamma \subset \mathbb{C}^*$ be the group generated by $\{\alpha_j\}$ and $\{\tilde{\alpha}_j\}$. Again, we may assume that Γ is torsion free.

The Laurent polynomials for R(n), $\tilde{R}(n)$ have the form:

$$F(x) := \prod_{s=1}^t (\prod_{i=1}^r x_i^{a_{is}} - 1)^{d_s}, \quad \tilde{F}(x) := \prod_{\tilde{s}=1}^{\tilde{t}} (\prod_{i=1}^r x_i^{\tilde{a}_{i\tilde{s}}} - 1)^{d_{\tilde{s}}}.$$

Lemma

$$\gcd(\prod_{i=1}^r x_i^{a_{is}} - 1, \prod_{i=1}^r x_i^{a_{is'}} - 1) = 1,$$

for $s \neq s'$.

Same holds for \tilde{F} .

Using Lemma above, have $t = \tilde{t}$. Order indices so that $\#I_s = \#\tilde{I}_s$ and so that the multiplicative sugroups generated by $\alpha_s \in I_s$ and $\tilde{\alpha}_s \in \tilde{I}_s$ have rank 1, for all $s = 1, \ldots, t$.

Using Lemma above, have $t=\tilde{t}$. Order indices so that $\#I_s=\#\tilde{I}_s$ and so that the multiplicative sugroups generated by $\alpha_s\in I_s$ and $\tilde{\alpha}_s\in \tilde{I}_s$ have rank 1, for all $s=1,\ldots,t$.

It follows that $\tilde{\alpha}_s = \alpha_s^u$, where $u \in \mathbb{Q}$ depends only on k_1 and \tilde{k}_1 .

Using Lemma above, have $t=\tilde{t}$. Order indices so that $\#I_s=\#\tilde{I}_s$ and so that the multiplicative sugroups generated by $\alpha_s\in I_s$ and $\tilde{\alpha}_s\in \tilde{I}_s$ have rank 1, for all $s=1,\ldots,t$.

It follows that $\tilde{\alpha}_s = \alpha_s^u$, where $u \in \mathbb{Q}$ depends only on k_1 and \tilde{k}_1 . Thus some powers of the Frobenius morphisms $\operatorname{Fr}, \tilde{\operatorname{Fr}}$ have the same sets of eigenvalues with equal multiplicities.

A theorem of Tate

$$\operatorname{Hom}(A,\tilde{A})\otimes \mathbb{Z}_{\ell} = \operatorname{Hom}_{\mathbb{Z}_{\ell}[\operatorname{Fr}]}(T_{\ell}(A), T_{\ell}(\tilde{A})).$$

A theorem of Tate

$$\operatorname{Hom}(A,\tilde{A})\otimes \mathbb{Z}_{\ell} = \operatorname{Hom}_{\mathbb{Z}_{\ell}[\operatorname{Fr}]}(T_{\ell}(A), T_{\ell}(\tilde{A})).$$

In particular, A and \tilde{A} are isogenous (the characteristic polynomials of Fr and \tilde{Fr} coincide).

Let k be any field and C/k a smooth curve over k of genus $g(C) \ge 2$, with $C(k) \ne \emptyset$. For each $n \in \mathbb{N}$, we have

$$(c_1,\ldots,c_n) \longrightarrow (c_1+\cdots+c_n)$$

$$C^n \longrightarrow \operatorname{Sym}^n(C)$$

$$\downarrow^{\lambda_n}$$

$$\downarrow^{n}$$

Let k be any field and C/k a smooth curve over k of genus $g(C) \ge 2$, with $C(k) \ne \emptyset$. For each $n \in \mathbb{N}$, we have

$$(c_1,\ldots,c_n) \longrightarrow (c_1+\cdots+c_n)$$

$$C^n \longrightarrow \operatorname{Sym}^n(C)$$

$$\downarrow^{\lambda_n}$$

$$\downarrow^{n}$$

Choosing $c_0 \in C(k)$, we may identify $J^n \simeq J$.

Let k be any field and C/k a smooth curve over k of genus $g(C) \ge 2$, with $C(k) \ne \emptyset$. For each $n \in \mathbb{N}$, we have

$$(c_1,\ldots,c_n) \longrightarrow (c_1+\cdots+c_n)$$

$$C^n \longrightarrow \operatorname{Sym}^n(C)$$

$$\downarrow^{\lambda_n}$$

$$\downarrow^n$$

Choosing $c_0 \in C(k)$, we may identify $J^n \simeq J$.

■ $\operatorname{Image}(\lambda_{g-1}) = \Theta \subset J$, the Theta divisor

Let k be any field and C/k a smooth curve over k of genus $g(C) \ge 2$, with $C(k) \ne \emptyset$. For each $n \in \mathbb{N}$, we have

$$(c_1,\ldots,c_n)\longrightarrow (c_1+\cdots+c_n)$$

$$C^n \longrightarrow \operatorname{Sym}^n(C)$$

$$\downarrow^{\lambda_n}$$

$$\downarrow^n$$

Choosing $c_0 \in C(k)$, we may identify $J^n \simeq J$.

- Image $(\lambda_{g-1}) = \Theta \subset J$, the Theta divisor
- Torelli: the pair (J, Θ) determines C, up to isomorphism

Let k be any field and C/k a smooth curve over k of genus $g(C) \ge 2$, with $C(k) \ne \emptyset$. For each $n \in \mathbb{N}$, we have

$$(c_1,\ldots,c_n)\longrightarrow (c_1+\cdots+c_n)$$

$$C^n \longrightarrow \operatorname{Sym}^n(C)$$

$$\downarrow^{\lambda_n}$$

$$\downarrow^n$$

Choosing $c_0 \in C(k)$, we may identify $J^n \simeq J$.

- Image $(\lambda_{g-1}) = \Theta \subset J$, the Theta divisor
- Torelli: the pair (J, Θ) determines C, up to isomorphism
- for $n \ge 2g 1$, λ_n is a \mathbb{P}^{n-g} -bundle

Curves and their Jacobians: Equidistribution

Let k be a finite field, $\#k \gg 1$ (e.g., $\sim 2g^2$). Choose a point $x \in J(k)$.

$$\operatorname{Sym}^{n}(C)(k)$$

$$\downarrow_{\mathbb{P}_{x}^{n-g}}$$

$$J(k)\ni x$$

Curves and their Jacobians: Equidistribution

Let k be a finite field, $\#k \gg 1$ (e.g., $\sim 2g^2$). Choose a point $x \in J(k)$.

$$\operatorname{Sym}^{n}(C)(k)$$

$$\downarrow_{\mathbb{P}_{x}^{n-g}}$$

$$J(k)\ni x$$

1 There exists a $y \in \mathbb{P}_x(k)$ such that the zero-cycle $y = c_1 + \cdots + c_n$ is completely split over k.

Curves and their Jacobians: Equidistribution

Let k be a finite field, $\#k \gg 1$ (e.g., $\sim 2g^2$). Choose a point $x \in J(k)$.

$$\operatorname{Sym}^{n}(C)(k)$$

$$\downarrow_{\mathbb{P}_{x}^{n-\mathsf{g}}}$$

$$J(k)\ni x$$

- There exists a $y \in \mathbb{P}_x(k)$ such that the zero-cycle $y = c_1 + \cdots + c_n$ is completely split over k.
- **2** There exists a $y \in \mathbb{P}_x(k)$ such that $y = c_1 + \cdots + c_n$ is irreducible over k.

Curves and their Jacobians: Applications

Let k be a (sufficiently large) finite field and \bar{k} its algebraic closure. Recall

$$J(ar{k}) = p ext{-part} \oplus igoplus_{\ell
eq p} (\mathbb{Q}_\ell/\mathbb{Z}_\ell)^{2\mathsf{g}}.$$

Curves and their Jacobians: Applications

Let k be a (sufficiently large) finite field and \bar{k} its algebraic closure. Recall

$$J(ar{k}) = extit{p-part} \oplus igoplus_{\ell
eq p} (\mathbb{Q}_\ell/\mathbb{Z}_\ell)^{2\mathsf{g}}.$$

1 J(k) is generated by C(k).

Curves and their Jacobians: Applications

Let k be a (sufficiently large) finite field and \bar{k} its algebraic closure. Recall

$$J(ar{k}) = extit{p-part} \oplus igoplus_{\ell
eq p} (\mathbb{Q}_\ell/\mathbb{Z}_\ell)^{2\mathsf{g}}.$$

- **1** J(k) is generated by C(k).
- $2 J(\bar{k}) = \bigcup_{n \in \mathbb{N}} n \cdot C(\bar{k}).$

Let

$$k = k_1 \subset k_2 \subset \ldots \subset k_n \subset \ldots$$

be the tower of degree 2 extensions.

Let

$$k = k_1 \subset k_2 \subset \ldots \subset k_n \subset \ldots$$

be the tower of degree 2 extensions.

Let C be a nonhyperelliptic curve of genus $g(C) \ge 3$. By (1), to characterize $J(k_n)$ it suffices to characterize $C(k_n)$.

Let

$$k = k_1 \subset k_2 \subset \ldots \subset k_n \subset \ldots$$

be the tower of degree 2 extensions.

Let C be a nonhyperelliptic curve of genus $g(C) \ge 3$. By (1), to characterize $J(k_n)$ it suffices to characterize $C(k_n)$.

Inductive characterization of $J(k_n)$, $n \in \mathbb{N}$

 $J(k_n)$ is generated by points $c \in C(ar{k})$ such that

- $c \notin C(k_{n-1})$
- lacksquare there exists a point $c' \in \mathcal{C}(ar{k})$ with

$$c + c' \in J(k_{n-1}).$$

Let \tilde{C} be another smooth projective curve and \tilde{J} its Jacobian. Isomorphism of pairs:

$$\phi: (C, J) \rightarrow (\tilde{C}, \tilde{J})$$

$$\begin{array}{ccc}
J(\bar{k}) & J^{1}(\bar{k}) \stackrel{j_{1}}{\lessdot} C(\bar{k}) \\
\phi^{0} \downarrow & \phi^{1} \downarrow & \phi_{s} \downarrow \\
\tilde{J}(\bar{k}) & \tilde{J}^{1}(\bar{k}) \stackrel{\tilde{j}_{1}}{\lessdot} \tilde{C}(\bar{k})
\end{array}$$

where

- ϕ^0 : isomorphism of abstract abelian groups;
- ullet ϕ^1 : isomorphism of homogeneous spaces, compatible with ϕ^0 ;
- the restriction ϕ_s : $C(\bar{k}) \rightarrow \tilde{C}(\bar{k})$ of ϕ^1 is a bijection of sets.

Theorem

Let $(C, J) \to (\tilde{C}, \tilde{J})$ be an isomorphism of pairs. Then J is isogenous to \tilde{J} .

Theorem

Let $(C, J) \to (\tilde{C}, \tilde{J})$ be an isomorphism of pairs. Then J is isogenous to \tilde{J} .

Proof.

1 Choose $k_1, \tilde{k_1}$ (sufficiently large) such that $\phi(J(k_1)) \subset \tilde{J}(\tilde{k_1})$

Theorem

Let $(C, J) \to (\tilde{C}, \tilde{J})$ be an isomorphism of pairs. Then J is isogenous to \tilde{J} .

- **1** Choose $k_1, \tilde{k_1}$ (sufficiently large) such that $\phi(J(k_1)) \subset \tilde{J}(\tilde{k_1})$
- **2** Define $C(k_n)$, resp. $\tilde{C}(\tilde{k}_n)$, intrinsically, as above.

Theorem

Let $(C, J) \to (\tilde{C}, \tilde{J})$ be an isomorphism of pairs. Then J is isogenous to \tilde{J} .

- **1** Choose $k_1, \tilde{k_1}$ (sufficiently large) such that $\phi(J(k_1)) \subset \tilde{J}(\tilde{k_1})$
- **2** Define $C(k_n)$, resp. $\tilde{C}(\tilde{k}_n)$, intrinsically, as above.
- **3** Have $\phi(J(k_n)) \subset \tilde{J}(\tilde{k}_n)$, for all $n \in \mathbb{N}$.

Theorem

Let $(C, J) \to (\tilde{C}, \tilde{J})$ be an isomorphism of pairs. Then J is isogenous to \tilde{J} .

- **1** Choose $k_1, \tilde{k_1}$ (sufficiently large) such that $\phi(J(k_1)) \subset \tilde{J}(\tilde{k_1})$
- **2** Define $C(k_n)$, resp. $\tilde{C}(\tilde{k}_n)$, intrinsically, as above.
- **3** Have $\phi(J(k_n)) \subset \tilde{J}(\tilde{k}_n)$, for all $n \in \mathbb{N}$.
- $4 \#J(k_n) \mid \#\widetilde{J}(\widetilde{k}_n)$

Theorem

Let $(C, J) \to (\tilde{C}, \tilde{J})$ be an isomorphism of pairs. Then J is isogenous to \tilde{J} .

- **1** Choose $k_1, \tilde{k_1}$ (sufficiently large) such that $\phi(J(k_1)) \subset \tilde{J}(\tilde{k_1})$
- **2** Define $C(k_n)$, resp. $\tilde{C}(\tilde{k}_n)$, intrinsically, as above.
- **3** Have $\phi(J(k_n)) \subset \tilde{J}(\tilde{k}_n)$, for all $n \in \mathbb{N}$.
- $4 \#J(k_n) \mid \#\widetilde{J}(\widetilde{k}_n)$
- 5 Apply the result about recurrence sequences.

n-string: an ordered set $S_n = \{s_1, \dots, s_n\}$ of integers $s_j > 1$, with $p \nmid s_j$ for all j.

n-string: an ordered set $S_n = \{s_1, \dots, s_n\}$ of integers $s_j > 1$, with $p \nmid s_j$ for all j.

 S_n -configuration on C(k)': ordered subset $\{c_0, c_1, \ldots, c_n\} \subset C(k)$ such that $\operatorname{ord}(c_j - c_0) = s_j$, for all j.

n-string: an ordered set $S_n = \{s_1, \dots, s_n\}$ of integers $s_j > 1$, with $p \nmid s_j$ for all j.

 S_n -configuration on C(k)': ordered subset $\{c_0, c_1, \ldots, c_n\} \subset C(k)$ such that $\operatorname{ord}(c_j - c_0) = s_j$, for all j.

n-string: an ordered set $S_n = \{s_1, \dots, s_n\}$ of integers $s_j > 1$, with $p \nmid s_j$ for all j.

 S_n -configuration on C(k)': ordered subset $\{c_0, c_1, \ldots, c_n\} \subset C(k)$ such that $\operatorname{ord}(c_j - c_0) = s_j$, for all j.

Theorem

Let C be a curve over $k = \overline{\mathbb{F}}_p$ of genus g > 1. Then there exists a string S_n , with n < 2g such that

- $C(k) \subset J(k)$ contains an S_n -configuration,
- there exist at most finitely many nonisomorphic curves of genus g containing an S_n -configuration, modulo Frobenius twists.

Reconstructing the isogeny

Let

$$\phi: (C,J) \rightarrow (\tilde{C},\tilde{J})$$

be an isomorphism of pairs.

Theorem

Some powers of the endomorphisms $\phi(\operatorname{Fr}), \tilde{\operatorname{Fr}} \in \operatorname{End}(\tilde{J})$ commute.

Applications to anabelian geometry

Let $k = \overline{\mathbb{F}}_p$ and K = k(C). Let G_K be the absolute Galois group of K. Let

$$\mathcal{I}_{\mathcal{K}} := \{\mathcal{I}_{\nu}^{\mathsf{a}}\},$$

the set of inertia subgroups $\mathcal{I}_{\nu}^{a} \subset G_{K}^{a}$ of nontrivial divisorial valuations of K (i.e., points of C).

Theorem

Assume that g(C) > 2 and that

$$(G_K^a, \mathcal{I}_K) \simeq (G_{\tilde{K}}^a, \mathcal{I}_{\tilde{K}}).$$

Then

$$J \sim \tilde{J}$$
.

$$\operatorname{Sym}^{n}(C)(k)$$

$$\downarrow_{\mathbb{P}_{x}^{n-g}}$$

$$J(k)\ni x$$

Recall that there exist

$$y = c_1 + \cdots + c_n \in \mathbb{P}_x^{n-g}(k)$$

such that the zero-cycle is *k*-irreducible.

$$\operatorname{Sym}^{n}(C)(k)$$

$$\downarrow_{\mathbb{P}_{x}^{n-g}}$$

$$J(k)\ni x$$

Recall that there exist

$$y = c_1 + \cdots + c_n \in \mathbb{P}_x^{n-g}(k)$$

such that the zero-cycle is *k*-irreducible. Then

$$x=\sum_{i=1}^n\operatorname{Fr}^j(c_1)\in J(\bar k).$$

Lift Fr to an element in $\operatorname{End}_k(J)$ and put

$$\Psi := \sum_{j=1}^n \operatorname{Fr}^j.$$

Then $x = \Psi(c_1)$ and

$$J(k) \subset \Psi(C)(\bar{k}).$$

Lift Fr to an element in $\operatorname{End}_k(J)$ and put

$$\Psi := \sum_{i=1}^n \operatorname{Fr}^j.$$

Then $x = \Psi(c_1)$ and

$$J(k) \subset \Psi(C)(\bar{k}).$$

For any finite set of points $x_1,\ldots,x_r\in J(\bar k)$ we can find a Ψ such that

$$\{x_1,\ldots,x_r\}\subset \Psi(C)(\bar{k}).$$

Lift Fr to an element in $\operatorname{End}_k(J)$ and put

$$\Psi := \sum_{i=1}^n \operatorname{Fr}^j.$$

Then $x = \Psi(c_1)$ and

$$J(k) \subset \Psi(C)(\bar{k}).$$

For any finite set of points $x_1, \ldots, x_r \in J(\bar{k})$ we can find a Ψ such that

$$\{x_1,\ldots,x_r\}\subset \Psi(C)(\bar{k}).$$

A similar argument allows to replace Ψ by the endomorphism multiplication by n.

K3 surfaces in positive characteristic

Let X = A/G be a Kummer K3 surface: a desingularization of the quotient of an abelian surface by the action of a finite group $G = \mathbb{Z}/2, \mathbb{Z}/3, ...$ (there is a finite list of groups and actions).

For example,

$$X: \sum_{i=0}^{3} x_i^4 = 0.$$

K3 surfaces in positive characteristic

Let X = A/G be a Kummer K3 surface: a desingularization of the quotient of an abelian surface by the action of a finite group $G = \mathbb{Z}/2, \mathbb{Z}/3, ...$ (there is a finite list of groups and actions).

For example,

$$X: \sum_{i=0}^{3} x_i^4 = 0.$$

A Kummer K3 surface X is uniruled (or unirational) iff X is supersingular, i.e., A is supersingular (Shioda, Katsura).

Theorem (Rudakov-Shafarevich)

If the characteristic of k equals 2 then a K3 surface is supersingular if and only if it is unirational.

K3 surfaces over finite fields

Theorem (Bogomolov-T. 2005)

Let X = A/G be a Kummer surface defined over a (sufficiently large) finite field k. For every finite set of algebraic points $\{x_1, \ldots, x_n\}$ in the complement to exceptional curves there exists a geometrically irreducible rational curve R, defined over k, with

$$\{x_1,\ldots,x_n\}\subset R(\bar{k}).$$

K3 surfaces over finite fields

Theorem (Bogomolov-T. 2005)

Let X = A/G be a Kummer surface defined over a (sufficiently large) finite field k. For every finite set of algebraic points $\{x_1, \ldots, x_n\}$ in the complement to exceptional curves there exists a geometrically irreducible rational curve R, defined over k, with

$$\{x_1,\ldots,x_n\}\subset R(\bar{k}).$$

This gives examples of "rationally connected", non-uniruled K3 surfaces over finite fields.

Let $G = \mathbb{Z}/2$, and let k be sufficiently large, finite. Let C be a hyperelliptic curve of genus 2, fix $c_0 \in C(k)$ (a ramification point under the standard involution). We have an embedding

$$\begin{array}{ccc} C & \hookrightarrow & A \\ c & \mapsto & c - c_0 \end{array}$$

into the Jacobian A of C. We know that $A(\bar{k}) = \bigcup_n n \cdot C(\bar{k})$. The image of C in A/G is a rational curve.

Let $G = \mathbb{Z}/2$, and let k be sufficiently large, finite. Let C be a hyperelliptic curve of genus 2, fix $c_0 \in C(k)$ (a ramification point under the standard involution). We have an embedding

$$\begin{array}{ccc}
C & \hookrightarrow & A \\
c & \mapsto & c - c_0
\end{array}$$

into the Jacobian A of C. We know that $A(\bar{k}) = \bigcup_n n \cdot C(\bar{k})$. The image of C in A/G is a rational curve. Same holds for the images of $n \cdot C$.

Let $G = \mathbb{Z}/2$, and let k be sufficiently large, finite. Let C be a hyperelliptic curve of genus 2, fix $c_0 \in C(k)$ (a ramification point under the standard involution). We have an embedding

$$\begin{array}{ccc}
C & \hookrightarrow & A \\
c & \mapsto & c - c_0
\end{array}$$

into the Jacobian A of C. We know that $A(\bar{k}) = \bigcup_n n \cdot C(\bar{k})$. The image of C in A/G is a rational curve. Same holds for the images of $n \cdot C$. Thus every algebraic point on X lies on a rational curve.

Let $G = \mathbb{Z}/2$, and let k be sufficiently large, finite. Let C be a hyperelliptic curve of genus 2, fix $c_0 \in C(k)$ (a ramification point under the standard involution). We have an embedding

$$\begin{array}{ccc}
C & \hookrightarrow & A \\
c & \mapsto & c - c_0
\end{array}$$

into the Jacobian A of C. We know that $A(\bar{k}) = \bigcup_n n \cdot C(\bar{k})$. The image of C in A/G is a rational curve. Same holds for the images of $n \cdot C$. Thus every algebraic point on X lies on a rational curve. Similar arguments work for finitely many points and other groups G.

Let $G = \mathbb{Z}/2$, and let k be sufficiently large, finite. Let C be a hyperelliptic curve of genus 2, fix $c_0 \in C(k)$ (a ramification point under the standard involution). We have an embedding

$$\begin{array}{ccc}
C & \hookrightarrow & A \\
c & \mapsto & c - c_0
\end{array}$$

into the Jacobian A of C. We know that $A(\bar{k}) = \bigcup_n n \cdot C(\bar{k})$. The image of C in A/G is a rational curve. Same holds for the images of $n \cdot C$. Thus every algebraic point on X lies on a rational curve. Similar arguments work for finitely many points and other groups G.

Same for Calabi-Yau varieties built from abelian varieties or K3 surfaces.

Surfaces of general type

We work over a finite field of characteristic \geq 3. Consider the diagram

$$\begin{array}{cccc} X_1 & \to & X \\ \downarrow & & \downarrow & , \\ \mathbb{P}^2 & \to & X_0 \end{array}$$

where

- X_0 is a unirational surface of general type, $\mathbb{P}^2 \to X_0$
- $X_1 \to \mathbb{P}^2$ is a double cover ramified in a curve of degree 6; it is a K3 surface. Moreover, we may assume that X_1 is a non-supersingular (and thus non-uniruled) Kummer surface.

Surfaces of general type

We work over a finite field of characteristic \geq 3. Consider the diagram

$$\begin{array}{cccc} X_1 & \to & X \\ \downarrow & & \downarrow & , \\ \mathbb{P}^2 & \to & X_0 \end{array}$$

where

- X_0 is a unirational surface of general type, $\mathbb{P}^2 \to X_0$
- $X_1 \to \mathbb{P}^2$ is a double cover ramified in a curve of degree 6; it is a K3 surface. Moreover, we may assume that X_1 is a non-supersingular (and thus non-uniruled) Kummer surface.

Then X is

- rationally connected,
- of general type,
- non-uniruled.

