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Divisibilities

Homework

Let a, b be integers > 2. Assume that

a"—1|b"—1,

for all n € N. Then b is a power of a.
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Divisibilities

Homework

Let a, b be integers > 2. Assume that

a"—1|b"-1,
for all n € N. Then b is a power of a.

Bugeaud, Corvaja, Zannier (2003)

Let a, b € N be multiplicatively independent. Fix ¢ > 0. Then
there exists a ¢ = c(a, b, €) such that

log(ged(a” — 1,b" — 1)) < en+c,

for all n € \N.
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Divisibility

Let K be a number field. For o, 5 € K*, put
vt(a) := max{0, v(a)}

heea(c = 1,8 —1) := > min{v* (o = 1),v"(8 - 1)},

Corvaja-Zannier (2005)

Let S be a finite set of places of K and o, 8 € Os. Then

hgea(or — 1,8 — 1) < emax{h(a), h(B)} + c(K, S, ¢€).
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Vojta's conjecture

m K number field, S finite set of places
m X /K smooth, D C X normal crossings

m L very ample divisor on X

For all P € X(K) \ Z. one has

hD,S(P) T hKX(P) < EhL(P).
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Vojta's conjecture

Silverman (2004)

Let 7 : X = Bly(X)—X = P! x P!, with Y = (1,1), and let £
be the exceptional divisor. Then

hgcd(a = i, (0= 1) = h)~(7E((O‘>ﬁ)) + 0(1)7

for all a, B € Q, # (1,1).
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Vojta's conjecture

Silverman (2004)
Let 7 : X = Bly(X)—X = P! x P!, with Y = (1,1), and let £
be the exceptional divisor. Then

hgcd(a = i, (0= 1) = h)~(7E((O‘>ﬁ)) + O(l),

for all a, B € Q,# (1,1). When a, 8 € Os are multiplicatively
independent, Vojta's conjecture implies the theorem of
Corvaja-Zannier.
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Vojta's conjecture

Silverman (2004)

Let 7 : X = Bly(X)—X = P! x P!, with Y = (1,1), and let £
be the exceptional divisor. Then

hgcd(a = i, (0= 1) = h)~(7E((O‘>ﬁ)) + O(l),

for all a, B € Q,# (1,1). When a, 8 € Os are multiplicatively
independent, Vojta's conjecture implies the theorem of
Corvaja-Zannier.

This instance of Vojta's conjecture (on G, x Gy C P x P) is
proved using Schmidt's subspace theorem.
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Recurrence sequences

R : N—C is a linear recurrence if
(n+r) Z aiR(n+1)

for some a; € C and all n € N.
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Recurrence sequences

R : N—C is a linear recurrence if
(n+r) Z aiR(n+1)

for some a; € C and all n € N. Equivalently,

R(n) =Y c(ny",
yero
where
m ¢, €C[x]
m [0 C C* is a finite set of roots of R.
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Recurrence sequences

R : N—C is a linear recurrence if
(n+r) Z aiR(n+1)

for some a; € C and all n € N. Equivalently,
R(n) = e (n",
yero
where
m ¢, €C[x]
m [0 C C* is a finite set of roots of R.
R is called simple if ¢, € C*, for all v € 0.
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Recurrence sequences

Let I C C* be the group generated by 0. Assume that I is
torsion-free.
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Recurrence sequences

Let I C C* be the group generated by 0. Assume that I is
torsion-free.

m {71,...,7}: abasisof [

m C[[]: algebra of Laurent polynomials x” = []’_, x¥, where

=17
,
v = H’yi" erl.
i=1
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Recurrence sequences

Let I C C* be the group generated by 0. Assume that I is
torsion-free.

m {71,...,7}: abasisof [

m C[[]: algebra of Laurent polynomials x” = []’_, x¥, where

=17
,
v = H’yi" erl.
i=1

m Rr: ring of simple linear recurrences with roots in .
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Recurrence sequences

Rr is isomorphic to C[I].

A Torelli theorem over finite fields



Recurrence sequences

Rr is isomorphic to C[I].

RHFRGC[F]
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Recurrence sequences

Corvaja-Zannier, Inv. Math. (2002)

Let R and R be simple linear recurrences such that
R(n), R(7) # 0, for all n, > 0;

the subgroup I C C* generated by the roots of R and R is
torsion-free;

there is a finitely-generated subring 2 C C with
R(n)/R(n) € A, for infinitely many n € N.
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Recurrence sequences

Corvaja-Zannier, Inv. Math. (2002)

Let R and R be simple linear recurrences such that
R(n), R(7) # 0, for all n, > 0;

the subgroup I C C* generated by the roots of R and R is
torsion-free;

there is a finitely-generated subring 2 C C with
R(n)/R(n) € A, for infinitely many n € N.

Then
QR : N — C

n — R(n)/f\’(n)

is a simple linear recurrence. In particular, the Fo € C[I'] and

Fo-Fg = Fr.
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Laurent polynomials

Let I C C* be finitely-generated and torsion-free. Let C[I'] be the
ring of Laurent polynomials.

m If v €I is primitive then x” — X is irreducible in C[I'].
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Laurent polynomials

Let I C C* be finitely-generated and torsion-free. Let C[I'] be the
ring of Laurent polynomials.

m If v €I is primitive then x” — X is irreducible in C[I'].

m For 7,7 €T, the polynomials x7 — 1,x7" — 1 are not coprime
in C[I'] if and only if ,~" generate a cyclic subgroup in I
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Recurrence sequences

m X: smooth projective variety over [, of dimension d
m k,/k: unique extension of degree n
m Fr: Frobenius on the étale cohomology HZ,(X,Q), with £t q

m % := {a;}: corresponding eigenvalues
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Recurrence sequences

m X: smooth projective variety over [, of dimension d
m k,/k: unique extension of degree n
m Fr: Frobenius on the étale cohomology HZ,(X,Q), with £t q

m % := {a;}: corresponding eigenvalues

2d

#X (ko) = tr(Fr") = Y (=1) ¢z,

i=0
where ¢; € C*.

A Torelli theorem over finite fields



Recurrence sequences

m X: smooth projective variety over [, of dimension d
m k,/k: unique extension of degree n
m Fr: Frobenius on the étale cohomology HZ,(X,Q), with £t q

m % := {a;}: corresponding eigenvalues

2d

#X (ko) = tr(Fr") = Y (=1) ¢z,

i=0

where ¢;; € C*. This is a simple linear recurrence.
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Recurrence sequences

m X: smooth projective variety over [, of dimension d
m k,/k: unique extension of degree n
m Fr: Frobenius on the étale cohomology HZ,(X,Q), with £t q

m % := {a;}: corresponding eigenvalues

2d

#X (ko) = tr(Fr") = Y (=1) ¢z,

i=0
where ¢;; € C*. This is a simple linear recurrence. Let ['x C C* be
the multiplicative group generated by «;;.
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Recurrence sequences

Theorem

Let X and X be smooth projective varieties over a finite field ky,
resp. ki. Assume that

#X(kn) | #X (kn),
for infinitely many n € N. Then char(k;) = char(k;) and

FX®QQF)~<®Q.
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Abelian varieties

Let A be an abelian variety over k; := Fg4. Let {a}}j=1, 2g be the
set of eigenvalues of Frobenius on HL(A,Q;), for £ # p. Let k,/k
be the unique extension of degree n. The sequence

2g

R(n) := #A(ka) = [ (o] - 1).

j=1

is a simple linear recurrence.
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Abelian varieties

Let A be an abelian variety over k; := Fg4. Let {a}}j=1, 2g be the
set of eigenvalues of Frobenius on HL(A,Q;), for £ # p. Let k,/k
be the unique extension of degree n. The sequence

2g

R(n) := #A(ka) = [ (o] - 1).

j=1

is a simple linear recurrence.

|

Theorem

Let A and A be abelian varieties of dimension g over finite fields
ki, resp. ki. Let R and R be the corresponding recurrences.
Assume that R(n) | R(n), for infinitely many n € N. Then
char(k;) = char(k;) and A and A are isogenous.
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Sketch of proof

Assume that the group I' generated by {c;} is torsion-free. Fix a
basis y1,...,7, of [ and write

R aij
O‘J—H'Vj :
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Sketch of proof

Assume that the group I' generated by {c;} is torsion-free. Fix a
basis y1,...,7, of [ and write

R aij
O‘J—H'Vj :

Since all conjugates of «; have absolute value ,/q, we have
m either o = oy

m or o, generate a subgroup of rank 2 in I'.
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Sketch of proof

Assume that the group I' generated by {c;} is torsion-free. Fix a
basis y1,...,7, of [ and write

R aij
O‘J—H'Vj :

Since all conjugates of «; have absolute value ,/q, we have
m either o = oy
m or o, generate a subgroup of rank 2 in I'.

Let {aj} = UL_;/s be a subdivision into subsets of equal elements,
t <2g. Put ds := #Is.
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Sketch of proof

Let ' C C* be the group generated by {¢;} and {&;}. Again, we
may assume that I is torsion free. N
The Laurent polynomials for R(n), R(n) have the form:

t

Fo) = [[d]x* - 0% Fe)=][(]x"*-n*.

s=1i=1 3=1 i=1

Lemma

r r
ged(J[x™ - 1,][ % —1) =1,
i=1 i=1

for s # 5.
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Sketch of proof

Let ' C C* be the group generated by {¢;} and {&;}. Again, we
may assume that I is torsion free. N
The Laurent polynomials for R(n), R(n) have the form:

t

Fo) = [[d]x* - 0% Fe)=][(]x"*-n*.

s=1i=1 3=1 i=1

Lemma

r r
ged(J[x™ - 1,][ % —1) =1,
i=1 i=1

for s # 5.
Same holds for F.
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Sketch of proof

Using Lemma above, have t = . Order indices so that #/s = 1
and so that the multiplicative sugroups generated by as € /s and
Qs € Is haverank 1, forall s=1,... t.
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Sketch of proof

Using Lemma above, have t = . Order indices so that #/s = 1
and so that the multiplicative sugroups generated by as € /s and
Qs € Is haverank 1, forall s=1,... t.

It follows that &s = a2, where u € Q depends only on k; and ki

A Torelli theorem over finite fields



Sketch of proof

Using Lemma above, have t = . Order indices so that #/s = 1
and so that the multiplicative sugroups generated by as € /s and
Qs € Is haverank 1, forall s=1,... t.

It follows that &s = a2, where u € Q depends only on k; and ki

Thus some powers of the Frobenius morphisms Fr, Fr have the
same sets of eigenvalues with equal multiplicities.
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A theorem of Tate

Hom(A, A) @ Z, = Homgz, m( T2 (A), Ti(A)).
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A theorem of Tate

Hom(A, A) ® Z, = Homg, [ ( Te(A), Te(A)).

In particular, A and A are isogenous (the characteristic polynomials
of Fr and Fr coincide).
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Curves and their Jacobians

Let k be any field and C/k a smooth curve over k of genus
g(C) > 2, with C(k) # (0. For each n € N, we have

(c1y...,cn) ——=(c1+---+cn)
C" ——Sym"(C)

|

Jn
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Curves and their Jacobians

Let k be any field and C/k a smooth curve over k of genus
g(C) > 2, with C(k) # (0. For each n € N, we have

(c1y...,cn) ——=(c1+---+cn)

" ——— Sym"(C)

-
Jn
Choosing ¢y € C(k), we may identify J" ~ J.
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Curves and their Jacobians

Let k be any field and C/k a smooth curve over k of genus
g(C) > 2, with C(k) # (0. For each n € N, we have

(c1y...,cn) ——=(c1+---+cn)

" ——— Sym"(C)

-
Jn
Choosing ¢y € C(k), we may identify J" ~ J.

m Image(Ag—1) = © C J, the Theta divisor
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Curves and their Jacobians

Let k be any field and C/k a smooth curve over k of genus
g(C) > 2, with C(k) # (0. For each n € N, we have

(c1y...,cn) ——=(c1+---+cn)

" ——— Sym"(C)

-
Jn
Choosing ¢y € C(k), we may identify J" ~ J.

m Image(Ag—1) = © C J, the Theta divisor

m Torelli: the pair (J,©) determines C, up to isomorphism
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Curves and their Jacobians

Let k be any field and C/k a smooth curve over k of genus
g(C) > 2, with C(k) # (0. For each n € N, we have

(c1y...,cn) ——=(c1+---+cn)

" ——— Sym"(C)

-
Jn
Choosing ¢y € C(k), we may identify J" ~ J.

m Image(Ag—1) = © C J, the Theta divisor

m Torelli: the pair (J,©) determines C, up to isomorphism
mforn>2g—1, A\, is a P"8-bundle
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Curves and their Jacobians: Equidistribution

Let k be a finite field, #k > 1 (e.g., ~ 2g?). Choose a point
x € J(k).

Sym”(C)(k)

J(k) > x
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Curves and their Jacobians: Equidistribution

Let k be a finite field, #k > 1 (e.g., ~ 2g?). Choose a point
x € J(k).

Sym”(C)(k)

J(k) > x

There exists a y € Px(k) such that the zero-cycle
y =c1+ -+ cp is completely split over k.
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Curves and their Jacobians: Equidistribution

Let k be a finite field, #k > 1 (e.g., ~ 2g?). Choose a point
x € J(k).

Sym”(C)(k)

J(k) > x

There exists a y € Px(k) such that the zero-cycle
y =c1+ -+ cp is completely split over k.

There exists a y € Py(k) such thaty = ¢+ -+ ¢y is
irreducible over k.
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Curves and their Jacobians: Applications

Let k be a (sufficiently large) finite field and k its algebraic closure.
Recall

J(k) = p-part © P (Qe/Z,).

L#£p
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Curves and their Jacobians: Applications

Let k be a (sufficiently large) finite field and k its algebraic closure.
Recall

J(k) = p-part © P (Qe/Z,).

L#£p

J(k) is generated by C(k).
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Curves and their Jacobians: Applications

Let k be a (sufficiently large) finite field and k its algebraic closure.
Recall

J(k) = p-part © P (Qe/Z,).

L#£p

J(k) is generated by C(k).
JE) = Upens - C(R).
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Curves and their Jacobians

Let
k=kiChkC...Ck,C...

be the tower of degree 2 extensions.
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Curves and their Jacobians

Let
k=kiChkC...Ck,C...

be the tower of degree 2 extensions.
Let C be a nonhyperelliptic curve of genus g(C) > 3. By (1), to
characterize J(kp) it suffices to characterize C(k,).
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Curves and their Jacobians

Let
k=kiChkC...Ck,C...

be the tower of degree 2 extensions.
Let C be a nonhyperelliptic curve of genus g(C) > 3. By (1), to
characterize J(kp) it suffices to characterize C(k,).

Inductive characterization of J(kp), n € N

J(k,) is generated by points ¢ € C(k) such that
mC ¢ C(kn_l)
m there exists a point ¢’ € C(k) with

c+c € J(kn-1)-
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Curves and their Jacobians

Let C be another smooth projective curve and J its Jacobian.
Isomorphism of pairs:

where
m ¢%: isomorphism of abstract abelian groups;
m ¢l: isomorphism of homogeneous spaces, compatible with ¢?;
m the restriction ¢s : C(k)—C(k) of ¢* is a bijection of sets.
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Curves and their Jacobians: Torelli

Let (C,J) —>~(C', J) be an isomorphism of pairs. Then J is
isogenous to J.
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Curves and their Jacobians: Torelli

Theorem

Let (C,J) —>~(C', J) be an isomorphism of pairs. Then J is
isogenous to J.

Proof.
Choose ki, ki (sufficiently large) such that ¢(J(k1)) C J(ki)
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Curves and their Jacobians: Torelli

Theorem

Let (C,J) —>~(C', J) be an isomorphism of pairs. Then J is
isogenous to J.

Proof.

Choose ki, ki (sufficiently large) such that ¢(J(k1)) € J(k1)
Define C(k,), resp. C(k,), intrinsically, as above.
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Curves and their Jacobians: Torelli

Theorem

Let (C,J) —>~(C', J) be an isomorphism of pairs. Then J is
isogenous to J.

Proof.

Choose ki, ki (sufficiently large) such that ¢(J(k1)) € J(k1)
Define C(k,), resp. C(k,), intrinsically, as above.
Have ¢(J(kn)) € J(ky), for all n € N.
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Curves and their Jacobians: Torelli

Theorem

Let (C,J) —>~(C', J) be an isomorphism of pairs. Then J is
isogenous to J.

Proof.
Choose ki, ki (sufficiently large) such that ¢(J(k1)) € J(k1)
Define C(k,), resp. C(k,), intrinsically, as above.
Have ¢(J(kn)) € J(ky), for all n € N.
B #J(kn) | #J(kn)
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Curves and their Jacobians: Torelli

Theorem

Let (C,J) —>~(C', J) be an isomorphism of pairs. Then J is
isogenous to J.

Proof.
Choose ki, ki (sufficiently large) such that ¢(J(k1)) € J(k1)
Define C(k,), resp. C(k,), intrinsically, as above.
Have ¢(J(kn)) € J(ky), for all n € N.
B #J(kn) | #J(kn)

B Apply the result about recurrence sequences.
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Specifying the curve

n-string: an ordered set S, = {s1,..., sy} of integers s; > 1, with
p1s; forall j.
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Specifying the curve

n-string: an ordered set S, = {s1,..., sy} of integers s; > 1, with
p1s; forall j.

Sp-configuration on C(k)': ordered subset {cp, ci,...,cn} C C(k)
such that ord(c; — ) = s, for all ;.
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Specifying the curve

n-string: an ordered set S, = {s1,..., sy} of integers s; > 1, with
p1s; forall j.

Sp-configuration on C(k)': ordered subset {cp, ci,...,cn} C C(k)
such that ord(c; — ) = s, for all ;.
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Specifying the curve

n-string: an ordered set S, = {s1,..., sy} of integers s; > 1, with
p1s; forall j.

Sp-configuration on C(k)': ordered subset {cp, ci,...,cn} C C(k)
such that ord(c; — ) = s, for all ;.

Theorem
Let C be a curve over k = [P_'p of genus g > 1. Then there exists a
string Sp, with n < 2g such that

m C(k) C J(k) contains an S,-configuration,

B there exist at most finitely many nonisomorphic curves of
genus g containing an Sp-configuration, modulo Frobenius
twists.
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Reconstructing the isogeny

Let

¢ (C.J)—(C.J)

be an isomorphism of pairs.

Theorem

Some powers of the endomorphisms ¢(Fr), Fr € End(J) commute.
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Applications to anabelian geometry

Let k = F, and K = k(C). Let Gk be the absolute Galois group
of K. Let
Ik :=A{1}},

the set of inertia subgroups Z7 C G2 of nontrivial divisorial
valuations of K (i.e., points of C).

Assume that g(C) > 2 and that

(Gi, k) = (G Ii)-

Then y
J~ J.
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Curves and their Jacobians

Sym"(C)(k)

J(k) > x
Recall that there exist

y=c+---+cy Py 8k)

such that the zero-cycle is k-irreducible.
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Curves and their Jacobians

Sym"(C)(k)

J(k) > x
Recall that there exist

y=c+---+cy Py 8k)

such that the zero-cycle is k-irreducible. Then

X = ZFrj(cl) € J(k).

i=1
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Curves and their Jacobians

Lift Fr to an element in End,(J) and put

n
V= ZFrj.
i=1
Then x = V() and

J(k) € W(C)(k).
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Curves and their Jacobians
Lift Fr to an element in End,(J) and put
n .
V= ZFrJ.
i=1

Then x = V() and

J(k) € W(C)(k).

For any finite set of points xi,...,x, € J(k) we can find a ¥ such
that B
{x1,...,x} CVY(C)(k).
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Curves and their Jacobians

Lift Fr to an element in End,(J) and put

V= iFrj.
i=1
Then x = V() and
J(k) C W(C)(k).

For any finite set of points xi,...,x, € J(k) we can find a ¥ such
that

{x1,...,x} C W(C) (k).

A similar argument allows to replace W by the endomorphism
multiplication by n.
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K3 surfaces in positive characteristic

Let X = /T/VG be a Kummer K3 surface: a desingularization of the
quotient of an abelian surface by the action of a finite group
G =17/2,7/3,... (there is a finite list of groups and actions).

For example,
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K3 surfaces in positive characteristic

Let X = /4T/v(_; be a Kummer K3 surface: a desingularization of the
quotient of an abelian surface by the action of a finite group
G =17/2,7/3,... (there is a finite list of groups and actions).

For example,
3
X fo' =0.
i=0

A Kummer K3 surface X is uniruled (or unirational) iff X is
supersingular, i.e., A is supersingular (Shioda, Katsura).

Theorem (Rudakov-Shafarevich)

If the characteristic of k equals 2 then a K3 surface is
supersingular if and only if it is unirational.
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K3 surfaces over finite fields

Theorem (Bogomolov-T. 2005)

|

Let X = A/G be a Kummer surface defined over a (sufficiently
large) finite field k. For every finite set of algebraic points
{x1,...,xn} in the complement to exceptional curves there exists a
geometrically irreducible rational curve R, defined over k, with

{x1,...,x,} C R(k).
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K3 surfaces over finite fields

Theorem (Bogomolov-T. 2005)

|

Let X = A/G be a Kummer surface defined over a (sufficiently
large) finite field k. For every finite set of algebraic points
{x1,...,xn} in the complement to exceptional curves there exists a
geometrically irreducible rational curve R, defined over k, with

{x1,...,x,} C R(k).

This gives examples of “rationally connected”, non-uniruled K3
surfaces over finite fields.
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Proof

Let G =Z/2, and let k be sufficiently large, finite. Let C be a
hyperelliptic curve of genus 2, fix ¢g € C(k) (a ramification point
under the standard involution). We have an embedding

C — A

c — Cc—q

into the Jacobian A of C. We know that A(k) = U,n- C(k). The
image of C in A/G is a rational curve.
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Proof

Let G =Z/2, and let k be sufficiently large, finite. Let C be a
hyperelliptic curve of genus 2, fix ¢g € C(k) (a ramification point
under the standard involution). We have an embedding

C — A

c — Cc—q

into the Jacobian A of C. We know that A(k) = U,n- C(k). The
image of C in A/G is a rational curve. Same holds for the images
of n- C.
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Proof

Let G =Z/2, and let k be sufficiently large, finite. Let C be a
hyperelliptic curve of genus 2, fix ¢g € C(k) (a ramification point
under the standard involution). We have an embedding

C — A

c — Cc—q

into the Jacobian A of C. We know that A(k) = U,n- C(k). The
image of C in A/G is a rational curve. Same holds for the images
of n- C. Thus every algebraic point on X lies on a rational curve.
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Proof

Let G =Z/2, and let k be sufficiently large, finite. Let C be a
hyperelliptic curve of genus 2, fix ¢g € C(k) (a ramification point
under the standard involution). We have an embedding

C — A

c — Cc—Q
into the Jacobian A of C. We know that A(k) = U,n- C(k). The
image of C in A/G is a rational curve. Same holds for the images
of n- C. Thus every algebraic point on X lies on a rational curve.

Similar arguments work for finitely many points and other groups

G.

A Torelli theorem over finite fields



Proof

Let G =Z/2, and let k be sufficiently large, finite. Let C be a
hyperelliptic curve of genus 2, fix ¢g € C(k) (a ramification point
under the standard involution). We have an embedding

C — A

c — Cc—q

into the Jacobian A of C. We know that A(k) = U,n- C(k). The
image of C in A/G is a rational curve. Same holds for the images
of n- C. Thus every algebraic point on X lies on a rational curve.
Similar arguments work for finitely many points and other groups
G.

Same for Calabi-Yau varieties built from abelian varieties or K3
surfaces.
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Surfaces of general type

We work over a finite field of characteristic > 3. Consider the

diagram
Xl — X
1 s
P2 — X
where

m Xp is a unirational surface of general type, P> — X

m X; — P2 is a double cover ramified in a curve of degree 6; it
is a K3 surface. Moreover, we may assume that Xj is a
non-supersingular (and thus non-uniruled) Kummer surface.
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Surfaces of general type

We work over a finite field of characteristic > 3. Consider the

diagram
Xl — X
1 s
P2 — X
where

m Xp is a unirational surface of general type, P> — X

m X; — P2 is a double cover ramified in a curve of degree 6; it
is a K3 surface. Moreover, we may assume that Xj is a
non-supersingular (and thus non-uniruled) Kummer surface.

Then X is
m rationally connected,
m of general type,
m non-uniruled.
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