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Notations:

f : Cm− → CPn

nonconstant meromorphic map, with re-

duced representation f = [f0 : ... : fn], i.e.

codimV (f0, ..., fn) ≥ 2.

Tf(r) :=
∫
S(r)

log ||f ||σ −
∫
S(1)

log ||f ||σ

characteristic function, with

||f ||(z) := max{|f0(z)|, ..., |fn(z)|},
σ := dc log ||z||2 ∧ (ddc log ||z||)m−1

Kf
field of small meromorphic functions φ :

Cm− → P1, i.e. such that Tφ(r) = o(Tf(r))



Qj =
∑
I∈τdj

ajIx
I , j = 1, ..., q

homogenous polynomials in Kf [x0, ..., xn]

of degree dj, q ≥ n+ 1

K{Qj}qj=1
:=

C <
ajI1
ajI2

: ajI2 6= 0, I1, I2 ∈ τdj , j = 1, ..., q >



N
[L]
f (r,Q) := N

[L]
Q(f0,...,fn)(r)

truncated counting function of f w.r.t.

Q, where Q ∈ Kf [x0, ..., xn], L ∈ N ∪ {∞}
In more details: If φ : Cm− → P1 is mero-

morphic, a ∈ Cm, φ = [G : F ] a reduced

representation, we put νφ(a) := νF (a) =

vanishing order of F in a. If still V =

(ddc||z||2)m−1 we put

n[L](t, φ) =
∫
|νφ|∩B(t)

min(L, νφ)V ,

N
[L]
φ (r) =

∫ r
1

n[L](t, φ)

t2m−1
dt .

As usual, by the notation “‖P” we mean

the assertion P holds for all r ∈ [1,+∞)

excluding a Borel subset E of (1,+∞)

with
∫
E

dr < +∞.



We say that a set {Qj}
q
j=1 (q ≥ n + 1)

of homogeneous polynomials in Kf [x0, . . . ,

xn] is in (weakly) general position if

there exists z ∈ Cm in which all coefficient

functions of all Qj, j = 1, ..., q are holo-

morphic and such that for any 1 ≤ j0 <

. . . < jn ≤ q the system of equations{
Qji(z)(x0, . . . , xn) = 0
0 ≤ i ≤ n

has only the trivial solution (x0, . . . , xn) =

(0, . . . ,0) in Cn+1. In this case this is true

for generic z ∈ Cm.



Second Main Theorem. Let f be a non-

constant meromorphic map of Cm into Pn.

Let {Qj}
q
j=1 be homogeneous polynomials in

weakly general position in Kf [x0, . . . , xn] with

degQj = dj ≥ 1. Assume that f is alge-

braically nondegenerate over K{Qj}qj=1
. Then

for any ε > 0, there exist positive integers

Lj (j = 1, . . . , q), depending only on n, ε and

dj (j = 1, . . . , q) in an explicit way such that

‖(q − n− 1− ε)Tf(r) ≤
q∑

j=1

1

dj
N

[Lj]
f (r,Qj).

Estimates With the notation of the Second

Main Theorem above, we have

Lj ≤
dj ·

(
n+N
n

)
tp0+1 − dj

d
+ 1 ,

where d is the least common multiple of the

dj’s and



N = d · [2(n+ 1)(2n− 1)(nd+ 1)ε−1 + n+ 1] ,

M =

(
n+N
n

)
, L =

(
q
n

)

p0 = [
(M2.L− 1). log(M2.L)

log(1 + ε
2MN )

+ 1]2,

and

tp0+1 <
(
M2.L+ p0

)M2.L−1
,

where we denote [x] := max{k ∈ Z : k ≤ x}
for a real number x. Furthermore, in the case

of fixed hypersurfaces (Qj ∈ C[x0, . . . , xn], j =

1, . . . , q), we have tp = 1 for all positive inte-

gers p, so we get a better estimate:

Lj ≤
dj ·

(
n+N
n

)
− dj

d
+ 1.



The First Main Theorem is the following
classical result: Let f be a nonconstant mero-
morphic map of Cm into Pn. Let Q be a ho-
mogeneous polynomials in Kf [x0, . . . , xn] with
degQ = d ≥ 1. Assume Q(f0 : ... : fn) 6≡ 0.
Then

Nf(r,Q) ≤ d · Tf(r) + o(Tf(r)) .

The defect is defined by

δf(Q) = lim inf
r→∞ (1−

Nf(r,Q)

d · Tf(r)
) .

Corollary: Under the assumptions of the Sec-
ond Main Theorem, we have

q∑
j=1

δf(Qj) ≤ n+ 1 .

We remark that our Second Main Theorem
is not strong enough to get the same defect

relation for the truncated defects δ
[Lj]
f (Qj) :=

lim infr→∞ (1−
N

[Lj]

f (r,Q)

d·Tf(r) ) (unless we estimate

by n+ 1 + ε), since the Lj depend on ε.



Related results:

I) Results without truncation:

Theorem(Ru, Annals Math ’08(?), Amer.J.Math

’04) Let V ⊂ PN be a smooth complex projec-

tive variety of dimension n ≥ 1. Let {Dj}
q
j=1

be hypersurfaces in PN of degree degDj =

dj ≥ 1, located in general position in V . Let

f : C→ V be an algebraically non-degenerate

holomorphic map. Then, for every ε > 0,

‖(q − n− 1− ε)Tf(r) ≤
q∑

j=1

1

dj
Nf(r,Dj) .

This result is from ’08, the special case where

V = Pn is from ’04. The latter had been

conjectured by Shiffman in ’79.

We also remark that that for moving hyper-

planes (i.e. d1 = ... = dq = 1), and count-

ing functions non truncated our Second Main

Theorem had been proved by Ru-Stoll in ’91.



2) Results with truncation:

Theorem(An-Phuong, Houston J.Math. ’08(?))
Let {Dj}

q
j=1 be hypersurfaces in Pn, of de-

gree degDj = dj ≥ 1, in general position. Let
f : C→ Pn be an algebraically non-degenerate
holomorphic map. Let d be the least common
multiple of the dj’s. Let 1 > ε > 0, and let

L ≥ 2d[2n(n+ 1)n(d+ 1)ε−1]n .

Then

‖(q − n− 1− ε)Tf(r) ≤
q∑

j=1

1

dj
N [L]f(r,Dj) .

We remark that Yan-Chen ’08(?) Acta Math.
Sinica had this result with a non-effective trun-
cation. We also remark that a version of our
Second Main Theorem for moving hypersur-
faces with non-effective truncation was before
the above result. All these results base on the
result of Ru ’04, which brought a technique
of Corvaja-Zannier, (Amer.J.Math. ’04) to
Nevanlinna theory (cf. below).



3) Related results for hyperbolicity and

meromorphically normal families:

Hyperbolicity of the complement of hyper-

surfaces only makes sense for fixed hypersur-

faces. Using the Second Main Theorem for

fixed hypersurfaces (Ru ’04) gives:

An entire curve f : C → Pn \
⋃q
i=1Di is al-

gebraically degenerate, for q ≥ n + 2 hyper-

surfaces in general position. This result was

however already due to Green.

On the other hand, the question of algebraic

degeneracy of entire curves omitting slowly

moving hypersurfaces makes sense, and there

we get, as a (trivial) corollary of our Second

Main Theorem:

Corollary: Let f be a nonconstant meromor-

phic map of Cm into Pn. Let {Qj}
q
j=1 be q ≥



n+2 homogeneous polynomials in weakly gen-

eral position in Kf [x0, . . . , xn] with degQj =

dj ≥ 1. Assume that f omits the divisors

Qj = 0, in the sense that Nf(r,Qj) = o(Tf(r))

for j = 1, ..., q (or = 0 if the coefficients of Qj
are in reduced representation). Then f is al-

gebraically degenerate over K{Qj}qj=1
.

This result becomes meaningless if we enlarge

the field of coefficients from Kf to the field

M(Cm) of all meromorphic functions on Cm.

However, as it was observed by Tu and Li in

’05, theorems of normal family type can still

make sense and hold even if hyperplanes move

“rapidly”, and even if there is some intersec-

tion with the hyperplanes, if there are at least

2n + 1 of them. Without mentioning all re-

sults which have been obtained so far, let me

just mention the following recent result in the

“rapidly” moving hypersurface context:



Theorem (Quang-Tan, Ann. Polonici Math.

’08): Let F be a family of meromorphic map-

pings of a domain D ⊂ Cm into Pn and let

Q1, ..., Qq (q ≥ 2n + 1) be q moving hypersur-

faces in Pn in (weakly) general position such

that:

i) For any fixed compact subset K of D, the

2(m−1)-dimensional Lebesgue areas of f−1(Qj)∩
K(1 ≤ j ≤ n+1) counting multiplicities for all

f ∈ F are bounded above.

ii) For any fixed compact subset K of D,

the 2(m − 1)-dimensional Lebesgue areas of

f−1(Qj)∩K(n+ 2 ≤ j ≤ q) ignoring multiplic-

ities for all f ∈ F are bounded above.

Then F is a meromorphically normal family

on D.



4) Uniqueness theorems: There have been

many uniqueness theorems for hyperplane tar-

gets (first fixed and then also moving). For

fixed hypersurface targets we have

Theorem(Dulock-Ru ’08) Let Dj, 1 ≤ j ≤ q
be hypersurfaces of degree dj in Pn in gen-

eral position. Let d0 = min{d1, ..., dq}, d =

lcm{d1, ..., dq}, and M = 2d[2n+1(n+ 1)n(d+

1)]n. Suppose f, g : C → Pn are algebraically

non degenerate holomorphic mappings such

that f(z) = g(z) for all z ∈ S, where S =⋃q
j=1{f

−1(Dj) ∪ g−1(Dj)}. Then if q > (n +

1) + 2Mn/d0 + 1/2, then f ≡ g.

For moving hypersurface targets, we can get

(so far...):



Theorem: Let f, g : Cm− → Pn meromorphic

maps which are algebraically non degenerate

over K{Qj}qj=1
and satisfy:

i) dim {Qi(f) = Qj(f) = 0} ≤ m − 2 for all

1 ≤ i < j ≤ q.
ii) f = g on ∪qi=1f

−1(Qj).

Then if q > n+ 3/2 + 2L/d then f ≡ g, where

d is the least common multiple of the degrees

of Qj and L the maximal Lj of our Second

Main Theorem.



5) Related results in diophantine approx-

imation and function fields:

Theorem(Corvaja-Zannier, Amer.J.Math.

’04) For ν ∈ S, let fiν, i = 1, ..., n − 1, be

polynomials in k[x1, ...xn] of degrees δiν > 0.

Put δν = maxi δiν and µ = minν∈S
∑n−1
i=1 δiν/δν.

Fix ε > 0 and consider the Zariski closure H
in Pn of the set of solutions x ∈ OnS of

∏
ν∈S

n−1∏
i=1

|fiν(x)|1/δνν ≤ H(x)µ−n−ε .

Suppose that, for ν ∈ S, x0 and the f̄iν, i =

1, ..., n − 1 define a variety of dimension 0.

Then dimH ≤ n − 1. Moreover, if H′ is a

component of H of dimension n−1, there ex-

ists ν ∈ S such that the f̄iν determine in H′ a

variety of dimension 1.

Theorem(An-Wang, J.Number Theory ’07)

Let {Qj}
q
j=1 be homogenous polynomials of



degree dj in K[x0, ..., xn] in general position
and S be a finite set of prime divisors of V .
Then given ε > 0, there exists an effective
countably union Uε of proper algebraic sub-
sets of Pn(K) and an effectively computable
constants cε and c′ε, depending only on ε and
the given hypersurfaces, such that for any
x ∈ P \ Uε either

h(x) ≤ cε
or

q∑
i=1

∑
P∈S

d−1
i λP,Qi(x) ≤ (n+ 1 + ε)h(x) + c′ε .

Furthermore, the degree of the algebraic sub-
sets in Uε can be bounded by

2n+1nd(d+ 1)(n+ 1)(2ε−1 + 1) ,

where d = lcm(d1, ..., dq).

We also remark that Ru-Wang announced a
result on the function field analogon of Ru’s
theorem in Annals of Math. ’08, with effective
bounds.



Description of the main proof ideas:

The proof of our Second Main Theorem and

of the estimate of truncation consists of 3

main steps:

Step 1: We obtain the following estimate:∫
S(r)

log
q∏

j=1

|Qj(f)|σ ≥ (q−n−1)d·Tf(r)−
ε

2
Tf(r)

−o(Tf(r)) +
1

A

∫
S(r)

min
J

log
M∏
j=1

|ψJj (f)|σ

This is obtained by the filtration of Corvaja-

Zannier as in Ru’s paper.

The additional difficulties come both from the

facts that the concept “in general position”



in our paper is more general than in Corvaja-
Zannier’s and Ru’s paper and that the field
Kf is not algebraically closed in general, so we
cannot use any more Hilbert’s Nullstellensatz.

Instead we have to use explicit results on re-
sultants respectively discriminant varieties for
universal families of configurations of q hy-
persurfaces in Pn. This allows us to deal
with such hypersurfaces with “variable” coef-
ficients, namely in Kf , but by specialization to
the fibers to have nevertheless complex solu-
tions of these configurations of hypersurfaces.

Another problem related to the fact that Kf
is not algebraically closed in general is that
the proof of the fact that admissible fami-
lies of polynomials in Kf [x0, ..., xn] give regu-
lar families does not follow any more directly
from Hilbert’s Nullstellensatz, but needs an-
other time resultants, as well as results on
parameter systems in Cohen-Macauley rings.



Step 2:

We estimate the “error term” of step 1 against

a Wronskian and a negligeable term:

‖
∫

S(r)

min
J

log
M∏
j=1

|ψJj (f)|σ ≥

1

tp

∫
S(r)

log|Wα|σ −
ε

2
Tf(r)− o(Tf(r))

This step, which is an easy application of the

lemma of logarithmic derivative for the Wron-

skian in the case of constant coefficients, be-

comes much more complicated for coefficients

in Kf : We use a technic from moving hyper-

planes and generalize it. Another complica-

tion occurs since we have to obtain reduced

representations of the coefficient functions of

the polynomials giving the moving hypersur-

faces.



Step 3:

In the third part, truncation is obtained. Here

the concept ”resultants of homogenous poly-

nomials” and Wronskians are used again, now

to estimate the corresponding divisors. The

use of this tool, which is not necessary in the

case of fixed hypersurfaces, is necessary in the

case of moving hypersurfaces because of our

very general notion of general position, in or-

der to control what happens over the divi-

sor where the resultant vanishes, this means

where the hypersurfaces are not in general po-

sition.



Some more details: Resultants

Let {Qj}nj=0 be a set of homogeneous polyno-

mials of common degree d ≥ 1 in Kf [x0, . . . , xn]

Qj =
∑
I∈τd

ajIx
I , ajI ∈ Kf (j = 0, . . . , n).

Let T = (. . . , tkI , . . .) (k ∈ {0, . . . , n}, I ∈ τd)
be a family of variables. Set

Q̃j =
∑
I∈τd

tjIx
I ∈ Z[T, x], j = 0, . . . , n.

Let R̃ ∈ Z[T ] be the resultant of Q̃0, . . . , Q̃n.

This is a polynomial in the variables T =

(. . . , tkI , . . .) (k ∈ {0, . . . , n}, I ∈ τd) with inte-

ger coefficients, such that the condition R̃(T ) =

0 is necessary and sufficient for the existence

of a nontrivial solution (x0, . . . , xn) 6= (0, . . . ,0)

in Cn+1 of the system of equations{
Q̃j(T )(x0, . . . , xn) = 0

0 ≤ i ≤ n .

Then if

{Qj = Q̃j(ajI)(x0, . . . , xn) , j = 0, . . . , n}



is an admissible set,

R := R̃(. . . , akI , . . .) 6≡ 0 .

Furthermore, since akI ∈ Kf , we have R ∈ Kf .

proposition There exists a positive integer s

and polynomials {b̃ij}0≤i,j≤n in Z[T, x], which

are (without loss of generality) zero or ho-

mogenous in x of degree s− d, such that

xsi · R̃ =
n∑

j=0

b̃ijQ̃j for all i ∈ {0, . . . , n}.

Some more details: Error terms

Let f be a nonconstant meromorphic map of

Cm into Pn. Denote by Cf the set of all non-

negative functions h : Cm\A −→ [0,+∞] ⊂ R,

which are of the form

|g1|+ . . .+ |gk|
|gk+1|+ . . .+ |gl|

,

where k, l ∈ N, g1, . . . , gl ∈ Kf \ {0} and A ⊂
Cm, which may depend on g1, · · · , gl , is an an-

alytic set of codimension at least two. By



Jensen’s formula and the First Main Theorem

we have∫
S(r)

log|φ|σ = o(Tf(r)) as r →∞

for φ ∈ Kf \ {0}. Hence, for any h ∈ Cf , we

have ∫
S(r)

loghσ = o(Tf(r)) as r →∞.

It is easy to see that sums, products and quo-

tients of functions in Cf are again in Cf . We

would like to point out that, in return, given

any functions g1, · · · , gl ∈ Kf \ {0}, any expres-

sion of this form is in fact a well defined func-

tion (with values in [0,+∞]) outside an an-

alytic subset A of codimension at least two,

even though all the g1, · · · , gl can have com-

mon pole or zero divisors in codimension one.


