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[How Brownian motion recognize a point a to be an

omitted value of meromophic function]

Jensen’s formula:

f : a holomorphic function on C with f(o) 6= a(2 C).

1

2ı

Z 2ı

0

log jf(rei„) ` ajd„ =
X

f(“)=a; j“j<r

log
r

j“j
:



Let Zt be BM(C) with Z0 = o.

fir = infft > 0 : jZtj > rg.

Mt := log jf(Zt^fir) ` aj: a local martingale.

M+
t ` M+

0 = a martingale +
1

2
Lt

: bounded submartingale.

M `
t ` M `

0 = a local martingale +
1

2
Lt

: local submartingale.



E[M+
T ] ` M+

0 =
1

2
E[LT ],

E[M `
T ] ` M `

0 + lim
–!1

–P ( sup
0<s<T

M `
s > –) =

1

2
E[LT ].

for 8 stopping time T .

LHS of Jensen’s formula = E[M+
fir

] ` E[M `
fir

].



We have

lim
–!1

–P ( sup
0<s<fir

log` jf(Zs) ` aj > –)

= lim
–!1

–P ( sup
0<s<fir

log jf(Zs) ` aj`1 > –)

=
X

f(“)=a; j“j<r

log
r

j“j
:

f omits a iff

lim
–!1

–P ( sup
0<s<fir

log jf(Zs) ` aj`1 > –) = 0.



For meromorphic function f we use log[f(z); a]`1

instead of log jf(z) ` aj`1.

[w; a] : chordal distance on P1(C).

[w; a] =

8

>

>

>

>

>

<

>

>

>

>

>

:

jw ` aj
p

jwj2 + 1
p

jaj2 + 1
( if a 6= 1);

1
p

jwj2 + 1
( if a = 1);



Ito’s formula with the previous argument

E[log[f(Zfir); a]`1] ` log[f(o); a]`1

+ lim
–!1

–P ( sup
0<s<fir

log[f(Zs); a]`1 > –)

= E[

Z fir

0

jf 0(Zs)j2

(1 + jf(Zs)j2)2
ds]:

This is First Main Theorem in the classical Nevanlinna

theory :

m(r; a) ` m(0; a) + N(r; a) = T (r);



m(a; r) =

Z 2ı

0

log[f(rei„); a]`1 d„

2ı

(proximity function );

N(a; r) =
X

f(“)=a;j“j<r

log
r

j“j

(counting with multiplicity, counting function);

T (r) =

Z

jzj<r

jf 0(z)j2

(1 + jf(z)j2)2
gr(o; z)dv(z)

(Ahlfors-Shimizu charcteristic function):



[defect]

‹(a) := lim inf
r!1

m(a; r)

T (r)
:

f omits a ) ‹(a) = 1.

We wish to seek bounds of
X

a2P1

‹(a).



[Second Main Theorem]

Let a1; a2; : : : ; aq 2 C [ f1g distinct points, f :

nonconstant meromorphic function on C. 9E ȷ [0; 1)

s.t. jEj < 1 and

q
X

k=1

m(ai; r) + N1(r) » 2T (r) + O(log T (r) + log r)

(1)

for r =2 E.

[cor:defect relation]

q
X

k=1

‹(ak) » 2:



[Holomorphic diffusion]

Definition 1 A diffusion process X on M is called a

holomorphic diffusion if Re f(X) is a local martingale on

R for any holomorphic function f 2 O(U) (8U :open

ȷ M).

ex.1 Complex Brownian motion on Cm. i.e.

Xt = (X
(1)
t ; : : : ; X

(m)
t ); ; X

(k)
t = x

(k)
t +

p
`1y

(k)
t

x
(1)
t ; : : : ; x

(m)
t ; y

(1)
t ; : : : ; x

(m)
t : indep BMs on R1.

ex.2 Brownian motions on Kähler manifolds. Generator is

half of Laplacian defined from the Kähler metric.



Important properties: 1. From the definition we have that

if f is a holomorphic function on M ,

f(Xt) = Z(hRe f(X)it)

for some complex Brownian motion Z on C. If M is a

Kähler manifold and Xt is Brownian motion associated

with the Kähler metric, hRe f(X)it =

Z t

0

jjdf(Xs)jj2ds.

2. If dim M = 1, M is a Riemann surface and X is a

time-changed diffusion of another holomorphic diffusion.



3. If f : M ! N is a holomorphic map and X is a

holomorphic diffsion on M , then f(X) is a holomorphic

martingale i.e. Re h(f(X)) is a local martingale for

8h 2 O(U) (8U ȷ N :open). If M is Kähler, X is

Brownian motion on M and f is a meromorphic function

on M i.e. holomorphic map from M to P1(C), then

there exists Brownian motion W on P1(C)

w.r.t.Fubini-Study metric s.t. f(Xt) = W (ȷt) with

ȷt =

Z t

0

jjdf jj2(Xs)ds where jjdf jj2 is the energy

density of f .



[Construction of holomorphic diffusion]

We take a consevative holomorphic diffusion X on M

constructed by the theory of Dirichlet form due to

Fukushima-Okada.

E(u; v) =
1

2

Z

M

du ^ dcv ^ „; u; v 2 C1
o (M)

where dc =

p
`1

4ı
(@ ` @); „ is a closed positive current

of type (m ` 1; m ` 1). Assume that there exists a

Radon measure dm on M s.t. (E; C1
o (M)) is closable

on L2(dm) (Say dm is admissible). Then a holomorphic

diffusion corresponds uniquely to (E; D(E)).



The associated generator is denoted by L. L is a

self-adjoint operator on L2(dm) s.t.

`(Lu; v) = E(u; v) u; v 2 C1
o (M):

Formally

Lu =
1

2

ddcu ^ „

dm
and its diffusion semigroup: etL

satisfies etLffi(x) = Ex[ffi(Xt)] (ffi 2 Cb(M)).

Carré du champ operator:

Γ(u; u) :=
1

2

du ^ dcu ^ „

dm
:



Proposition 2 (Ito’s formula) Assume u 2 C2(M).

u(Xt)`u(X0) = B(

Z t

0

Γ(u; u)(Xs)ds)+

Z t

0

Lu(Xs)ds;

where Bt is standard Brownian motion on R.



Rem.

If M has a Kähler form ! and X is the Brownian motion

associated with the Kähler metric, then X corresponds to

the above Dirichlet space with

„ = !m`1; dm = const:!m;

and L is half of Laplacian w.r.t.the Kähler metric and

Γ(u; u) = jruj2.

If X is Brownian motion on M ,

u(Xt)`u(X0) = B(

Z t

0

jruj2(Xs)ds)+
1

2

Z t

0

∆u(Xs)ds:



We consider two types of formulation of Nevanlinna

theory:

1. based on Green’s functions: Xt Brownian motion

stopped at fir.

2. based on diffusion semigroup: general holomophic

diffusion Xt.



[A natural generalization of classical nevanlinna theory]

M : a complete Kähler manifold with dimCM = m.

v : a nonnegative, smooth and subharmonic exhaustion

function on M . (always exists. Greene-Wu)

(Xt; Px) : Brownian motion on M

fir = infft > 0 : v(Xt) > rg Fix o 2 M : ref. point.

f : a nonconstant meromorphic function on M

i.e.

f : a holomorphic map M ! P1(C).



Definition 3 Assume a 2 P1 and f(o) 6= a.

m(r; a) = Eo[log[f(Xfir); a]`2]; (2)

N(r; a) = lim
–!1

–Po( sup
0<s<fir

log[f(Xs); a]`2 > –);(3)

T (r) = Eo[

Z fir

0

jjdf jj2(Xs)ds]: (4)



Rem.

m(r; a) =

Z

@B(r)

log[f(z); a]`2dıo
r(z)

T (r) = cm

Z

B(r)

gr(o; z)f ˜!o ^ !m`1

where B(r) = fx 2 M : v(x) < rg, dıo
r : B(r) :

harmonic measure on @B(r) w.r.t. o, gr(o; z) : Green

function on B(r) with Dirichlet boundary condition on

@B(r), ! : Kähler form on M , !o Fubini-Study metric

on P1(C). cm = 2ım=(m ` 1)!.　



Since log[f(z); a]`2 is a ‹-subharmonic function,

∆M log[f(z); a]`2 can be regarded as a signed measure

denoted by d—. This signed measure d—, which is called a

Riesz charge of log[f(z); a]`2, has a unique Jordan

decomposition d— = d—1 ` d—2. We note that —2 is

supported by f `1(a). We define counting function of the

points f `1(a) by

N(r; a) =
1

2

Z

B(r)\f−1(a)

gr(o; z)d—2(z):



[FMT] Apply Ito’s formula to log[Wt; a]`2 with

Wȷt = f(Xt).

Assume f(o) 6= a.

m(r; a) ` m(0; a) + N(r; a) = T (r):

Proposition 4 If M has Liouville property and f is

nonconstant, then T (r) ! 1 (r ! 1) and

log-Cap(f(M)c) = 0. (Casorati-Weierstrass thm)



R(x) = inf
‰2TxM; jj‰jj=1

Ric(‰; ‰)

N(r; Ric) = `Eo[

Z fir

0

R(Xs)ds]:

N1(r) := lim
–!1

–Po( sup
0»t»fir

log` jjdf jj2(Xt) > –):



Theorem 5 [A. JMSJ’08] a1; a2; : : : ; aq 2 P1(C)

distinct points. For any › > 0, 9E› ȷ [0; 1) s.t.

jE›j < 1 and

q
X

j=1

m(r; aj) + N1(r)

» 2T (r) + 2N(r; Ric) + log C(o; r; ›)

+E[log jjrvjj2(Xfir)] + O(log T (r))

for r =2 E›.



C(x; r; ›) =
C1(x; r)C3(x; r; ›)

C2(x; r)(1+›)2

¸ < r; x 2 B(¸) fixed.

C1(x; r) = sup
z2@B(¸)

gr(x; z)=(r ` ¸).

There exists r0 < r s.t. inf
r′<t<r

inf
x2B(t)

jjrvjj(x) > 0.

C2(x; r) = inf
y2@B(r′)

gr(x; y)(

Z r

v(x)

e
`

R t
v(x) 2—(z)dz

dt)`1;



where —(t) is defined by

—(t) =

8

<

:

0 for 0 » t < r0;

—(0)(t) for r0 » t < r

and

—(0)(t) =
1

2
sup

x2@B(t)

∆M v

jjrvjj2
(x):

C3(x; r; ›) = exp(2(1 + ›)

Z r

v(x)

—(z)dz):



[Algebraic hypersurfaces in Cn]

Let M be an algebraic hypersurface of degree k

nonsingular at infinity in Cn. i.e. M = fh = 0g s.t.

h = h(k) + h(k`1) + ´ ´ ´ + h(0) where h(j) is a

homogeneous polynomial of degree j and fh(k) = 0g is

nonsingular in Pn`1(C).

Kähler metric: the induced metric from Cn. v(x) = r(x)

: Euclidean distance between x and o.

B(R) = fr(x) < Rg. gR(x; y) : Green’s function on

B(R) with Dirichlet condition.



Proposition 6

c(xo) log
R

r(x)
» gR(xo; x) » c0(xo) log

R

r(x)
(n = 2);

c(xo)(r(x)4`2n ` R4`2n)

» gR(xo; x) » c0(xo)(r(x)4`2n ` R4`2n) (n – 3):

Rem. i) If a complex hypersurface N in Cn has a Green

function estimate as above, then N is algebraic.

ii) Any algebraic submanifold has Liouville property.

; T (r) " 1 as r " 1.



[SMT]

Theorem 7 For any › > 0 9E› ȷ [0; 1) s.t. jE›j < 1
and

q
X

j=1

m(r; aj) + N1(r)

» 2T (r) + (2(k ` 1) + ›(2n ` 3)) log r + O(1)

for r =2 E›.



[Defect relation]

We can also see

T (r) – const: log r

if f is nonconstant.

Define c(f) = lim inf
r!1

T (r)

log r
(» 1). Note c(f) > 0 if f

is nonconstant.

q
X

i=1

‹(ai) » 2 +
2(k ` 1)

c(f)
:



[Second formulation]

Let M be a complex manifold, X a holomorphic diffusion

on M defined by the Dirichlet form

E(u; v) =
1

2

Z

M

du ^ dcv ^ „; u; v 2 C1
o (M)

with an admissible measure dm.

Assume X is conservative i.e. etL1 = 1.



Let f be a nonconstant meromorphic function on M(i.e.

a nonconstant holomorphic map f from M to one

dimensional complex projective space P1(C)). Then

f(X) is a holomorphic martingale and time changed

process of Brownian motion on P1(C). Then there exists

an increasing process [f(X); f(X)]t s.t.

f(Xt) = W ([f(X); f(X)]t);

where Wt is Brownian motion on P1(C).



Define Characteristic function:

T̃x(t) := Ex[[f(X); f(X)]t]:

Since [f(X); f(X)]t is a PCAF of X, there exists a

measue d—f satisfying that

lim
t!0

1

t

Z

M

T̃x(t)ffi(x)dm(x) =

Z

M

ffi(x)d—f(x)

for 8ffi 2 C1
o (M).

We call d—f an energy measure of f w.r.t. X.



If M is Kählerian and X is Brownian motion associated

with the Kähler metric, then

T̃x(t) =
1

2
Ex[

Z t

0

jjdf jj2(Xs)ds]

=
1

2

Z t

0

Z

M

p(s; x; y)jjdf jj2(y)dm(y)ds;

where jjdf jj2 is the energy density of f with respect to

the Kähler metric. Hence d—f =
1

2
jjdf jj2dm.



Note that this is an analogy of classical Ahlfors-Shimizu

characteristic function :

T (r) =
1

2

Z

jzj<r

jjdf jj2gr(o; z)dxdy

=
1

2
E[

Z fir

0

jjdf jj2(Zs)ds]

where M = C, Zt is a complex Brownian motion on C

and gr(x; y) is a Green’s function of Laplacian on

fjzj < rg with Dirichlet boundary condition.



Let us consider a class of meromorphic functions

F C(M; X) : = ff : a nonconst. meromorphic funct. on M j

T̃x(t) < 1 (8t > 0) for m ` a:e: x 2 Mg:

Rem. If f is of finite energy i.e. —f(M) < 1, then

f 2 F C(M; X).



Counting function :

Ñx(t; a) = lim
–!1

–Px( sup
0»s»t

log[f(Xs); a]`2 > –);

where [w; a] : chordal distance on P1(C). Compare with

the counting function in classical Nevanlinna theory:

N(r; a) =
X

f(“)=a; j“j<r

2 log
r

j“j

= lim
–!1

–P ( sup
0<s<fir

log jf(Zs) ` aj`2 > –);

where Zt : BM(C) with Z0 = o and

fir = infft > 0 : jZtj > rg.



Define

m̃x(t; a) = Ex[log[f(Xt); a]`2]

for f(x) 6= a.

[FMT] If f 2 F C(M; X) and f(x) 6= a,

m̃x(t; a) ` m̃x(0; a) + Ñx(t; a) = T̃x(t)

for 0 » t < 1.



A desired property:

Ñx(t; a) = 0 if f omits a:

does not always hold.

[Ass(A)]

lim
–!1

–Px( sup
0»s»t

log[f(Xs); a]`2 > –) = 0 (t > 0)

holds for a.e.-x and any f 2 F C(M; X) and

a 2 P1(C) n f(M).



Introduce a class of f :

SG(M; X) = ff 2 Hol˜(M; P1(C)) j
Z 1

1

e`›r2

—f(B(r))dr < 1 for 8› > 0g:

B(r) = fx 2 M j ȷ(x) < rg,

ȷ: an exhaustion function s.t. Γ(ȷ; ȷ) is bounded.



Kähler case:

Ass(R): There exists a nonnegative increasing function k

on [0; 1) s.t.

R(x) – `k(r(x)2) and k(t) = o(t) as t ! 1:

(R(x) = inf
‰2TxM; jj‰jj=1

Ric(‰; ‰); ȷ(x) = r(x):

Riemannian distance function)

Ass(R) + f 2 SG(M; X) ) f 2 F C(M; X)

Ass(R) + f 2 SG(M; X) ) Ass(A) for f 2 SG(M; X)

Rem. Ass(R) ) stochastic completeness i.e. Brownian

motion on M is conservative.



[Ass(B)] There exists a function Φ independent of f s.t.

ddc log Γ(f; f) ^ „ – `Φ(x)dm(x)

on M n fx 2 M j Γ(f; f)(x) = 0g for any nonconstant

f 2 O(U) (8U :open ȷ M).

If M is Kähler and X is the associated Brownian motion,

then Ass(B) holds with Φ(x) = `2R(x).



Define

Ñ1(t; x) = lim
–!1

–Px( sup
0»s»t

log` Γ(f; f) > –):

Theorem 8 [SMT] Assume (A) + (B). If f 2 F C(M; X)

and a1; : : : ; aq distinct points in P1(C), then

q
X

j=1

m̃x(t; aj) + Ñ1(t; x)

» 2T̃x(t) + Ex[

Z t

0

Φ(Xs)ds] + O(log T̃x(t))

holds except for t in an exceptional set of finite length

and a.e. x 2 M .



Theorem 9 Assume (A) + (B). If f 2 F C(M; X),

#(P1(C) n f(M)) » 2 + lim sup
t!1

Ex[
R t

0
Φ(Xs)ds]

T̃x(t)
:

Moreover if X is recurrent and Φ 2 L1(dm),

#(P1(C) n f(M)) » 2 +

R

M
Φ(x)dm(x)

—f(M)
:



Corollary 10 If Brownian motion is recurrent w.r.t. a

complete Kähler metric g and Ass(R) are satisfied w.r.t.

g, then for f 2 SG(M; X)

#(P1(C) n f(M)) » 2 `
4

R

M
R(x)dv(x)

R

M
jjdf jj2dv

:



[Recurrence of diffusion]

Definition 11 X is recurrent if

lim sup
t!1

1U(Xt) = 1

holds with probability 1 for any open set U ȷ M .

[Equivalent condition to recurrence] One of the following

condions is equivalent to recurrence.

i) There exist no constant bounded L-subharmonic

functions.



ii) Let p(t; x; y) be the transition kernel of X.
Z 1

0

p(t; x; y)dt = 1:

iii) [Grigor’yan, Sturm]
Z 1

1

r

m(B(r))
dr = 1:



[Example 1. algebraic variety]

Consider a special algebraic variety M = M n D where

M is a projective algebraic manifold and D is an anlytic

hypersurface in M . Assume that D has only simple

normal crossings. Let L, Lj be a holomorphic line bundle

dtermined by D and Dj respectively. Thus

9ff 2 Γ(M; L); 9ffj satifies D = (ff) and Dj = (ffj).

L = L1 ˙ ´ ´ ´ ˙ Ll; ff = ff1 ˙ ´ ´ ´ ˙ ffl.



Assume c1(L) > 0. Consider three Kähler metrics on M :

1) (projective) ddc log jjffjj`2 : Imcomplete. On a nhd of

D jjffjj = jz1 ´ ´ ´ zlja(z) where a(z) is C1. Thus this

metric is smooth on M . Hence the associated Brownian

motion can be regarded as the process on M . Then it is

recurrent but Ass(A) does not hold.

2) (Euclidean) ddcjjffjj`2 : This is complete and Ricci

curvature is bounded. So Ass(R) is satisfied. (The first

part of Theorem9 holds.) The associated Brownian

motion is transient if dim M – 2.



3) w = Cddc log jjffjj`2 `
l

X

j=1

ddc log(log jjffjjj2)2 :

(Cornalba-Griffiths metric)

Proposition 12 Assume c1(L) > 0. There exist C > 0

and jj ´ jj s.t. Cornalba-Griffiths metric satisfies the

following properties.

i) Complete.

ii) Finite volume. i.e.

Z

M

wm < 1.

iii) Ricci curvature is bounded.

iv) Ric < 0 and `
Z

M

Ric ^ wm`1 < 1.



ii) implies recurrence. iii) ensures the validity of Ass(R).

Then we have

Theorem 13 Assume c1(L) > 0, X : Brownian motion

w.r.t CG metric. For f 2 SG(M; X)

#(P1(C) n f(M)) » 2 +
2volCG(M)

—f(M)
;

where volCG is the volume w.r.t. Cornalba-Griffiths

metric, —f is associated with X.



[Example 2. submanifolds in Cn]

Let M be a properly immersed submanifold in Cn with

dim M = m.

The induced metric from Cn defines a holomorhic

diffusion Y via the following Dirichlet form:

E(u; v) =
1

2

Z

M

du^dcv^(ddcjjzjj2)m`1; u; v 2 C1
o (M)

and an admissible measure dv defined by
Z

M

ffidv =

Z

M

ffi(ddcjjzjj2)m where

jjzjj2 = jz1j2 + ´ ´ ´ + jznj2.



Proposition 14 i) Y is conservative.

ii) If m – 2, Y is transient.



Set w = ddc log(1 + jjzjj2).

Consider another holomorphic diffusion X defined by

E(u; v) =
1

2

Z

M

du ^ dcv ^ wm`1; u; v 2 C1
o (M)

and an admissible measure dm defined by
Z

M

ffidm =

Z

M

ffiddcjjzjj2 ^ wm`1.



Set V (r) =

Z

M\fjjzjj<rg
(ddcjjzjj2)m.

Proposition 15 (H.Kaneko) If

Z 1

1

r2m`1

V (r)
dr = 1; (*)

then X is recurrent.

In particular if M is algebraic, X is recurrent.

(V (r) = O(r2m) due to W.Stoll).



Hence we have

Theorem 16 Assume (R) w.r.t. the induced metric and

(*). For f 2 SG(M; Y ) w.r.t. the induced metric

#(P1(C) n f(M)) » 2 +
2K(M)

ef(M)
;

where

K(M) = lim sup
r!1

`
R

M\fjjzjj<rg R(z)dv(z)

r2(m`1)
;

ef(M) = lim
r!1

1
2

R

M\fjjzjj<rg jjdf jj2dv(z)

r2(m`1)
;



where dv; R(z); jjdf jj w.r.t.the induced metric.

If M is an algebraic hypersurface of degree k non-singular

at infinity in Cn, then K(M) < 1 with m = n ` 1.



[transcendental cases]

1. There exists a hypersurface M in Cn satisfying

V (r) ‰ r2n`2 log r. It satisfies the Kaneko’s criteria and

supports a recurrent holomorphic diffusion.

Then

Cap(P1(C) n f(M)) = 0.

lim inf
t!1

T̃x(t)=(log t)2 > 0 ) #omitted values is finite.

Rem. f : polynomialjM ) T̃x(t) = O(log t).



2. M = fex + ey = 1g ȷ C2.

Ric is bounded. ) Ass(R).

Proposition 17 Assume that X is BM assciated with the

induced metric and f 2 SG(M; X).

Set

Cx(f) := lim inf
t!1

T̃x(t)
p

t
:

We have
X

a

‹̃x(a; f) » 2 +
2

Cx(f)
;

where ‹̃x(a; f) = lim inf
t!1

m̃x(a; t)

T̃x(t)
.


