Diffusions and Nevanlinna theory

Atsushi Atsuji

Keio University

[How Brownian motion recognize a point a to be an omitted value of meromophic function]

Jensen's formula:

f: a holomorphic function on C with $f(o) \neq a \in C$.

$$rac{1}{2\pi}\int_0^{2\pi} \log |f(re^{i heta})-a|d heta = \sum_{f(\zeta)=a,\; |\zeta|< r} \log rac{r}{|\zeta|}.$$

Let Z_t be BM(C) with $Z_0 = o$.

$$au_r = \inf\{t > 0 : |Z_t| > r\}.$$

 $M_t := \log |f(Z_{t \wedge \tau_r}) - a|$: a local martingale.

$$M_t^+ - M_0^+ = ext{a martingale} + rac{1}{2} L_t$$

: bounded submartingale.

$$M_t^- - M_0^- =$$
 a local martingale $+ rac{1}{2} L_t$

: local submartingale.

$$E[M_T^+]-M_0^+=rac{1}{2}E[L_T],$$
 $E[M_T^-]-M_0^-+\lim_{\lambda o\infty}\lambda P(\sup_{0< s< T}M_s^->\lambda)=rac{1}{2}E[L_T].$ for $orall$ stopping time $T.$

LHS of Jensen's formula $= E[M_{ au_r}^+] - E[M_{ au_r}^-].$

We have

$$egin{aligned} &\lim_{\lambda o \infty} \lambda P(\sup_{0 < s < au_r} \log^- |f(Z_s) - a| > \lambda) \ &= \lim_{\lambda o \infty} \lambda P(\sup_{0 < s < au_r} \log |f(Z_s) - a|^{-1} > \lambda) \ &= \sum_{f(\zeta) = a, \; |\zeta| < r} \log rac{r}{|\zeta|}. \end{aligned}$$

f omits a iff

$$\lim_{\lambda o \infty} \lambda P(\sup_{0 < s < au_r} \log |f(Z_s) - a|^{-1} > \lambda) = 0.$$

For meromorphic function f we use $\log[f(z), a]^{-1}$ instead of $\log|f(z) - a|^{-1}$.

[w, a]: chordal distance on $P^1(C)$.

$$[w,a] = egin{cases} rac{|w-a|}{\sqrt{|w|^2+1}} & (ext{ if } a
eq \infty), \ rac{1}{\sqrt{|w|^2+1}} & (ext{ if } a = \infty), \end{cases}$$

Ito's formula with the previous argument

$$egin{align} E[\log[f(Z_{ au_r}),a]^{-1}] - \log[f(o),a]^{-1} \ + \lim_{\lambda o \infty} \lambda P(\sup_{0 < s < au_r} \log[f(Z_s),a]^{-1} > \lambda) \ = E[\int_0^{ au_r} rac{|f'(Z_s)|^2}{(1+|f(Z_s)|^2)^2} ds]. \end{split}$$

This is First Main Theorem in the classical Nevanlinna theory:

$$m(r, a) - m(0, a) + N(r, a) = T(r),$$

$$m(a,r) = \int_0^{2\pi} \log[f(re^{i heta}),a]^{-1} rac{d heta}{2\pi}$$

(proximity function),

$$N(a,r) = \sum_{f(\zeta)=a, |\zeta| < r} \log rac{r}{|\zeta|}$$

(counting with multiplicity, counting function),

$$T(r) = \int_{|z| < r} rac{|f'(z)|^2}{(1 + |f(z)|^2)^2} g_r(o,z) dv(z)$$

(Ahlfors-Shimizu charcteristic function).

[defect]

$$\delta(a) := \liminf_{r \to \infty} \frac{m(a,r)}{T(r)}.$$

f omits $a \Rightarrow \delta(a) = 1$.

We wish to seek bounds of $\sum_{a \in \mathbf{P}^1} \delta(a)$.

[Second Main Theorem]

Let $a_1,a_2,\ldots,a_q\in C\cup\{\infty\}$ distinct points, f: nonconstant meromorphic function on C. $\exists E\subset[0,\infty)$ s.t. $|E|<\infty$ and

$$\sum_{k=1}^{q} m(a_i, r) + N_1(r) \le 2T(r) + O(\log T(r) + \log r)$$
(1)

for $r \notin E$.

[cor:defect relation]

$$\sum_{k=1}^{q} \delta(a_k) \leq 2.$$

[Holomorphic diffusion]

Definition 1 A diffusion process X on M is called a holomorphic diffusion if $Re\ f(X)$ is a local martingale on R for any holomorphic function $f \in \mathcal{O}(U)$ ($\forall U$:open $\subset M$).

ex.1 Complex Brownian motion on C^m . i.e.

$$X_t = (X_t^{(1)}, \dots, X_t^{(m)}), \; ; X_t^{(k)} = x_t^{(k)} + \sqrt{-1}y_t^{(k)} \ x_t^{(1)}, \dots, x_t^{(m)}, y_t^{(1)}, \dots, x_t^{(m)} : ext{indep BMs on } \mathbf{R}^1.$$

ex.2 Brownian motions on Kähler manifolds. Generator is half of Laplacian defined from the Kähler metric.

Important properties: 1. From the definition we have that if f is a holomorphic function on M,

$$f(X_t) = Z(\langle Re \, f(X) \rangle_t)$$

for some complex Brownian motion Z on C. If M is a Kähler manifold and X_t is Brownian motion associated with the Kähler metric, $\langle Re \ f(X) \rangle_t = \int_0^t ||df(X_s)||^2 ds$.

2. If $\dim M = 1$, M is a Riemann surface and X is a time-changed diffusion of another holomorphic diffusion.

3. If $f: M \to N$ is a holomorphic map and X is a holomorphic diffsion on M, then f(X) is a holomorphic martingale i.e. Reh(f(X)) is a local martingale for $\forall h \in \mathcal{O}(U)$ ($\forall U \subset N$:open). If M is Kähler, X is Brownian motion on M and f is a meromorphic function on M i.e. holomorphic map from M to $\operatorname{P}^1(\operatorname{C})$, then there exists Brownian motion W on $P^1(C)$ w.r.t.Fubini-Study metric s.t. $f(X_t) = W(
ho_t)$ with $ho_t = \int_0^t \left| \left| df
ight|
ight|^2 (X_s) ds$ where $\left| \left| df
ight|
ight|^2$ is the energy density of f.

[Construction of holomorphic diffusion]

We take a consevative holomorphic diffusion X on M constructed by the theory of Dirichlet form due to Fukushima-Okada.

$$\mathcal{E}(u,v) = rac{1}{2} \int_M du \wedge d^c v \wedge heta, \quad u,v \in C_o^\infty(M)$$

where $d^c=\frac{\sqrt{-1}}{4\pi}(\overline{\partial}-\partial), \theta$ is a closed positive current of type (m-1,m-1). Assume that there exists a Radon measure dm on M s.t. $(\mathcal{E},C_o^\infty(M))$ is closable on $L^2(dm)$ (Say dm is admissible). Then a holomorphic diffusion corresponds uniquely to $(\mathcal{E},D(\mathcal{E}))$.

The associated generator is denoted by $L.\ L$ is a self-adjoint operator on $L^2(dm)$ s.t.

$$-(Lu,v)=\mathcal{E}(u,v)\quad u,v\in C_o^\infty(M).$$

Formally

 $Lu=rac{1}{2}rac{dd^cu\wedge heta}{dm}$ and its diffusion semigroup: e^{tL} satisfies $e^{tL}\phi(x)=E_x[\phi(X_t)]\; (\phi\in C_b(M)).$

Carré du champ operator:

$$\Gamma(u,u) := rac{1}{2} rac{du \wedge d^c u \wedge heta}{dm}.$$

Proposition 2 (Ito's formula) Assume $u \in C^2(M)$.

$$u(X_t)-u(X_0)=B(\int_0^t\Gamma(u,u)(X_s)ds)+\int_0^tLu(X_s)ds,$$

where B_t is standard Brownian motion on R.

Rem.

If M has a Kähler form ω and X is the Brownian motion associated with the Kähler metric, then X corresponds to the above Dirichlet space with

$$heta = \omega^{m-1}, \quad dm = const.\omega^m,$$

and L is half of Laplacian w.r.t.the Kähler metric and $\Gamma(u,u)=|\nabla u|^2.$

If X is Brownian motion on M,

$$u(X_t) - u(X_0) = B(\int_0^t |\nabla u|^2(X_s) ds) + \frac{1}{2} \int_0^t \Delta u(X_s) ds.$$

We consider two types of formulation of Nevanlinna theory:

- 1. based on Green's functions: X_t Brownian motion stopped at τ_r .
- 2. based on diffusion semigroup: general holomophic diffusion X_t .

[A natural generalization of classical nevanlinna theory]

M: a complete Kähler manifold with $dim_{\mathbb{C}}M=m$. v: a nonnegative, smooth and subharmonic exhaustion function on M. (always exists. Greene-Wu) (X_t,P_x) : Brownian motion on M $\tau_r=\inf\{t>0:v(X_t)>r\}$ Fix $o\in M$: ref. point. f: a nonconstant meromorphic function on M i.e.

 $f: a holomorphic map <math>M \to P^1(C)$.

Definition 3 Assume $a \in P^1$ and $f(o) \neq a$.

$$m(r,a) = E_o[\log[f(X_{\tau_r}), a]^{-2}],$$
 (2)

$$N(r,a) = \lim_{\lambda o \infty} \lambda P_o(\sup_{0 < s < au_r} \log[f(X_s),a]^{-2} > \lambda)$$
 (3)

$$T(r) = E_o[\int_0^{ au_r} ||df||^2(X_s)ds].$$
 (4)

Rem.

$$egin{align} m(r,a) &= \int_{\partial B(r)} \log[f(z),a]^{-2} d\pi_r^o(z) \ T(r) &= c_m \int_{B(r)} g_r(o,z) f^* \omega_o \wedge \omega^{m-1} \ \end{cases}$$

where $B(r)=\{x\in M: v(x)< r\}$, $d\pi_r^o: B(r):$ harmonic measure on $\partial B(r)$ w.r.t. $o, g_r(o,z):$ Green function on B(r) with Dirichlet boundary condition on $\partial B(r)$, $\omega:$ Kähler form on M, ω_o Fubini-Study metric on $\mathbf{P}^1(\mathbf{C})$. $c_m=2\pi^m/(m-1)!$.

Since $\log[f(z),a]^{-2}$ is a δ -subharmonic function, $\Delta_M \log[f(z),a]^{-2}$ can be regarded as a signed measure denoted by $d\mu$. This signed measure $d\mu$, which is called a Riesz charge of $\log[f(z),a]^{-2}$, has a unique Jordan decomposition $d\mu=d\mu_1-d\mu_2$. We note that μ_2 is supported by $f^{-1}(a)$. We define counting function of the points $f^{-1}(a)$ by

$$N(r,a) = rac{1}{2} \int_{B(r) \cap f^{-1}(a)} g_r(o,z) d\mu_2(z).$$

[FMT] Apply Ito's formula to $\log[W_t,a]^{-2}$ with $W_{
ho_t}=f(X_t).$

Assume $f(o) \neq a$.

$$m(r,a) - m(0,a) + N(r,a) = T(r).$$

Proposition 4 If M has Liouville property and f is nonconstant, then $T(r) \to \infty$ $(r \to \infty)$ and $\log\text{-Cap}(f(M)^c) = 0$. (Casorati-Weierstrass thm)

$$egin{aligned} R(x) &= \inf_{\xi \in T_x M, \; ||\xi||=1} Ric(\xi, \xi) \ N(r, Ric) &= -E_o[\int_0^{ au_r} R(X_s) ds]. \ N_1(r) &:= \lim_{\lambda o \infty} \lambda P_o(\sup_{0 \leq t \leq au_r} \log^- ||df||^2 (X_t) > \lambda). \end{aligned}$$

Theorem 5 [A. JMSJ'08] $a_1,a_2,\ldots,a_q\in \operatorname{P}^1(\operatorname{C})$ distinct points. For any $\epsilon>0$, $\exists E_\epsilon\subset [0,\infty)$ s.t. $|E_\epsilon|<\infty$ and

$$egin{aligned} &\sum_{j=1}^q m(r,a_j) + N_1(r) \ &\leq 2T(r) + 2N(r,Ric) + \log C(o,r,\epsilon) \ &+ E[\log ||
abla v||^2 (X_{ au_r})] + O(\log T(r)) \end{aligned}$$

for $r \notin E_{\epsilon}$.

$$C(x,r,\epsilon) = rac{C_1(x,r)C_3(x,r,\epsilon)}{C_2(x,r)^{(1+\epsilon)^2}}$$

 $\alpha < r, \quad x \in B(\alpha)$ fixed.

$$C_1(x,r) = \sup_{z \in \partial B(\alpha)} g_r(x,z)/(r-\alpha).$$

There exists r' < r s.t. $\inf_{r' < t < r} \inf_{x \in B(t)} ||\nabla v||(x) > 0$.

$$C_2(x,r) = \inf_{y \in \partial B(r')} g_r(x,y) (\int_{v(x)}^r e^{-\int_{v(x)}^t 2\mu(z)dz} dt)^{-1},$$

where $\mu(t)$ is defined by

$$\mu(t) = egin{cases} 0 & ext{for } 0 \leq t < r', \ \mu^{(0)}(t) & ext{for } r' \leq t < r \end{cases}$$

and

$$\mu^{(0)}(t) = rac{1}{2} \sup_{x \in \partial B(t)} rac{\Delta_M v}{||
abla v||^2}(x).$$

$$C_3(x,r,\epsilon) = \exp(2(1+\epsilon)\int_{v(x)}^r \mu(z)dz).$$

[Algebraic hypersurfaces in \mathbb{C}^n]

Let M be an algebraic hypersurface of degree k nonsingular at infinity in \mathbf{C}^n . i.e. $M=\{h=0\}$ s.t. $h=h^{(k)}+h^{(k-1)}+\cdots+h^{(0)}$ where $h^{(j)}$ is a homogeneous polynomial of degree j and $\{h^{(k)}=0\}$ is nonsingular in $\mathbf{P}^{n-1}(\mathbf{C})$.

Kähler metric: the induced metric from C^n . v(x) = r(x): Euclidean distance between x and o.

 $B(R) = \{r(x) < R\}$. $g_R(x,y)$: Green's function on B(R) with Dirichlet condition.

Proposition 6

$$c(x_o)\log rac{R}{r(x)} \leq g_R(x_o,x) \leq c'(x_o)\log rac{R}{r(x)} \quad (n=2),$$

$$c(x_o)(r(x)^{4-2n}-R^{4-2n}) \ \leq g_R(x_o,x) \leq c'(x_o)(r(x)^{4-2n}-R^{4-2n}) \quad (n\geq 3).$$

Rem. i) If a complex hypersurface N in $\operatorname{\mathbf{C}}^n$ has a Green function estimate as above, then N is algebraic.

ii) Any algebraic submanifold has Liouville property.

$$ightarrow T(r)\uparrow\infty$$
 as $r\uparrow\infty$.

[SMT]

Theorem 7 For any $\epsilon>0$ $\exists E_\epsilon\subset [0,\infty)$ s.t. $|E_\epsilon|<\infty$ and

$$egin{aligned} \sum_{j=1}^q m(r,a_j) + N_1(r) \ & \leq 2T(r) + (2(k-1) + \epsilon(2n-3)) \log r + O(1) \end{aligned}$$

for $r \notin E_{\epsilon}$.

[Defect relation]

We can also see

$$T(r) \geq const. \log r$$

if f is nonconstant.

Define $c(f) = \liminf_{r \to \infty} \frac{T(r)}{\log r}$ $(\leq \infty)$. Note c(f) > 0 if f is nonconstant.

$$\sum_{i=1}^q \delta(a_i) \leq 2 + \frac{2(k-1)}{c(f)}.$$

[Second formulation]

Let M be a complex manifold, X a holomorphic diffusion on M defined by the Dirichlet form

$$\mathcal{E}(u,v) = rac{1}{2} \int_M du \wedge d^c v \wedge heta, \quad u,v \in C_o^\infty(M)$$

with an admissible measure dm.

Assume X is conservative i.e. $e^{tL}1 = 1$.

Let f be a nonconstant meromorphic function on M (i.e. a nonconstant holomorphic map f from M to one dimensional complex projective space $\mathrm{P}^1(\mathrm{C})$). Then f(X) is a holomorphic martingale and time changed process of Brownian motion on $\mathrm{P}^1(\mathrm{C})$. Then there exists an increasing process $[f(X),\overline{f(X)}]_t$ s.t.

$$f(X_t) = W([f(X), \overline{f(X)}]_t),$$

where W_t is Brownian motion on $P^1(C)$.

Define Characteristic function:

$$ilde{T}_x(t) := E_x[[f(X), \overline{f(X)}]_t].$$

Since $[f(X), \overline{f(X)}]_t$ is a PCAF of X, there exists a measue $d\mu_f$ satisfying that

$$\lim_{t o 0}rac{1}{t}\int_{M} ilde{T}_{x}(t)\phi(x)dm(x)=\int_{M}\phi(x)d\mu_{f}(x)$$

for $\forall \phi \in C_o^{\infty}(M)$.

We call $d\mu_f$ an energy measure of f w.r.t. X.

If M is Kählerian and X is Brownian motion associated with the Kähler metric, then

$$egin{align} ilde{T}_x(t) &= rac{1}{2} E_x [\int_0^t ||df||^2(X_s) ds] \ &= rac{1}{2} \int_0^t \int_M p(s,x,y) ||df||^2(y) dm(y) ds, \end{aligned}$$

where $||df||^2$ is the energy density of f with respect to the Kähler metric. Hence $d\mu_f=rac{1}{2}||df||^2dm.$

Note that this is an analogy of classical Ahlfors-Shimizu characteristic function :

$$egin{align} T(r) &= rac{1}{2} \int_{|z| < r} ||df||^2 g_r(o,z) dx dy \ &= rac{1}{2} E[\int_0^{ au_r} ||df||^2 (Z_s) ds] \end{aligned}$$

where $M={\rm C}$, Z_t is a complex Brownian motion on ${\rm C}$ and $g_r(x,y)$ is a Green's function of Laplacian on $\{|z|< r\}$ with Dirichlet boundary condition.

Let us consider a class of meromorphic functions

 $FC(M,X):=\{f: ext{ a nonconst. meromorphic funct. on } M\mid \ ilde{T}_x(t)<\infty \ (orall t>0) ext{ for } m-a.e. \ x\in M\}$

Rem. If f is of finite energy i.e. $\mu_f(M) < \infty$, then $f \in FC(M,X)$.

Counting function:

$$ilde{N}_x(t,a) = \lim_{\lambda o \infty} \lambda P_x(\sup_{0 \le s \le t} \log[f(X_s),a]^{-2} > \lambda),$$

where [w, a]: chordal distance on $P^1(C)$. Compare with the counting function in classical Nevanlinna theory:

$$egin{aligned} N(r,a) &= \sum_{f(\zeta)=a,\; |\zeta| < r} 2\lograc{r}{|\zeta|} \ &= \lim_{\lambda o \infty} \lambda P(\sup_{0 < s < au_r} \log|f(Z_s) - a|^{-2} > \lambda), \end{aligned}$$

where Z_t : BM(C) with $Z_0 = o$ and $au_r = \inf\{t>0: |Z_t|>r\}.$

Define

$$ilde{m}_x(t,a) = E_x[\log[f(X_t),a]^{-2}]$$

for $f(x) \neq a$.

[FMT] If $f \in FC(M,X)$ and f(x)
eq a,

$$ilde{m}_x(t,a) - ilde{m}_x(0,a) + ilde{N}_x(t,a) = ilde{T}_x(t)$$

for $0 \le t < \infty$.

A desired property:

$$ilde{N}_x(t,a)=0$$
 if f omits a .

does not always hold.

[Ass(A)]

$$\lim_{\lambda o \infty} \lambda P_x(\sup_{0 \le s \le t} \log[f(X_s),a]^{-2} > \lambda) = 0 \,\, (t>0)$$

holds for a.e.-x and any $f \in FC(M,X)$ and $a \in P^1(C) \setminus f(M)$.

Introduce a class of f:

$$SG(M,X) = \{f \in Hol_*(M,\mathrm{P}^1(\mathrm{C})) \mid \ \int_1^\infty e^{-\epsilon r^2} \mu_f(B(r)) dr < \infty ext{ for } orall \epsilon > 0 \}.$$

$$B(r) = \{x \in M \mid
ho(x) < r\}$$
,

ho: an exhaustion function s.t. $\Gamma(
ho,
ho)$ is bounded.

Kähler case:

Ass(R): There exists a nonnegative increasing function k on $[0, \infty)$ s.t.

$$R(x) \ge -k(r(x)^2)$$
 and $k(t) = o(t)$ as $t \to \infty$.

$$(R(x) = \inf_{\xi \in T_x M, \ ||\xi||=1} Ric(\xi, \xi), \
ho(x) = r(x)$$
:

Riemannian distance function)

$$\mathsf{Ass}(\mathsf{R}) + f \in SG(M,X) \Rightarrow f \in FC(M,X)$$

$$\mathsf{Ass}(\mathsf{R}) + f \in SG(M,X) \Rightarrow \mathsf{Ass}(\mathsf{A}) \text{ for } f \in SG(M,X)$$

Rem. Ass(R) \Rightarrow stochastic completeness i.e. Brownian motion on M is conservative.

[Ass(B)] There exists a function Φ independent of f s.t.

$$dd^c \log \Gamma(f,f) \wedge heta \geq -\Phi(x) dm(x)$$

on $M\setminus\{x\in M\mid \Gamma(f,f)(x)=0\}$ for any nonconstant $f\in\mathcal{O}(U)$ ($\forall U$:open $\subset M$).

If M is Kähler and X is the associated Brownian motion, then $\mathsf{Ass}(\mathsf{B})$ holds with $\Phi(x) = -2R(x)$.

Define

$$ilde{N}_1(t,x) = \lim_{\lambda o \infty} \lambda P_x(\sup_{0 \le s \le t} \log^- \Gamma(f,f) > \lambda).$$

Theorem 8 [SMT] Assume (A) + (B). If $f \in FC(M, X)$ and a_1, \ldots, a_q distinct points in $\operatorname{P}^1(\operatorname{C})$, then

$$\sum_{j=1}^q ilde{m}_x(t,a_j) + ilde{N}_1(t,x)$$

$$\leq 2 ilde{T}_x(t) + E_x[\int_0^t \Phi(X_s)ds] + O(\log ilde{T}_x(t))$$

holds except for t in an exceptional set of finite length and a.e. $x \in M$.

Theorem 9 Assume (A) + (B). If $f \in FC(M, X)$,

$$\#(\operatorname{P}^1(\operatorname{C})\setminus f(M)) \leq 2 + \limsup_{t o \infty} rac{E_x[\int_0^t \Phi(X_s) ds]}{ ilde{T}_x(t)}.$$

Moreover if X is recurrent and $\Phi \in L^1(dm)$,

$$\#(\operatorname{P}^1(\operatorname{C})\setminus f(M)) \leq 2 + rac{\int_M \Phi(x) dm(x)}{\mu_f(M)}.$$

Corollary 10 If Brownian motion is recurrent w.r.t. a complete Kähler metric g and $\mathrm{Ass}(\mathsf{R})$ are satisfied w.r.t. g, then for $f \in SG(M,X)$

$$\#(\operatorname{P}^1(\operatorname{C})\setminus f(M)) \leq 2 - rac{4\int_M R(x)dv(x)}{\int_M ||df||^2 dv}.$$

[Recurrence of diffusion]

Definition 11 X is recurrent if

$$\limsup_{t\to\infty}1_U(X_t)=1$$

holds with probability 1 for any open set $U \subset M$.

[Equivalent condition to recurrence] One of the following condions is equivalent to recurrence.

i) There exist no constant bounded L-subharmonic functions.

ii) Let p(t, x, y) be the transition kernel of X.

$$\int_0^\infty p(t,x,y)dt = \infty.$$

iii) [Grigor'yan, Sturm]

$$\int_1^\infty rac{r}{m(B(r))} dr = \infty.$$

[Example 1. algebraic variety]

Consider a special algebraic variety $M=\overline{M}\setminus D$ where \overline{M} is a projective algebraic manifold and D is an anlytic hypersurface in \overline{M} . Assume that D has only simple normal crossings. Let L, L_j be a holomorphic line bundle dtermined by D and D_j respectively. Thus $\exists \sigma \in \Gamma(M,L), \exists \sigma_j$ satisfies $D=(\sigma)$ and $D_j=(\sigma_j)$. $L=L_1\otimes \cdots \otimes L_l, \ \sigma=\sigma_1\otimes \cdots \otimes \sigma_l$.

Assume $c_1(L) > 0$. Consider three Kähler metrics on M:

- 1) (projective) $dd^c \log ||\sigma||^{-2}$: Imcomplete. On a nhd of $D ||\sigma|| = |z_1 \cdots z_l| a(z)$ where a(z) is C^{∞} . Thus this metric is smooth on \overline{M} . Hence the associated Brownian motion can be regarded as the process on \overline{M} . Then it is recurrent but Ass(A) does not hold.
- 2) (Euclidean) $dd^c ||\sigma||^{-2}$: This is complete and Ricci curvature is bounded. So Ass(R) is satisfied. (The first part of Theorem9 holds.) The associated Brownian motion is transient if dim $M \geq 2$.

3) $w = Cdd^c\log||\sigma||^{-2} - \sum_{j=1}^l dd^c\log(\log||\sigma_j||^2)^2$: (Cornalba-Griffiths metric)

Proposition 12 Assume $c_1(L) > 0$. There exist C > 0 and $||\cdot||$ s.t. Cornalba-Griffiths metric satisfies the following properties.

- i) Complete.
- ii) Finite volume. i.e. $\int_M w^m < \infty$.
- iii) Ricci curvature is bounded.

iv)
$$Ric < 0$$
 and $-\int_M Ric \wedge w^{m-1} < \infty.$

ii) implies recurrence. iii) ensures the validity of Ass(R). Then we have

Theorem 13 Assume $c_1(L)>0$, X: Brownian motion w.r.t CG metric. For $f\in SG(M,X)$

$$\#(\operatorname{P}^1(\operatorname{C})\setminus f(M)) \leq 2 + \frac{2vol_{CG}(M)}{\mu_f(M)},$$

where vol_{CG} is the volume w.r.t. Cornalba-Griffiths metric, μ_f is associated with X.

[Example 2. submanifolds in \mathbb{C}^n]

Let M be a properly immersed submanifold in \mathbb{C}^n with $\dim M = m$.

The induced metric from C^n defines a holomorhic diffusion Y via the following Dirichlet form:

$$\mathcal{E}(u,v) = rac{1}{2} \int_M du \wedge d^c v \wedge (dd^c ||z||^2)^{m-1}, \quad u,v \in C_o^\infty(M)$$

and an admissible measure dv defined by

$$\int_{M} \phi dv = \int_{M} \phi (dd^{c} ||z||^{2})^{m}$$
 where $||z||^{2} = |z_{1}|^{2} + \cdots + |z_{n}|^{2}$.

Proposition 14 i) Y is conservative.

ii) If $m \geq 2$, Y is transient.

Set $w = dd^c \log(1 + ||z||^2)$.

Consider another holomorphic diffusion X defined by

$$\mathcal{E}(u,v) = rac{1}{2} \int_M du \wedge d^c v \wedge w^{m-1}, \quad u,v \in C_o^\infty(M)$$

and an admissible measure dm defined by

$$\int_{M}\phi dm=\int_{M}\phi dd^{c}||z||^{2}\wedge w^{m-1}.$$

Set
$$V(r) = \int_{M \cap \{||z|| < r\}} (dd^c ||z||^2)^m$$
.

Proposition 15 (H.Kaneko) If

$$\int_{1}^{\infty} \frac{r^{2m-1}}{V(r)} dr = \infty, \tag{*}$$

then X is recurrent.

In particular if M is algebraic, X is recurrent. $(V(r) = O(r^{2m})$ due to W.Stoll).

Hence we have

Theorem 16 Assume (R) w.r.t. the induced metric and (*). For $f \in SG(M,Y)$ w.r.t. the induced metric

$$\#(\operatorname{P}^1(\operatorname{C})\setminus f(M)) \leq 2 + \frac{2K(M)}{e_f(M)},$$

where

$$K(M) = \limsup_{r \to \infty} \frac{-\int_{M \cap \{||z|| < r\}} R(z) dv(z)}{r^{2(m-1)}},$$

$$e_f(M) = \lim_{r o \infty} rac{rac{1}{2} \int_{M \cap \{||z|| < r\}} ||df||^2 dv(z)}{r^{2(m-1)}},$$

where dv, R(z), ||df|| w.r.t.the induced metric.

If M is an algebraic hypersurface of degree k non-singular at infinity in C^n , then $K(M)<\infty$ with m=n-1.

[transcendental cases]

1. There exists a hypersurface M in \mathbb{C}^n satisfying $V(r) \sim r^{2n-2} \log r$. It satisfies the Kaneko's criteria and supports a recurrent holomorphic diffusion.

Then

$$Cap(\operatorname{P}^1(\operatorname{C})\setminus f(M))=0.$$

 $\liminf_{t\to\infty} \tilde{T}_x(t)/(\log t)^2 > 0 \implies \# \text{omitted values is finite.}$

Rem. f: polynomial $|_{M} \Rightarrow \tilde{T}_{x}(t) = O(\log t)$.

2. $M = \{e^x + e^y = 1\} \subset \mathbb{C}^2$.

Ric is bounded. \Rightarrow Ass(R).

Proposition 17 Assume that X is BM assciated with the induced metric and $f \in SG(M, X)$.

Set

$$C_x(f) := \liminf_{t o \infty} rac{ ilde{T}_x(t)}{\sqrt{t}}.$$

We have

$$\sum_a ilde{\delta}_x(a,f) \leq 2 + rac{2}{C_x(f)},$$

where
$$ilde{\delta}_x(a,f) = \liminf_{t o \infty} rac{ ilde{m}_x(a,t)}{ ilde{T}_x(t)}.$$