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[How Brownian motion recognize a point a to be an

omitted value of meromophic function]

Jensen’s formula:
f : a holomorphic function on C with f(o) # a(€ C).

27
1 / log | f(re*®) — a|df = Z log —.
27 Jo fO=aIci<r ¢



Let Z;: be BM(C) with Zy = o.
T = inf{t > 0: |Z:| > r}.
M; := log |f(Zi¢r+,.) — a|: a local martingale.

1
Mt‘" — MJ’ — a martingale —|—§Lt

: bounded submartingale.

_ _ i 1
M, — M, = a local martingale —|—§Lt

: local submartingale.



E[Mf] - M{ = ZE[Lz],

E[M:]— M: + lim AP( sup M. > A) = lE[LT]

A—> 00 0<s<T
for V stopping time T

LHS of Jensen’s formula = E[M} ] — E[M__].



We have

lim AP( sup log™ |f(Zs) — a|l > )

A—>00 0<s<Tp

= lim AP( sup log|f(Z,) —al™" > )

A—>00 0<s<7r

log —.
2, logiq

f(Q)=a, [¢|<r

f omits a iff
lim AP( sup log|f(Zs) —a|~™' > ) =0.

A — 0O 0<s< Ty



For meromorphic function f we use log[f(z),a] "
instead of log |f(2z) — a|™".
[w, a] : chordal distance on P*(C).

( jw — al

(if a # oo),
o Viw? +1/]a|* +1
1
(if a = o0),
Vw2 41




Ito’s formula with the previous argument

Ellog[f(Zx,),a]”"] — log[f(0),a]
+ lim AP( sup log[f(Zs),a]”™" > )

A—>o00 0<s<Typ

o rEr
=Bl o

This is First Main Theorem in the classical Nevanlinna

theory :

m(r,a) — m(0,a) + N(r,a) = T(r),



m(a,r) = | loglf(re’®), a5

(proximity function ),

N(a,r) = Z log —
fO=alcl<r 19
(counting with multiplicity, counting function),
()7
T(r) = | —590(0, )dv(2)
1zl<r (1 4+ [ f(2)[?)

(Ahlfors-Shimizu charcteristic function).




[defect]

m(a,r)
d(a) := lim inf

7— 00 T('r)
f omits a = d(a) = 1.
We wish to seek bounds of Z d(a).

acPl



[Second Main Theorem]

Let a1,a2,...,aq € CU {oo} distinct points, f :
nonconstant meromorphic function on C. 3FE C [0, c0)
s.t. |E| < oo and

q

Z m(ai,r) + N1(r) < 2T(r) + O(logT(r) + log )

- (1)
for r ¢ E.

[cor:defect relation]

zq: 5(ak) S 2.



[Holomorphic diffusion]

Definition 1 A diffusion process X on M is called a
holomorphic diffusion if Re f(X) is a local martingale on
R for any holomorphic function f € O(U) (VU:open

C M).

ex.1 Complex Brownian motion on C™.
1 m k k k

Xt = (Xt( )9°°°9X1§ ))9 ;Xé ) :mg )_I_\/j]-yig )

acﬁl) o ,a:f’”""), ygl), cees :B,(;m) . indep BMs on R".

Y

ex.2 Brownian motions on Kahler manifolds. Generator is
half of Laplacian defined from the Kahler metric.



Important properties: 1. From the definition we have that
if £ is a holomorphic function on M,

f(Xt) = Z((Re f(X))t)

for some complex Brownian motion Z on C. If M is a
Kahler manifold and X is Brownian motion associated

t
with the Kahler metric, (Re f(X)): = / I|df (Xs)||ds.
0

2. If dim M = 1, M is a Riemann surface and X is a
time-changed diffusion of another holomorphic diffusion.



3. If f: M — N is a holomorphic map and X is a
holomorphic diffsion on M, then f(X) is a holomorphic
martingale i.e. Re h(f(X)) is a local martingale for

Vh € O(U) (VU C N:open). If M is Kahler, X is
Brownian motion on M and f is a meromorphic function
on M i.e. holomorphic map from M to P*(C), then
there exists Brownian motion W on P*(C)
w.r.t.Fubini-Study metric s.t. f(X:) = W (p:) with

(7

Pt = / |1df||?(Xs)ds where ||df]||? is the energy
0

density of f.



[Construction of holomorphic diffusion]

We take a consevative holomorphic diffusion X on M
constructed by the theory of Dirichlet form due to
Fukushima-Okada.

E(u,v):%/ du Nd"v N0, wu,ve C;l (M)
M

/—1 _
where d° = 4—(8 — 9), 0 is a closed positive current
0

of type (m — 1, m — 1). Assume that there exists a
Radon measure dm on M s.t. (£,C;° (M)) is closable
on L?(dm) (Say dm is admissible). Then a holomorphic
diffusion corresponds uniquely to (£, D(£)).



The associated generator is denoted by L. L is a
self-adjoint operator on L?(dm) s.t.

—(Lu,v) = E(u,v) u,v € C;°(M).

Formally
1 dd°” 0

Lu = — u A and its diffusion semigroup: ett
2 dm

satisfies e ¢ (x) = Ex[p(X:)] (¢ € Cp(M)).
Carré du champ operator:

du Ndu N 6
dm .

1
F(u, ’Ll,) «— 5



Proposition 2 (Ito’s formula) Assume u € C?*(M).

u(Xt)—u(Xo):B(/O I‘(u,u)(Xs)ds)—I—/O Lu(X.,)ds,

where B, is standard Brownian motion on R.



Rem.

If M has a Kahler form w and X is the Brownian motion
associated with the Kahler metric, then X corresponds to
the above Dirichlet space with

_1
0 =w"" ", dm = constw,

and L is half of Laplacian w.r.t.the Kahler metric and
I'(u,u) = |Vul?.

If X is Brownian motion on M,

u(Xt)—u(Xo):B(/O |Vu|2(XS)ds)—|—%/O Au(X.,)ds.



We consider two types of formulation of Nevanlinna
theory:

1. based on Green’s functions: X; Brownian motion
stopped at ...

2. based on diffusion semigroup: general holomophic
diffusion X..



[A natural generalization of classical nevanlinna theory]

M : a complete Kahler manifold with dimcM = m.
v : a nonnegative, smooth and subharmonic exhaustion
function on M. (always exists. Greene-Wu)

(X¢, Py) : Brownian motion on M

7 = inf{t > 0:v(X¢) > r} Fix o € M : ref. point.
f : a nonconstant meromorphic function on M

I.e.
f : a holomorphic map M — P*(C).



Definition 3 Assume a € P' and f(0) # a.

m(r,a) = E,[log[f(X~,),a]” "], (2)
N(r,a) = lim APo( sup log[f(Xs),al™ > X){3)

T(r) = B / T dfI (X ds]. (4)



Rem.
p) ]' p) 2 '1(3
‘m("' a) _/a ") Og[f(z) a,] dmn (z)

T(r) = cm gr(0,2) f*wo Aw™ !
B(r)
where B(r) = {x € M : v(x) < r}, dn; : B(r) :
harmonic measure on dB(r) w.r.t. o, g-(0, z) : Green
function on B(7r) with Dirichlet boundary condition on
0B(r), w : Kahler form on M, w, Fubini-Study metric
on P'(C). ¢ =27 /(m — 1. O



Since log[f(z),a] ? is a 6-subharmonic function,

A log[f(2),a]l™? can be regarded as a signed measure
denoted by du. This signed measure du, which is called a
Riesz charge of log[f(z), a]”?, has a unique Jordan
decomposition du = dup; — dpz. We note that s is
supported by f~'(a). We define counting function of the

points £~ ' (a) by

1
N(ra) =3 [ g- (0, 2)dpiz ().
2 JB(r)nf—1(a)



[FMT] Apply Ito’s formula to log[W;, a]~? with
Wy, = f(Xt)

Assume f(o) # a.
m(r,a) — m(0,a) + N(r,a) = T(r).

Proposition 4 If M has Liouville property and f is
nonconstant, then T'(7) — oco (r — o©) and
log-Cap(f(M)“) = 0. (Casorati-Weierstrass thm)



R(x) = inf Ric(§, €)

€Ty M, ||€]|=1
N(r, Ric) = —E,| R(X;)ds].
0

Ni(r) := lim AP,( sup log™ ||df||?(X:) > ).

A—> 0O 0<t<r,



Theorem 5 [A. JMSJ’08] a1,az2,...,aq € P'(C)
distinct points. For any ¢ > 0, 3E. C [0, 00) s.t.
|Ee| < oo and

Z m(r,a;) + Ni(r)

< 2T(r) + 2N(r, Ric) + log C(o, T, €)
+E[log || Vv||*(X~,)] + O(log T(r))

for r ¢ E-.



Ci(x,7)Cs(x,7,€)

C(x,r,€e) =
( ) Cz(m, r)(1_|_€)2
a<r, «€ B(x)fixed.
Ci(xz,7) = sup gr(z,2)/(r — a).

z€O0B(x)

There exists 7’ < rs.t. inf inf ||Vv||(x) > 0.
r’<t<r xeB(t)

T t
Cs(x,r) = inf ~(x / e Jv(x) 2r(2)dz gpy—1
2(@,7) yEBB(r’)g (@ y)( v(x) )



where p(t) is defined by

0 for0 <t <7,

p(t) =
pl®@) forr' <t<r
and A
1 v
p® () =S sup ——(=).
2 zcoB(¢) ||Vv||

T

Cs(x, 7, €) = exp(2(1 + €) /( n(=)d2).



[Algebraic hypersurfaces in C"]

Let M be an algebraic hypersurface of degree k
nonsingular at infinity in C". i.e. M = {h = 0} s.t.
h=h"™ 4+ r* D ... 4 h® where h¥) is a
homogeneous polynomial of degree 5 and {h(k) = 0} is
nonsingular in P"~1(C).

Kahler metric: the induced metric from C". v(x) = r(x)
: Euclidean distance between x and o.

B(R) = {r(x) < R}. gr(x,y) : Green’s function on
B(R) with Dirichlet condition.



Proposition 6

c(zo)(r(x)* ™" — R*7")

< gr(®o, ) < ' (@o)(r(2)* ™" — R*™°")  (n > 3).

Rem. i) If a complex hypersurface IN in C" has a Green
function estimate as above, then NN is algebraic.
ii) Any algebraic submanifold has Liouville property.

~ T'(r) T oo as r 1 oo.



[SMT]
Theorem 7 For any € > 0 JE. C [0,00) s.t. |E¢| < 00

and
q
> m(r,a;) + Ni(r)
71=1

<2T(r)+ (2(k—1)4+€e(2n —3))logr + O(1)

for r ¢ E-.



[Defect relation]

We can also see
T(r) > const.logr

if f is nonconstant.

. .. I(r)
Define ¢(f) = lim inf

r—> 00 log r

(< o0). Note ¢(f) > 0if f

IS honconstant.




[Second formulation]

Let M be a complex manifold, X a holomorphic diffusion
on M defined by the Dirichlet form

S(fu,v):%/ du Nd°vANO, wu,veE C;J(M)
M

with an admissible measure dm.

. . . tL
Assume X is conservative i.e. e 1 = 1.



Let f be a nonconstant meromorphic function on M (i.e.
a nonconstant holomorphic map f from M to one
dimensional complex projective space P*(C)). Then
f(X) is a holomorphic martingale and time changed
process of Brownian motion on P*(C). Then there exists

an increasing process [f(X), f(X)]: s.t.

f(Xe) = W([f(X), F(X)]t),

where W, is Brownian motion on P*(C).



Define Characteristic function:

To(t) i= Ea[[f(X), F(X)]:]-

Since [f(X), f(X)]: is a PCAF of X, there exists a
measue du ¢ satisfying that

lim /M T () () dm(z) = /M é(x)dps ()

for Vp € C5°(M).
We call dup s an energy measure of f w.r.t. X.



If M is Kahlerian and X is Brownian motion associated
with the Kahler metric, then

To(t) = 5 Bal | Ilaf||*(X.)ds]

% /0 /M p(s, x, y)“dez(’y)dm(y)ds,

where ||df||? is the energy density of f with respect to
. : 1
the Kahler metric. Hence duyy = §||df||2dm.



Note that this is an analogy of classical Ahlfors-Shimizu

characteristic function :

1

L /| 1100, =)y
zl<r

T(r) = 3

= 5BL[ Il (Z)d

where M = C, Z; is a complex Brownian motion on C
and g, (x,y) is a Green’s function of Laplacian on
{|z| < r} with Dirichlet boundary condition.



Let us consider a class of meromorphic functions

FC(M,X) :={f: anonconst. meromorphic funct. on M |
T, (t) < oo (Vt > 0) for m — a.e. x € M)

Rem. If f is of finite energy i.e. us(M) < oo, then
f € FC(M, X).



Counting function :

Nw(t, a) = lim APy( sup log[f(Xs),a]™? > ),

A—> 00 0<s<t

where [w, a] : chordal distance on P*(C). Compare with
the counting function in classical Nevanlinna theory:

N(r,a) = Z 2logL

F(O)=a, [¢|<r <]
= lim AP( sup log|f(Z:) —al|™?% > ),
A—00 0<s< Ty

where Z; : BM(C) with Zy = o and
7 = inf{t > 0: |Z:| > r}.



Define
me(t,a) = Ez[log[f(Xt),a] ]

for f(x) # a.
[FMT] If f € FC(M, X) and f(x) # a,

’ﬁ’bw(t, a) — ’ﬁ’l/q,((), a’) + Nw(ta a) — Cl‘;ﬂc(t)

for 0 <t < o0.



A desired property:

N.(t,a) = 0 if f omits a.
does not always hold.
[Ass(A)]
lim AP.( sup log[f(Xs),a]™% > X) =0 (t > 0)

A—> 0O OSSSt

holds for a.e.-x and any f € FC(M, X) and
a € P(C)\ F(M).



Introduce a class of f:
SG(M, X) = {f € Hol.(M,P*(C)) |
/ e_erzuf(B(r))dr < oo for Ve > 0}.
1

B(r) ={z € M | p(x) <r},
p: an exhaustion function s.t. I'(p, p) is bounded.



Kahler case:

Ass(R): There exists a nonnegative increasing function k
on [0, 00) s.t.

R(x) > —k(r(x)?) and k(t) = o(t) as t — oo.

(R(z) = inf Ric(§,€), p(x) = r(x):

EE€ET, M, ||€||=1
Riemannian distance function)

Ass(R) + f € SG(M,X) = f € FC(M, X)
Ass(R) + f € SG(M, X) = Ass(A) for f € SG(M, X)

Rem. Ass(R) = stochastic completeness i.e. Brownian
motion on M is conservative.



[Ass(B)] There exists a function ® independent of f s.t.
dd®logT'(f, f) N0 > —®(x)dm(x)

on M\ {x € M |I(f,f)(x) =0} for any nonconstant
f € OWU) (VU:open C M).

If M is Kahler and X is the associated Brownian motion,
then Ass(B) holds with ®(x) = —2R(x).



Define

Ni(t,z) = lim AP.( sup log” I'(f, f) > ).

A—> 00 0<s<t
Theorem 8 [SMT] Assume (A) + (B). If f € FC (M, X)
and a1, ...,aq distinct points in P*(C), then

q
> ma(t,a5) + Ni(t, x)

< 2T + Bl [ @(X)ds] + O(log Ta(1)

holds except for t in an exceptional set of finite length
and a.e. x € M.



Theorem 9 Assume (A) + (B). If f € FC(M, X),

E.[[f®(Xs)ds
#P(C)\ F(M)) < 2+ limsup o P(X-) ]-

t— o0 Ty (t)
Moreover if X is recurrent and ® € L' (dm),

fM ®(x)dm(x)
pr(M)

#(PY(C) \ £(M)) < 24



Corollary 10 If Brownian motion is recurrent w.r.t. a

complete Kahler metric g and Ass(R) are satisfied w.r.t.
g, then for f € SG(M, X)

4 [, R(x)dv(x)
Jar 1df1|2dv

#(P(C)\ f(M)) <2



[Recurrence of diffusion]

Definition 11 X is recurrent if

limsuply(X:) =1

t— o0

holds with probability 1 for any open set U C M.

[Equivalent condition to recurrence] One of the following
condions is equivalent to recurrence.
i) There exist no constant bounded L-subharmonic

functions.



i) Let p(t,x,y) be the transition kernel of X.

/ p(t, z,y)dt = oco.
0)

iii) [Grigor'yan, Sturm]

| ey ==




[Example 1. algebraic variety]

Consider a special algebraic variety M = M \ D where
M is a projective algebraic manifold and D is an anlytic
hypersurface in M. Assume that D has only simple
normal crossings. Let L, L; be a holomorphic line bundle
dtermined by D and D; respectively. Thus

do € I'(M, L),3o; satifies D = (o) and D; = (o).
L=L1Q:--QLi, c =018 oi.



Assume c; (L) > 0. Consider three Kahler metrics on M:

1) (projective) dd log ||o||~2 : Imcomplete. On a nhd of
D ||lo|| = |z1--- zi|la(z) where a(z) is C. Thus this
metric is smooth on M. Hence the associated Brownian
motion can be regarded as the process on M. Then it is
recurrent but Ass(A) does not hold.

2) (Euclidean) dd°||o||™% : This is complete and Ricci
curvature is bounded. So Ass(R) is satisfied. (The first
part of Theorem9 holds.) The associated Brownian
motion is transient if dim M > 2.



l
3) w = Cdd°log||o||™* — ) dd°log(log||o;]|*)? :
Jj=1
(Cornalba-Griffiths metric)

Proposition 12 Assume ci1(L) > 0. There exist C > 0
and || - || s.t. Cornalba-Griffiths metric satisfies the
following properties.

i) Complete.

ii) Finite volume. i.e. / w " < oo.
M
iii) Ricci curvature is bounded.

iv) Ric < 0 and —/ Ric Aw™ ' < co.
M



ii) implies recurrence. iii) ensures the validity of Ass(R).
Then we have

Theorem 13 Assume ci1(L) > 0, X : Brownian motion
w.r.t CG metric. For f € SG(M, X)

2volca (M)
pyr (M)

where volcc is the volume w.r.t. Cornalba-Griffiths

#(P1(C) \ £(M)) < 2 1

Y

metric, p ¢ is associated with X.



[Example 2. submanifolds in C"]

Let M be a properly immersed submanifold in C" with
dim M = m.

The induced metric from C" defines a holomorhic
diffusion Y via the following Dirichlet form:

1
£ (u, v) = §/ dundvA(dd®||z||)™,  u,v € CZ (M)
M

and an admissible measure dv defined by

/ qsdv:/ o (dd®||z||*)™ where
M M
12]1* = |21 + -+ + |zn "



Proposition 14 i) Y is conservative.
i) If m > 2, Y is transient.



Set w = dd°log(1 + ||z||?).
Consider another holomorphic diffusion X defined by

S(u,v):%/ du ANdv Aw™ ', wu,v € CE(M)
M

and an admissible measure dm defined by

/qbdm:/ odde||z||? A w™ 1.
M M



Set V() = / (dd°||z|[>)™.

Mn{]l=z]I<r}
Proposition 15 (H.Kaneko) If

o0 ,r2m—1
/ dr = oo,
1 V(r)

then X is recurrent.

In particular if M is algebraic, X is recurrent.

(V(r) = O(r*™) due to W.Stoll).

(%)



Hence we have

Theorem 16 Assume (R) w.r.t. the induced metric and
(*). For f € SG(M,Y) w.r.t. the induced metric

2K (M)
er(M)

#(PY(C) \ £(M)) < 24

where
~ Jmnqzi <y B(2)dv(2)

r2(m—1)

% fMﬂ{||z||<r} |1df||*dv(=)

,r2(m—1)

K(M) = lim sup

T —> 00

Y

er(M) = TILIEO

Y



where dv, R(z), ||df|| w.r.t.the induced metric.

If M is an algebraic hypersurface of degree k£ non-singular
at infinity in C”, then K(M) < oo with m = n — 1.



[transcendental cases]

1. There exists a hypersurface M in C" satisfying
V(r) ~ p2nT2 log r. It satisfies the Kaneko’s criteria and

supports a recurrent holomorphic diffusion.
Then
Cap(P"(C) \ f(M)) = 0.

lim inf T.(t)/(logt)? > 0 = Fomitted values is finite.
—> 00

Rem. f: polynomial|ps = T.(t) = O(logt).



2. M = {e” +e¥Y =1} C C°.
Ric is bounded. = Ass(R).

Proposition 17 Assume that X is BM assciated with the
induced metric and f € SG(M, X).

Set _
ColF) v timing 2O
- := lim in .
t— oo \/Z
We have 5
0z(a, f) < 2 - ,
; (@ 1) <24 50
My (a,t)

where 6 (a, f) = lim inf —



