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Introduction

We first give a construction of holomrphic curves f from C into

the complex projective space Pn(C) with deficient hypersur-

faces. There have been a few studies on the construction of

holomorphic curves with a deficient hypersurface. We prove the

existence of holomorphic curves that have a preassigned positive

deficiency for a given divisor D in Pn(C). We notice that there

has been a conjecture stating the estimate

δf(D) ≤
C

d

holds under a generic condition for D, where C is a positive

constant independent of f and D.
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We can construct many examples of singular hypersurfaces for

which the estimate of the above type does not hold. Our con-

struction is based on some properties of entire functions of order

zero proved by Valiron.

Next, we consider deficiencies on linear systems on algebraic

manifolds M . Let L → M an ample line bundle and f :

C → M a transcendental holomorphic curve. We consider the

Nevanlinna deficiency of holomorphic curve f as a function of

linear systems Λ ⊆ |L|. We define the deficiency for the base

locus of linear system by means of the new language in the value

distribution theory for coherent ideal sheaves. In particular, we

construct holomoephic curves with deficiencies for Λ.
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§1 Notation

Let z be the natural coordinate in C and dc = (
√
−1/4π)(∂−∂).

Set

∆(r) = {z ∈ C : |z| < r} and C(r) = {z ∈ C : |z| = r}.

For a (1,1)-current ϕ of order zero on C we set

N(r, ϕ) =
∫ r

1
〈ϕ, χ∆(t)〉

dt

t
,

where χ∆(r) denotes the characteristic function of ∆(r). Let

M be a compact complex manifold and L → M line bundle

over M . We denote by Γ (M, L) the space of all holomorphic

sections of L → M . Let |L| = P(Γ (M, L)) be the complete

linear system defined by L and Λ a linear system included in
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|L|. When Λ 6= ∅, we define the base locus of Λ by

Bs Λ =
⋂
D∈Λ

Supp D.

Denote by || · || a hermitian fiber metric in L and by ω its

Chern form. Let f : C→M be a holomorphic curve. We set

Tf(r, L) =
∫ r

1

dt

t

∫
∆(t)

f∗ω,

and call it the characteristic function of f with respect to L.

We define the order ρf of f : C→M by

ρf = lim sup
r→+∞

logTf(r, L)

log r
.

We notice that the definition of ρf is independent of a choice

of positive line bundles L → M . We call f of finite type if



ρf < +∞. Let D = (σ) ∈ |L| with ||σ|| ≤ 1 on M . Assume
that f(C) 6⊆ Supp D. We define the proximity function of D by

mf(r, D) =
∫
C(r)

log

(
1

||f∗σ||

)
dθ

2π
.

We define Nevanlinna’s deficiency δf(D) by

δf(D) = lim inf
r→+∞

mf(r, D)

Tf(r, L)
.

We have then defect functions δf defined on |L|. If δf(D) > 0,
then D is called a deficient divisor in the sense of Nevanlinna.
Let E =

∑
j νjpj be an effective divisor on C, where νj ∈ Z+ and

pj ∈ C are distinct points. For a positive integer k, we define
the truncated counting function of E by

Nk(r, E) =
∑
j

min {k, νj}N(r, pj).



In general, for an effective divisor D on M , we write L(D) for

the line bundle determined by D. We now consider the case

where M = Pn(C). Let L(H) → Pn(C) be the hyperplane

bundle over Pn(C) and ω0 the Fubini-Study form on Pn(C).

In the case where M = Pn(C) and L = L(H), we always take

ω0 for ω and we simply write Tf(r) for Tf(r, L(H)).



§2. Construction of holomorphic curves with deficient divi-

sor.

We first consider the case of hyperplane.

Theorem 2.1. Let α be an arbitrary positive real number

less than one and let H be an arbitrary hyperplane in Pn(C).

Then there exists an algebraically nondegenerate holomorphic

curve f : C→ Pn(C) such that δf(H) = α.
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We next deal with the case where a given divisor D is a hyper-

surface of degree d not less than two, that is, D ∈ |L(H)⊗d| with

d ≥ 2. Let P (ζ) = P (ζ0, · · · , ζn) be a homogeneous polynomial

of degree d and define a divisor D in Pn(C) by P = 0.

Theorem 2.2. There exists a positive constant λ(D) with

λ(D) ≤ d depending only on D that satisfies the following

property: For each positive real number α with α ≤ λ(D)/d,

there exists an algebraically nondegenerate holomorphic curve

f : C→ Pn(C) such that δf(D) = α.
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Theorem (Valiron).
Let f be a transcendental holomor-

phic function on C. Suppose that Tf(r) = O((log r)2) as

r → +∞. Then

lim
r→+∞

logM(r, f)

Tf(r)
= lim

r→+∞
N(r, 0, f)

Tf(r)
= 1.

Furthermore, there exists a Borel subset ε(r) of C(r) such

that

log |f(z)| = (1 + o(1)) logM(r, f)

for all z ∈ C(r) \ ε(r) and µ(ε(r)) → 0 as r → +∞, where

µ denotes the Haar measure on C(r) normalized so that

µ(C(r)) = 1.
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Remark 2.3. We give here note on the constant λ(D) in

Theorem 2.2. Let P (ζ) be a homogeneous polynomial of degree

d such that D = {P = 0}. We rewrite P as follows:

P (ζ) =
d∑

j=0

ajζ
d−j
0 ζ

j
1 + c2ζ

d
2 + · · ·+ cnζ

d
n +Q(ζ),

where Q is a polynomial in ζ which does not contain terms

ζ
d−j
0 ζ

j
1 for j = 0, · · · , d. Let dj be the degree in ζj that are

contained in P . Set d̃ = min0≤j≤n dj. We define a polynomial

L(z) in z by

L(z) =
d∑

j=0

ajz
j.

7



Denote by κ the largest multiplicity of roots of the equation

L(z) = 0, where 1 ≤ κ ≤ d − 1. We now give a list of the

constant λ(D) in Theorem 2.2:

(I) If d = d̃, then λ(D) = κ.

(II) If d̃ < d, then λ(D) = d− d̃.

If D has a bad singularity, the estimate of type

δf(D) ≤
C

d

do not hold.
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§3. Examples.

We give here some examples of irreducible hypersurfaces of de-

gree d.

Example 3.1.
We define an irreducible hypersurface Dd of

degree d in Pn(C) by

ζd1 + · · ·+ ζdn = 0.

Note that Dd has just one singular point (1,0, · · · ,0). In this

case, λ(D) = d. Hence, for an arbitrary positive real number

α not greater than one, there exists an algebraically nondegen-

erate holomorphic curve f : C→ Pn(C) such that δf(Dd) = α.
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Example 3.2.
We next give an example of a nonsingular hyper-

surface. We define a nonsingular hypersurface Sd in Pn(C) of

degree d ≥ 2 by

ζd−1
0 ζ2 − ζd1 + ζ1ζ

d−1
2 +

n∑
j=3

ζdj = 0.

In this case, we have λ(D) = 1.
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Example 3.3.
Let n = 2 and define an irreducible curve

Cd by

ζ0ζ
d−1
2 − ζd1 = 0.

Note that Cd also has just one singular point (1,0,0), if d ≥ 3.

We also note that Cd is a rational curve. For Cd, we have

λ(Cd) = d− 1 by Theorem 2.2. Hence, for an arbitrary positive

number α ≤ (d−1)/d, there exists an algebraically nondegenerate

holomorphic curve f : C→ P2(C) such that δf(Dd) = α.
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Remark 3.4. We note that, for each positive integer d not less

than two, there exists a holomorphic curve f : C→ P2(C) such

that f omits Cd. In fact, if we define f by

f(z) = (exp z + exp(1− d)z2, 1, exp z2),

then we easily see f(C) ∩ Cd = ∅. Note that f is algebraically

nondegenerate.
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The holomorphic curves constructed above is of order zero. In

the above examples, we use exponential curves and obtaine holo-

morphic curves of order one with deficiencies (Ahlfors-Weyl’s

method). Note that this method works in the case that can be

reduced to the hyperplane case. Indeed, let Fd be the Fermat

surface degree d, that is,

Fd : ζd0 + · · ·+ ζdn = 0.

Then our method gives a holomorphic curve f with δf(Fd) =

α (0 < α ≤ 1/d), but we cannot construct a holomorphic curve

with positive deficiency for Fd by Ahlfors-Weyl’s method. Hence

it seems that our method has a wide range of applicability.
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Remqrks 3.5.
(1) We notice that Theorem 2.2 is also valid

for meromorphic mappings Cm → Pn(C). When m ≥ n, we get
a dominant mapping. We can find many examples of singular
divisors and meromorphic mappings f : Cm → Pn(C) for which
Griffiths’ defect relation

q∑
j=1

δf(Dj) ≤
n+ 1

d

does not hold. For instance, we consider the Example 3.3.
Namely, let Cd be a curve as in Example 3.3 and α a positive
real number less than (d− 1)/d. Then there exists a dominant
meromorphic mapping f : Cm → P2(C) such that

δf(Cd) =
d− 2

d
.

Hence we also have an example for which Griffiths’ defect relation
does not hold.
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(2) Suppose that d ≥ 3. We note that, if d̃ ≤ d − 2, then

D has a singular point. Indeed, we may assume that d̃ = d0.

We write P as follows:

P (ζ) = ζd−k0 Q1(ζ) +Q2(ζ),

where Q2(ζ) does not contain ζ0 and ζd−k0 is the greatest

common divisor in P − Q2. Since d − k ≤ d − 2, we see that

D has a singular point (1,0, · · · ,0). Set wj = ζj/ζ0 for

j = 1, · · · , n. Define P̃ (w) = ζ−d0 P (ζ), where w = (w1, · · · , wn).

If d − d0 ≥ n + 1, then the polynomial P̃ (w) has a zero at

(0, · · · ,0) with multiplicity at least n+1. Hence D is not normal

crossings at (1,0, · · · ,0). This fact shows that the hypothesis

in Griffiths’ defect relation, that is, D is at most simple normal

crossings, cannot be simply dropped.
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Remark 3.6.

(Effect of the resolution of singularities to deficiencies)

We considered an example of the singular curve Cd defined by

Cd : ζ0ζ
d−1
2 − ζd1 = 0.

This curve has only one singular point P(1, 0, 0), if d ≥ 3. If

π : QP (P2(C)) → P2(C) is a monoidal transformation with the

center P, then this gives a resolution of singularity of C. Namely,

let C̃ and C̄ be the total transform and the proper transform

of Cd, respectively. We also denote by E the exceptional curve.

Then Σ1 = QP (P2(C)) is the Hirzeburch surface of rank one.
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We see

C̃ = (d− 1)E + C̄,

where C̄ is a nonsingular curve in Σ1 We define a holomorphic

curve f̃ : C → Σ1 by f̃ = π−1 ◦ f . We have then an estimate

for δf̃(C̄) depending on the structure of the singularity:

δf̃(C̄) =
α

1 + (1− α)(d− 1)
.

In particular, the estimate

α

d
< δf̃(C̄) <

d− 1

2d− 1

is valid.
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§4. Value distribution theory for coherent ideal
sheaves

Let M be a projective algebraic manifolds and L → M an

ample line bundle. Let f : C → M be a transcendental holo-

morphic curve. We consider the Nevanlinna deficiency of f as a

function of linear systems Λ ⊆ |L|. We define the deficiency for

the base locus of linear system by means of the new language in

the value distribution theory for acoherent ideal sheaves due to

Noguchi-Winkelman-Yamnoi. In particular, we construct holo-

moephic curves with deficiencies for linear systems.
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Let I be a coherent ideal sheaf of the structure sheaf OM of

M . Let U = {Uj} be a finite open covering of M with a

partition of unity {ηj} subordinate to U. We can assume that

there exists a finitely many sections σjk ∈ Γ(Uj, I) such that

every stalk Ip over p ∈ Uj is generated by germs σj1p, · · · , σjljp.
Set

ρI(p) =

∑
j

ηj(p)

lj∑
k=1

∣∣∣σjk(p)
∣∣∣2


1/2

We take a positive constant C such that CρI(p) ≤ 1 for all

p ∈M. Set

φI(p) = − log ρI(p).
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We call it the proximity potential for I. It is easy to verify that

φI is well-defined up to addition by a bounded continuous func-

tion on M . We now define the proximity function mf(r, I) of

f for I, or equivalently, for the complex subspace (may be

non-reduced)

Y = (Supp (OM/I), OM/I),

by

mf(r, I) =
∫
C(r)

f∗φI(z)
dθ

2π

provided that f(C) 6⊆ SuppY .
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For z0 ∈ f−1(Supp Y ), we can choose an open neighborhood
U of z0 and a positive integer ν such that

f∗I = ((z − z0)ν) on U.

Then we see

log ρI(f(z)) = ν log |z − z0|+ hU(z) for z ∈ U,

where hU is a C∞-function on U . Thus we have the counting
functions N(r, f∗I) and Nl(r, f

∗I) as in §1. Moreover, we set

ωI,f = −ddchU on U

and thus obtain a well-defined smooth (1, 1)-form on C. Define
the characteristic function Tf(r, I) of f for I by

Tf(r, I) =
∫ r

1

dt

t

∫
∆(t)

ωI,f .
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We summarize the basic facts on value distribution theory for

coherent ideal sheaves due to Noguchi-Winkelman-Yamanoi as

follows (Forumn Math. 20 (2008)):

Theorem. Let f : C → M and I be as above. Then the

following hold:

(i) (First Main Theorem) Tf(r, I) = N(r, f∗I)+mf(r, I)+O(1).

(ii) If L → M be an ample line bundle, then Tf(r, I) =

O(Tf(r, L)).
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(iii) Let I1 and I2 be coherent ideal sheaves. Suppose that

f(C) 6⊆ Supp (OM/I1 ⊗ I2).

Then

Tf(r, I1 ⊗ I2) = Tf(r, I1) + Tf(r, I2) +O(1)

and

mf(r, I1 ⊗ I2) = mf(r, I1) +mf(r, I2) +O(1).

(iv) Let I1 and I2 and f be as in (iii). If I1 ⊂ I2, then

mf(r, I2) ≤ mf(r, I1) +O(1).
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Remark. When I defines an effective divisor D on M ,

we easily see

Tf(r, I) = Tf(r, L(D)) +O(1)

and

mf(r, I) = mf(r, D) +O(1).
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Let L → M be an ample line bundle and W ⊆ Γ(M, L) a

subspace with dimW ≥ 2. Let Λ = P(W ). We define a coherent

ideal sheaf I0 in the following way: For each p ∈M , the stalk

I0,p is generated by all germs σp for σ ∈W . Then I0 defines

the base locus of Λ as a complex subspace BΛ, that is,

BΛ = (Supp (OM/I0), OM/I0).

Hence Bs Λ = Supp (OM/I0). We notice that I0 can be

written as

I0 = I1⊗I2, codim Supp (OM/I1) = 1, codim Supp (OM/I2) ≥ 2.
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§5. S.M.T.

We let Γ(M, L) denote the space of all holomorphic sections

of L → M and |L| the complete linear system defined by L.

Let W ⊆ Γ(M, L) be a linear subspace with l+ 1 = dimW ≥ 2.

Denote by Λ the linear system determined by W , that is,

Λ = P(W ). The linear system Λ may have the non-empty base

locus. We now give SMT that gives a generalization of Ochiai’s

(T. Ochiai, Osaka J. Math. 11 (1974)).

Let D1, · · · , Dq be divisors in Λ such that Dj = (σj) for

σj ∈W .
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We first give a definition of subgeneral position. Set Q =

{1, · · · , q} and take a basis ψ0, · · · , ψl of W . We write

σj =
l∑

k=0

cjkψk

for each j ∈ Q. For a subset R ⊆ Q, we define a matrix AR by

AR = (cjk)j∈R,0≤k≤l.

Definition 5.1. Let N ≥ l and q ≥ N + 1. We say that

D1, · · · , Dq are in N-subgeneral position in Λ if

rank AR = l+ 1 for every subset R ⊆ Q with ]R = N + 1.

If they are in l-subgeneral position, we simply say that they

are in general position.
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Remark The above definition is different from the usual

one. In fact, the divisors D1, · · · , Dq are usually said to be in

N-subgeneral position in Λ provided that⋂
j∈R

Dj = ∅ for every subset R ⊆ Q with ]R = N + 1.

However, the divisors D1, · · · , Dq may have a common point

when they are in N-subgeneral position in the sense of Defini-

tion 5.1. Thus our definition is weaker than the usual one. We

always use “ N-subgeneral position” in the sense of Definition

5.1.
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Let f : C → M be a transcendental holomorphic curve that is

nondegenerate with respect to Λ, namely, the image of f is not

contained in the support of any divisor in Λ. We have then the

following generalized Crofton type formula due to R. Kobayashi:

Proposition 5.2.
Suppose that Bs Λ 6= ∅ and f(C) 6⊆ Bs Λ.

Then ∫
D∈Λ

mf(r, D)dµ(D) = mf(r, I0) +O(1).
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Theorem 5.3. Let D1, · · · , Dq ∈ Λ be divisors

in N-subgeneral position. Then

(q−2N+dim Λ−1)(Tf(r, L)−Tf(r, I0)) ≤
q∑

j=1

N(r, f∗Dj)+Sf(r),

where

Sf(r) = O(logTf(r, L)) +O(log r)

as r → +∞ except on a Borel subset E ⊆ [1,+∞) with

finite measure.
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§6. Deficiency for linear systems.

Let f : C→M be a transcendental holomorphic curve. Suppose

that f is nondegenerate with respect to Λ. We define a

deficiency δf(BΛ) for BΛ by

δf(BΛ) = lim inf
r→+∞

mf(r, I0)

Tf(r, L)
.
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Then we have the following:

Proposition 6.1.
Let f : C → M be a transcendental

holomorphic curve. Suppose that f is nondegenerate with

respect to Λ. Then∫
D∈Λ

δf(D)dµ(D) = δf(BΛ).
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Theorem 6.2. Let f : C→M be as above. Then

δf(D) ≥ δf(BΛ)

for all D ∈ Λ and

δf(D) = δf(BΛ)

for almost all D ∈ Λ in the sense of Lebesgue measure in

Λ.

Hence we have a defect function δf : Λ → [δf(BΛ), 1]. We

consider δf(BΛ) as a deficiency of f for Λ.



Next, we deduce the defect relation from Theorem 5.3. We let

E(f ;N) denote the set of all r ∈ [1, +∞) satisfying

Tf(r, L) +N ≤ Tf

(
r +

1

(Tf(r, L) +N)2
, L

)
where N is a positive integer. Then the Lebesgue measure

|E(f ;N)| is finite, and E(f ;N2) ⊆ E(f ;N1) if N1 < N2. Set

E(f) =
⋂

N∈Z+

E(f ;N).

We call E(f) the exceptional growth set for f . The existence

of non-empty E(f) affects on deficiency.

In the case where f is of finite type, we set E(f) = ∅.
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After Nochka , we now define modified deficiency in the sense of

Nochka. We define N-th Nevanlinna’s deficiency δf(D;N) by

δf(D;N) = lim inf
r→+∞
r 6∈E(f ;N)

mf(r, D)

Tf(r, L)
.

It is clear that δf(D;N2) ≤ δf(D;N1) if N1 < N2.

We define the modified deficiency of f in the sense of Nochka

by

δ̃f(D) = lim
N→+∞

δf(D;N).
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Then δf(D) ≤ δ̃f(D) and δf(D) = δ̃f(D) if f is of finite

type. bigskip

We define δ̃f(BΛ;N) and δ̃f(BΛ) by the same way. Further-

more, we also define

γf(Λ) = lim inf
r→+∞

Tf(r, I0)

Tf(r, L)
.

Then 0 ≤ γf(Λ) ≤ 1 and δf(BΛ) ≤ γf(Λ). We also define

γ̃f(Λ;N) and γ̃f(Λ).
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Remark 6.3. We also have the following:

∫
D∈Λ

δ̃f(D)dµ(D) = δ̃f(BΛ).

δ̃f(D) ≥ δ̃f(BΛ)

for all D ∈ Λ.

δ̃f(D) = δ̃f(BΛ)

for almost all D ∈ Λ.
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By Theorem 5.3, we get the following defect relation:

Theorem 6.4. Let Λ, f and D1, · · · , Dq be as in Theorem

5.3. Then
q∑

j=1

(δ̃f(Dj)− δ̃f(BΛ)) ≤ (1− γ̃f(Λ))(2N − dim Λ + 1).
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§7. The existence of holomorphic curves with
deficiencies

We can show the existence of holomorphic curves with

0 < δf(BΛ) < 1

in the case where M = Pn(C) and L = L(H)⊗d.

Proposition 7.1.
Let 0 < e0 ≤ 1. Then there exist

an algebraically nondegenerate transcendental holomorphic

curve f : C → Pn(C) and a linear system Λ included in

|L(H)⊗d| such that δf(BΛ) = e0.
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Let Λ ⊆ |L(H)⊗d| be a linear system with the non-empty base

locus. We will show the existence of holomorphic curves with

0 < δf(BΛ) < 1. We will give a proof by constructing a holomor-

phic curve by using exponential cueves. We recall some known

facts on exponential curves. Let f : C → Pn(C) be a noncon-

stant holomorphic curve defined by

f(z) = (exp a0z, · · · , exp anz),

where a0, · · · , an ∈ C.
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We denote by Cf the circumference of the convex polygon

spanned by the set {a0, · · · , an}. Let H be a hyperplane in

Pn(C) defined by

H : L(z) =
n∑

j=0

αjζj = 0 (α0, · · · , αn ∈ C),

where ζ = (ζ0, · · · , ζn) is a homogeneous coordinate system in

Pn(C). We define the set JH of index by JH = {j : αj 6= 0}.
Let Cf,H be the circumference of the convex polygon spanned

by the set {aj : j ∈ JH}. According to H. and J. Weyl,

Tf(r) =
Cf
2π

r +O(1).
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Then we have the following lemma:

Lemma 7.2. Let f and H be as in the above. Then the

deficiency of f for H is given by

δf(H) = 1−
Cf,H
Cf

.

Furthermore, the constant Cf,H is depending only on f and

on JH.
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We first consider the case where d = 1. By making use of

Lemma 7.2, we have the following:

Theorem 7.3. Let Λ ⊆ |L| and e0 an arbitrary positive

number less than one. Suppose Bs Λ 6= ∅. Then there exists

a holomorphic curve f : C→ Pn(C) such that e0 = δf(BΛ).
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Example 7.4.
Let (ζ0, ζ1, ζ2) be a homogeneous coordinate

system in P2(C) and W a subspace of Γ(P2(C), L(H)) gen-
erated by ζ1 and ζ2. Then Bs Λ = {(1,0,0)}. We define an
algebraically nondegenerate holomorphic curve f : C→ P2(C) by

f(z) = (1, ez, ecz),

where c is a positive number greater than one. In this case, we
have

φI0
=

1

2
log

(
|ζ0|2 + |ζ1|2 + |ζ2|2

|ζ1|2 + |ζ2|2

)
.

Then, a direct calculation gives us the following:

Tf(r) =
c

π
r +O(1) and mf(r, I0) =

1

π
r +O(1).

Hence we have δf(B(Λ)) = 1/c. We notice that f does not hit
Bs Λ.
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Theorem 7.5. There exist a linearly nondegenerate tran-

scendental holomorphic curve f : C→ Pn(C) of finite type and

finitely many linear systems {Λj} included in |L(H)| that

have the following properties: The set of values of δf is a

finite set (say {ej}) with ej = δf(BΛ). Furthemore,

δf(D) = ej for all D ∈ Λj \
⋃
k

Λjk,

where {Λjk} ⊂ {Λj} and 0 < ej < 1 for at least one j. For a

sufficiently small positive number δ, there exist Λj1, · · · ,Λjt in

{Λj} such that

{H ∈ |L(H)| : δf(H) ≥ δ} =
t⋃

k=1

Λjk.
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Next we consider the case where d ≥ 2. In this case, by using

Veronese map and Lemma 7.2, we have the following theorem:

Theorem 7.6. Let Λ ⊆ |L(H)⊗d|. Suppose that Bs Λ 6=
∅. Then there exists a holomorphic curve f : C → Pn(C),

nondegenerate with respect to Λ, such that

0 < δf(BΛ) < 1.


