Line bundles with connections on projective varieties over function fields and number fields

Klaus Künnemann (Regensburg) Fields Institute, Toronto, October 23rd 2008

Line bundles with connections on projective varieties over function fields and number fields

Klaus Künnemann (Regensburg) Fields Institute, Toronto, October 23rd 2008

joint work with Jean-Benoît Bost (Orsay)

Line bundles with connections on projective varieties over function fields and number fields

Klaus Künnemann (Regensburg) Fields Institute, Toronto, October 23rd 2008

joint work with Jean-Benoît Bost (Orsay)

available at arXive: mathAG0807.4374

- 1 Line bundles with connections
- 2 The main theorems

- 1 Line bundles with connections
- 2 The main theorems
- 3 Remarks on Theorem (A)

- 1 Line bundles with connections
- 2 The main theorems
- 3 Remarks on Theorem (A)
- 4 Proof of Theorem (A)

- 1 Line bundles with connections
- 2 The main theorems
- 3 Remarks on Theorem (A)
- 4 Proof of Theorem (A)
- 5 A remark on Theorem (B)

- 1 Line bundles with connections
- 2 The main theorems
- 3 Remarks on Theorem (A)
- 4 Proof of Theorem (A)
- 5 A remark on Theorem (B)
- 6 Proof of Theorem (B)

- 1 Line bundles with connections
- 2 The main theorems
- 3 Remarks on Theorem (A)
- 4 Proof of Theorem (A)
- 5 A remark on Theorem (B)
- 6 Proof of Theorem (B)
- 7 From line bundles to vector bundles

k a field of characteristic zero

- k a field of characteristic zero
- X a smooth, projective, geometrically connected variety over k

- k a field of characteristic zero
- X a smooth, projective, geometrically connected variety over k
- E a vector bundle over X

- k a field of characteristic zero
- X a smooth, projective, geometrically connected variety over k
- E a vector bundle over X

Consider

$$X \stackrel{\Delta}{\longrightarrow} X \times_k X$$

- k a field of characteristic zero
- X a smooth, projective, geometrically connected variety over k
- E a vector bundle over X

Consider

$$egin{array}{cccc} X & \stackrel{\Delta}{\longrightarrow} & X imes_k X \ \downarrow & \nearrow & \downarrow_{\operatorname{pr}_i} \ X_{\Delta}^{(1)} & \stackrel{q_i}{\longrightarrow} & X. \end{array}$$

- k a field of characteristic zero
- X a smooth, projective, geometrically connected variety over k
- E a vector bundle over X

Consider

$$egin{array}{cccc} X & \stackrel{\Delta}{\longrightarrow} & X imes_k X \ \downarrow & \nearrow & \downarrow_{\operatorname{pr}_i} \ X_{\wedge}^{(1)} & \stackrel{q_i}{\longrightarrow} & X. \end{array}$$

Define \mathcal{O}_X -module of **principal parts** or 1-jets of E as

$$P_{X/k}^1(E) = q_{1*}q_2^*E$$

- k a field of characteristic zero
- X a smooth, projective, geometrically connected variety over k
- E a vector bundle over X

Consider

$$\begin{array}{ccc} X & \stackrel{\Delta}{\longrightarrow} & X \times_k X \\ \downarrow & \nearrow & \downarrow \operatorname{pr}_i \\ X_{\Lambda}^{(1)} & \stackrel{q_i}{\longrightarrow} & X. \end{array}$$

Define \mathcal{O}_X -module of **principal parts** or 1-jets of E as

$$P^1_{X/k}(E) = q_{1*}q_2^*E = E \oplus (\Omega^1_{X/k} \otimes E)$$

with \mathcal{O}_X -module structure $\lambda \cdot [e, \omega] = [\lambda \cdot e, \lambda \cdot \omega - d\lambda \otimes e]$.

$$At_{X/k}(E): 0 \to \Omega^1_{X/k} \otimes E \to P^1_{X/k}(E) \to E \to 0.$$

$$At_{X/k}(E): 0 \to \Omega^1_{X/k} \otimes E \to P^1_{X/k}(E) \to E \to 0.$$

There is a 1-1-correspondence

$$\left\{ \begin{array}{l} \text{connections} \\ \nabla \colon\thinspace E \to \Omega^1_{X/k} \otimes E \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{l} \mathcal{O}_X\text{-linear splittings} \\ s\colon\thinspace E \to P^1_{X/k}(E) \end{array} \right\}$$

mapping ∇ to splitting $s_{\nabla}: e \mapsto [e, -\nabla(e)]$.

$$At_{X/k}(E): 0 \to \Omega^1_{X/k} \otimes E \to P^1_{X/k}(E) \to E \to 0.$$

There is a 1-1-correspondence

$$\left\{ \begin{array}{l} \text{connections} \\ \nabla \colon\thinspace E \to \Omega^1_{X/k} \otimes E \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{l} \mathcal{O}_X\text{-linear splittings} \\ s\colon\thinspace E \to P^1_{X/k}(E) \end{array} \right\}$$

mapping ∇ to splitting $s_{\nabla}: e \mapsto [e, -\nabla(e)]$. Hence the **Atiyah class**

$$\textit{at}_{X/k}(E) \in \operatorname{Ext}^1_{\mathcal{O}_X}(E, \Omega^1_{X/k} \otimes E) = H^1(X, \Omega^1_{X/k} \otimes \operatorname{End}(E))$$

is an obstruction to the existence of a connection on E.

$$At_{X/k}(E): 0 \to \Omega^1_{X/k} \otimes E \to P^1_{X/k}(E) \to E \to 0.$$

There is a 1-1-correspondence

$$\left\{ \begin{array}{l} \text{connections} \\ \nabla \colon\thinspace E \to \Omega^1_{X/k} \otimes E \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{l} \mathcal{O}_X\text{-linear splittings} \\ \text{$\mathfrak{s}\colon\thinspace E \to P^1_{X/k}(E)$} \end{array} \right\}$$

mapping ∇ to splitting $s_{\nabla}: e \mapsto [e, -\nabla(e)]$. Hence the **Atiyah class**

$$at_{X/k}(E) \in \operatorname{Ext}^1_{\mathcal{O}_X}(E, \Omega^1_{X/k} \otimes E) = H^1(X, \Omega^1_{X/k} \otimes \operatorname{End}(E))$$

is an obstruction to the existence of a connection on E. If $k = \mathbb{C}$ we may apply GAGA to holomorphic connections on $E_{\mathbb{C}}$ over $X(\mathbb{C})$.

$$c_1(L) := at_{X/k}(L) \in H^1(X, \Omega^1_{X/k}) =$$
 'Hodge cohomology'

$$c_1(L) := at_{X/k}(L) \in H^1(X, \Omega^1_{X/k}) =$$
 'Hodge cohomology'

Well known fact:

$$c_1(L) = 0 \Leftrightarrow \exists n > 0 \text{ s.t. } L^{\otimes n} \text{ algebraically equiv. to zero.}$$

$$c_1(L) := at_{X/k}(L) \in H^1(X, \Omega^1_{X/k}) =$$
 'Hodge cohomology'

Well known fact:

$$c_1(L) = 0 \Leftrightarrow \exists n > 0 \text{ s.t. } L^{\otimes n} \text{ algebraically equiv. to zero.}$$

If $k = \mathbb{C}$ this is furthermore equivalent to

$$c_1(L_{\mathbb{C}})=0$$
 in $H^2(X(\mathbb{C}),\mathbb{Q})$.

$$c_1(L) := at_{X/k}(L) \in H^1(X, \Omega^1_{X/k}) =$$
 'Hodge cohomology'

Well known fact:

$$c_1(L) = 0 \Leftrightarrow \exists n > 0 \text{ s.t. } L^{\otimes n}$$
 algebraically equiv. to zero.

If $k = \mathbb{C}$ this is furthermore equivalent to

$$c_1(L_{\mathbb{C}})=0$$
 in $H^2(X(\mathbb{C}),\mathbb{Q})$.

In this case $L_{\mathbb{C}}$ carries up to multiplication by $\mathbb{R}_{>0}$ unique hermitian metric $\|.\|$ with curvature zero.

$$c_1(L) := at_{X/k}(L) \in H^1(X, \Omega^1_{X/k}) =$$
 'Hodge cohomology'

Well known fact:

$$c_1(L) = 0 \Leftrightarrow \exists n > 0 \text{ s.t. } L^{\otimes n} \text{ algebraically equiv. to zero.}$$

If $k = \mathbb{C}$ this is furthermore equivalent to

$$c_1(L_{\mathbb{C}})=0$$
 in $H^2(X(\mathbb{C}),\mathbb{Q})$.

In this case $L_{\mathbb{C}}$ carries up to multiplication by $\mathbb{R}_{>0}$ unique hermitian metric $\|.\|$ with curvature zero. Let $\nabla_{\overline{L}}$ denote the **Chern connection** on $L_{\mathbb{C}}$ (i.e. $\nabla_{\overline{L}}$ is the unique unitary connection which is compatible with the complex structure).

$$c_1(L) := at_{X/k}(L) \in H^1(X, \Omega^1_{X/k}) =$$
 'Hodge cohomology'

Well known fact:

$$c_1(L) = 0 \Leftrightarrow \exists n > 0 \text{ s.t. } L^{\otimes n} \text{ algebraically equiv. to zero.}$$

If $k = \mathbb{C}$ this is furthermore equivalent to

$$c_1(L_{\mathbb{C}})=0$$
 in $H^2(X(\mathbb{C}),\mathbb{Q})$.

In this case $L_{\mathbb{C}}$ carries up to multiplication by $\mathbb{R}_{>0}$ unique hermitian metric $\|.\|$ with curvature zero. Let $\nabla_{\overline{L}}$ denote the **Chern connection** on $L_{\mathbb{C}}$ (i.e. $\nabla_{\overline{L}}$ is the unique unitary connection which is compatible with the complex structure). Let ∇_{L}^{u} denote the (1,0)-part of $\nabla_{\overline{L}}$.

$$c_1(L) := at_{X/k}(L) \in H^1(X, \Omega^1_{X/k}) =$$
 'Hodge cohomology'

Well known fact:

$$c_1(L) = 0 \Leftrightarrow \exists n > 0 \text{ s.t. } L^{\otimes n} \text{ algebraically equiv. to zero.}$$

If $k = \mathbb{C}$ this is furthermore equivalent to

$$c_1(L_{\mathbb{C}})=0$$
 in $H^2(X(\mathbb{C}),\mathbb{Q})$.

In this case $L_{\mathbb{C}}$ carries up to multiplication by $\mathbb{R}_{>0}$ unique hermitian metric $\|.\|$ with curvature zero. Let $\nabla_{\overline{L}}$ denote the **Chern connection** on $L_{\mathbb{C}}$ (i.e. $\nabla_{\overline{L}}$ is the unique unitary connection which is compatible with the complex structure). Let ∇_L^u denote the (1,0)-part of $\nabla_{\overline{L}}$. Observe: ∇_L^u is holomorphic and algebraizes by GAGA.

| → 4 ≣ → 4 ≣ → 9 Q (~

Theorem (A): Consider

 $\bullet \ \mathbb{Q} \hookrightarrow \overline{\mathbb{Q}} \hookrightarrow \mathbb{C},$

- $\bullet \ \mathbb{Q} \hookrightarrow \overline{\mathbb{Q}} \hookrightarrow \mathbb{C},$
- X a smooth, projective, connected variety over $\overline{\mathbb{Q}}$,

- $\bullet \ \mathbb{Q} \hookrightarrow \overline{\mathbb{Q}} \hookrightarrow \mathbb{C},$
- X a smooth, projective, connected variety over $\overline{\mathbb{Q}}$,
- L a line bundle on X,

- $\bullet \ \mathbb{Q} \hookrightarrow \overline{\mathbb{Q}} \hookrightarrow \mathbb{C},$
- X a smooth, projective, connected variety over $\overline{\mathbb{Q}}$,
- L a line bundle on X,
- $\nabla: L \to \Omega_{X/\overline{\mathbb{Q}}} \otimes L$ a connection

- $\bullet \ \mathbb{Q} \hookrightarrow \overline{\mathbb{Q}} \hookrightarrow \mathbb{C},$
- X a smooth, projective, connected variety over $\overline{\mathbb{Q}}$,
- L a line bundle on X,
- $\nabla: L \to \Omega_{X/\overline{\mathbb{Q}}} \otimes L$ a connection $(\Rightarrow c_1(L) = 0)$.

Theorem (A): Consider

- $\bullet \ \mathbb{Q} \hookrightarrow \overline{\mathbb{Q}} \hookrightarrow \mathbb{C},$
- X a smooth, projective, connected variety over $\overline{\mathbb{Q}}$,
- L a line bundle on X,
- $\nabla: L \to \Omega_{X/\overline{\mathbb{Q}}} \otimes L$ a connection ($\Rightarrow c_1(L) = 0$).

If the monodromy of ∇ is unitary (i.e. if $\nabla_{\mathbb{C}} = \nabla_{L}^{u}$)

Theorem (A): Consider

- $\bullet \ \mathbb{Q} \hookrightarrow \overline{\mathbb{Q}} \hookrightarrow \mathbb{C},$
- X a smooth, projective, connected variety over $\overline{\mathbb{Q}}$,
- *L* a line bundle on *X*,
- $\nabla: L \to \Omega_{X/\overline{\mathbb{Q}}} \otimes L$ a connection ($\Rightarrow c_1(L) = 0$).

If the monodromy of ∇ is unitary (i.e. if $\nabla_{\mathbb{C}} = \nabla_{L}^{u}$) there exists n>0 such that

$$(L,\nabla)^{\otimes n}\cong (\mathcal{O}_X,d).$$

• Let X, k be as in section 1,

- Let X, k be as in section 1,
- *C* a smooth, projective, geometrically connected *k*-curve,

- Let X, k be as in section 1,
- *C* a smooth, projective, geometrically connected *k*-curve,
- $\pi: X \to C$ a flat k-morphism with geom. connected fibers,

- Let X, k be as in section 1,
- C a smooth, projective, geometrically connected k-curve,
- $\pi: X \to C$ a flat k-morphism with geom. connected fibers,
- $K = \kappa(C)$ function field, $X_K = X \times_C \operatorname{Spec} K$,

- Let *X*, *k* be as in section 1,
- *C* a smooth, projective, geometrically connected *k*-curve,
- $\pi: X \to C$ a flat k-morphism with geom. connected fibers,
- $K = \kappa(C)$ function field, $X_K = X \times_C \operatorname{Spec} K$,
- L a line bundle on X with relative Atiyah extension

$$At_{X/C}(L): 0 o \Omega^1_{X/C} \otimes L o P^1_{X/C}(L) o L o 0$$

- Let *X*, *k* be as in section 1,
- *C* a smooth, projective, geometrically connected *k*-curve,
- $\pi: X \to C$ a flat k-morphism with geom. connected fibers,
- $K = \kappa(C)$ function field, $X_K = X \times_C \operatorname{Spec} K$,
- L a line bundle on X with relative Atiyah extension

$$At_{X/C}(L): 0 o \Omega^1_{X/C} \otimes L o P^1_{X/C}(L) o L o 0$$

where
$$\mathbb{L}^{\cdot}_{X/C} \stackrel{\sim}{\to} \Omega^1_{X/C}$$
.

- Let *X*, *k* be as in section 1,
- C a smooth, projective, geometrically connected k-curve,
- $\pi: X \to C$ a flat k-morphism with geom. connected fibers,
- $K = \kappa(C)$ function field, $X_K = X \times_C \operatorname{Spec} K$,
- L a line bundle on X with relative Atiyah extension

$$\textit{At}_{X/C}(\textit{L}): 0 \rightarrow \Omega^1_{X/C} \otimes \textit{L} \rightarrow \textit{P}^1_{X/C}(\textit{L}) \rightarrow \textit{L} \rightarrow 0$$

where $\mathbb{L}^{\cdot}_{X/C} \stackrel{\sim}{\to} \Omega^1_{X/C}$.

Theorem (B): $at_{X/C}(L) = 0$ in $H^1(X, \Omega^1_{X/C})$ if and only if

- Let *X*, *k* be as in section 1,
- C a smooth, projective, geometrically connected k-curve,
- $\pi: X \to C$ a flat k-morphism with geom. connected fibers,
- $K = \kappa(C)$ function field, $X_K = X \times_C \operatorname{Spec} K$,
- L a line bundle on X with relative Atiyah extension

$$\textit{At}_{X/C}(\textit{L}): 0 \rightarrow \Omega^1_{X/C} \otimes \textit{L} \rightarrow \textit{P}^1_{X/C}(\textit{L}) \rightarrow \textit{L} \rightarrow 0$$

where $\mathbb{L}^{\cdot}_{X/C} \stackrel{\sim}{\to} \Omega^1_{X/C}$.

Theorem (B): $at_{X/C}(L) = 0$ in $H^1(X, \Omega^1_{X/C})$ if and only if there exist n > 0 and a line bundle M on C such that $L^{\otimes n} \otimes \pi^* M$ is algebraically equivalent to zero.

8 / 25

$$\bullet \ X:=\mathbb{P}^1_{\overline{\mathbb{Q}}}\setminus \left\{a_1,\ldots,a_r,\infty\right\},\ a_1,\ldots,a_n\in \overline{\mathbb{Q}},$$

- $\bullet \ X:=\mathbb{P}^1_{\overline{\mathbb{Q}}}\setminus \left\{a_1,\ldots,a_r,\infty\right\}, \ a_1,\ldots,a_n\in \overline{\mathbb{Q}},$
- \bullet $L := \mathcal{O}_X$,

$$\bullet \ X:=\mathbb{P}^1_{\overline{\mathbb{Q}}}\setminus \left\{a_1,\ldots,a_r,\infty\right\},\ a_1,\ldots,a_n\in \overline{\mathbb{Q}},$$

•
$$L := \mathcal{O}_X$$
, $\nabla := d + \sum_{j=1}^r \frac{\lambda_j}{z - a_j} dz$, $\lambda_1, \ldots, \lambda_n \in \overline{\mathbb{Q}}$

- $\bullet \ X:=\mathbb{P}^1_{\overline{\mathbb{Q}}}\setminus \left\{a_1,\ldots,a_r,\infty\right\}, \ a_1,\ldots,a_n\in \overline{\mathbb{Q}},$
- $L := \mathcal{O}_X$, $\nabla := d + \sum_{j=1}^r \frac{\lambda_j}{z a_j} dz$, $\lambda_1, \dots, \lambda_n \in \overline{\mathbb{Q}}$ defined over $\overline{\mathbb{Q}}$,

- $\bullet \ X:=\mathbb{P}^1_{\overline{\mathbb{Q}}}\setminus \{a_1,\dots,a_r,\infty\}\,,\ a_1,\dots,a_n\in \overline{\mathbb{Q}},$
- $L := \mathcal{O}_X$, $\nabla := d + \sum_{j=1}^r \frac{\lambda_j}{z a_j} dz$, $\lambda_1, \dots, \lambda_n \in \overline{\mathbb{Q}}$ defined over $\overline{\mathbb{Q}}$,
- image of monodromy is

$$\exp\{2\pi i \sum_{j=1}^n \mathbb{Z} \cdot \lambda_j\} \subseteq \mathbb{C}^*$$

The following example shows that the projectivity assumption in Theorem (A) is necessary:

- $\bullet \ X:=\mathbb{P}^1_{\overline{\mathbb{Q}}}\setminus \{a_1,\dots,a_r,\infty\}\,,\ a_1,\dots,a_n\in \overline{\mathbb{Q}},$
- $L := \mathcal{O}_X$, $\nabla := d + \sum_{j=1}^r \frac{\lambda_j}{z a_j} dz$, $\lambda_1, \dots, \lambda_n \in \overline{\mathbb{Q}}$ defined over $\overline{\mathbb{Q}}$,
- image of monodromy is

$$\exp\{2\pi i \sum_{j=1}^n \mathbb{Z} \cdot \lambda_j\} \subseteq \mathbb{C}^*$$

• unitary (i.e. $\subseteq U(1)$) if $\lambda_1, \ldots, \lambda_n \in \mathbb{R} \cap \overline{\mathbb{Q}}$,

- $\bullet \ X:=\mathbb{P}^1_{\overline{\mathbb{Q}}}\setminus \{a_1,\dots,a_r,\infty\}\,,\ a_1,\dots,a_n\in \overline{\mathbb{Q}},$
- $L := \mathcal{O}_X$, $\nabla := d + \sum_{j=1}^r \frac{\lambda_j}{z a_j} dz$, $\lambda_1, \dots, \lambda_n \in \overline{\mathbb{Q}}$ defined over $\overline{\mathbb{Q}}$,
- image of monodromy is

$$\exp\{2\pi i \sum_{i=1}^n \mathbb{Z} \cdot \lambda_i\} \subseteq \mathbb{C}^*$$

- unitary (i.e. $\subset U(1)$) if $\lambda_1, \ldots, \lambda_n \in \mathbb{R} \cap \overline{\mathbb{Q}}$,
- but **infinite** if there is one $\lambda_i \in \overline{\mathbb{Q}} \setminus \mathbb{Q}$.

Let (R, Σ, F_{∞}) be an arithmetic ring, for example

$$a)(K, \{\sigma : K \hookrightarrow \mathbb{C}\}), \text{ or } b)(\mathcal{O}_K[1/N], \{\sigma : K \hookrightarrow \mathbb{C}\}),$$

where K is a number field.

Let (R, Σ, F_{∞}) be an arithmetic ring, for example

$$a)(K, \{\sigma : K \hookrightarrow \mathbb{C}\}), \text{ or } b)(\mathcal{O}_K[1/N], \{\sigma : K \hookrightarrow \mathbb{C}\}),$$

where K is a number field. Let X be a smooth, projective scheme over S = Spec R with geometrically connected fibers.

Let (R, Σ, F_{∞}) be an arithmetic ring, for example

$$a)(K, \{\sigma : K \hookrightarrow \mathbb{C}\}), \text{ or } b)(\mathcal{O}_K[1/N], \{\sigma : K \hookrightarrow \mathbb{C}\}),$$

where K is a number field. Let X be a smooth, projective scheme over $S = \operatorname{Spec} R$ with geometrically connected fibers. An **arithmetic extension** (\mathcal{E}, s) **over** X is given by extension of \mathcal{O}_X -modules

$$\mathcal{E}: \mathbf{0} \to \mathbf{G} \to \mathbf{E} \to \mathbf{F} \to \mathbf{0}$$

Let (R, Σ, F_{∞}) be an arithmetic ring, for example

$$a)(K, \{\sigma : K \hookrightarrow \mathbb{C}\}), \text{ or } b)(\mathcal{O}_K[1/N], \{\sigma : K \hookrightarrow \mathbb{C}\}),$$

where K is a number field. Let X be a smooth, projective scheme over $S = \operatorname{Spec} R$ with geometrically connected fibers. An **arithmetic extension** (\mathcal{E}, s) **over** X is given by extension of \mathcal{O}_X -modules

$$\mathcal{E}: \mathbf{0} \to \mathbf{G} \to \mathbf{E} \to \mathbf{F} \to \mathbf{0}$$

with a \mathcal{C}^{∞} -splitting $s: F_{\mathbb{C}} \to E_{\mathbb{C}}$ over $X_{\Sigma}(\mathbb{C}) = \coprod_{\sigma \in \Sigma} X_{\sigma}(\mathbb{C})$.

Let (R, Σ, F_{∞}) be an arithmetic ring, for example

$$a)(K, \{\sigma : K \hookrightarrow \mathbb{C}\}), \text{ or } b)(\mathcal{O}_K[1/N], \{\sigma : K \hookrightarrow \mathbb{C}\}),$$

where K is a number field. Let X be a smooth, projective scheme over $S = \operatorname{Spec} R$ with geometrically connected fibers. An **arithmetic extension** (\mathcal{E}, s) **over** X is given by extension of \mathcal{O}_X -modules

$$\mathcal{E}: \mathbf{0} \to \mathbf{G} \to \mathbf{E} \to \mathbf{F} \to \mathbf{0}$$

with a \mathcal{C}^{∞} -splitting $s: F_{\mathbb{C}} \to E_{\mathbb{C}}$ over $X_{\Sigma}(\mathbb{C}) = \coprod_{\sigma \in \Sigma} X_{\sigma}(\mathbb{C})$.

 $\widehat{\operatorname{Ext}}_X^1(F,G) := \{ \text{arithmetic extensions of } F \text{ by } G \} / \sim .$

Let (R, Σ, F_{∞}) be an arithmetic ring, for example

$$a)(K, \{\sigma : K \hookrightarrow \mathbb{C}\}), \text{ or } b)(\mathcal{O}_K[1/N], \{\sigma : K \hookrightarrow \mathbb{C}\}),$$

where K is a number field. Let X be a smooth, projective scheme over $S = \operatorname{Spec} R$ with geometrically connected fibers. An **arithmetic extension** (\mathcal{E}, s) **over** X is given by extension of \mathcal{O}_X -modules

$$\mathcal{E}: \mathbf{0} \to \mathbf{G} \to \mathbf{E} \to \mathbf{F} \to \mathbf{0}$$

with a \mathcal{C}^{∞} -splitting $s: F_{\mathbb{C}} \to E_{\mathbb{C}}$ over $X_{\Sigma}(\mathbb{C}) = \coprod_{\sigma \in \Sigma} X_{\sigma}(\mathbb{C})$.

$$\widehat{\operatorname{Ext}}_X^1(F,G) := \{ \text{arithmetic extensions of } F \text{ by } G \} / \sim .$$

Group structure from 'Baer sum' or homological algebra.

Arithmetic Atiyah extension:

$$\widehat{at}_{X/S}(\overline{E}) = (\mathsf{At}_{X/S}(E), s_{\nabla^{1,0}_{\overline{E}}}) \in \widehat{\mathit{Ext}}^1(E, \Omega^1_{X/S} \otimes E).$$

$$\widehat{at}_{X/S}(\overline{E}) = (\operatorname{At}_{X/S}(E), s_{\nabla^{1,0}_{\overline{E}}}) \in \widehat{Ext}^1(E, \Omega^1_{X/S} \otimes E).$$

Get a group homomorphism

$$\hat{c}_1^H:\widehat{\textit{Pic}}(X)\to \widehat{\textit{Ext}}^1(\mathcal{O}_X,\Omega^1_{X/S})\,,\ [\overline{L}]\mapsto \widehat{\textit{at}}_{X/S}(\overline{L})$$

$$\widehat{at}_{X/S}(\overline{E}) = (\operatorname{At}_{X/S}(E), s_{\nabla^{1,0}_{\overline{E}}}) \in \widehat{Ext}^{1}(E, \Omega^{1}_{X/S} \otimes E).$$

Get a group homomorphism

$$\widehat{c}_1^H: \widehat{\textit{Pic}}(X) \to \widehat{\textit{Ext}}^1(\mathcal{O}_X, \Omega^1_{X/S})\,, \ [\overline{L}] \mapsto \widehat{\textit{at}}_{X/S}(\overline{L})$$

with
$$\operatorname{im}(\pi^*:\widehat{Pic}(S)\to\widehat{Pic}(X))\subseteq \ker(\widehat{c}_1^H)$$
.

$$\widehat{at}_{X/S}(\overline{E}) = (\operatorname{At}_{X/S}(E), s_{\nabla^{1,0}_{\overline{E}}}) \in \widehat{Ext}^{1}(E, \Omega^{1}_{X/S} \otimes E).$$

Get a group homomorphism

$$\hat{c}_1^H:\widehat{\textit{Pic}}(X)\to \widehat{\textit{Ext}}^1(\mathcal{O}_X,\Omega^1_{X/S})\,,\ [\overline{L}]\mapsto \widehat{\textit{at}}_{X/S}(\overline{L})$$

with
$$\operatorname{im}(\pi^*:\widehat{Pic}(S)\to\widehat{Pic}(X))\subseteq \ker(\widehat{c}_1^H)$$
.

Corollary to Theorem (A):

$$\operatorname{ker}(c_1^H)/\operatorname{im}(\pi^*)$$

is a finite group in situation a) and b).

In the situation of Theorem (A) the **Picard variety** $B := Pic_{X/k}^0$ classifies line bundles L on X algebraically equivalent to zero.

In the situation of Theorem (A) the **Picard variety** $B := \operatorname{Pic}_{X/k}^0$ classifies line bundles L on X algebraically equivalent to zero. The **universal vector extension** $B^\# = \operatorname{Pic}_{X/k}^{0\#}$ of B classifies line bundles L as above equipped with an integrable connection ∇ .

In the situation of Theorem (A) the **Picard variety** $B := \operatorname{Pic}_{X/k}^0$ classifies line bundles L on X algebraically equivalent to zero. The **universal vector extension** $B^\# = \operatorname{Pic}_{X/k}^{0\#}$ of B classifies line bundles L as above equipped with an integrable connection ∇ . It fits into an extension

$$0 \to \Gamma(X, \Omega_{X/\overline{\mathbb{Q}}}) \to B^{\#} \to B \to 0.$$

In the situation of Theorem (A) the **Picard variety** $B := \operatorname{Pic}_{X/k}^0$ classifies line bundles L on X algebraically equivalent to zero. The **universal vector extension** $B^\# = \operatorname{Pic}_{X/k}^{0\#}$ of B classifies line bundles L as above equipped with an integrable connection ∇ . It fits into an extension

$$0 \to \Gamma(X, \Omega_{X/\overline{\mathbb{Q}}}) \to B^\# \to B \to 0.$$

After base change to $\mathbb C$ this becomes $(X=X(\mathbb C))$

$$0 \to \Gamma(X,\Omega_{X/\mathbb{C}}) \to \frac{H^1(X,\mathbb{C})}{H^1(X,2\pi i\mathbb{Z})} \to \frac{H^1(X,\mathcal{O}_X)}{H^1(X,2\pi i\mathbb{Z})} \to 0$$

(use the exponential sequence).

The maximal compact subgroup

$$\mathcal{K}:=rac{H^1(X,2\pi i\mathbb{R})}{H^1(X,2\pi i\mathbb{Z})}\subseteq \mathcal{B}^\#(\mathbb{C})=rac{H^1(X,\mathbb{C})}{H^1(X,2\pi i\mathbb{Z})}\stackrel{\mathsf{exp}}{
ightarrow} H^1(X,\mathbb{C}^*)$$

yields elements in $H^1(X, U(1))$, i.e. local systems of rank one with unitary monodromy.

The maximal compact subgroup

$$\mathcal{K}:=rac{H^1(X,2\pi i\mathbb{R})}{H^1(X,2\pi i\mathbb{Z})}\subseteq \mathcal{B}^\#(\mathbb{C})=rac{H^1(X,\mathbb{C})}{H^1(X,2\pi i\mathbb{Z})}\stackrel{\mathsf{exp}}{ o} H^1(X,\mathbb{C}^*)$$

yields elements in $H^1(X, U(1))$, i.e. local systems of rank one with unitary monodromy.

This allows the following reformulation of Theorem (A):

The maximal compact subgroup

$$K:=rac{H^1(X,2\pi i\mathbb{R})}{H^1(X,2\pi i\mathbb{Z})}\subseteq B^\#(\mathbb{C})=rac{H^1(X,\mathbb{C})}{H^1(X,2\pi i\mathbb{Z})}\stackrel{\mathsf{exp}}{
ightarrow} H^1(X,\mathbb{C}^*)$$

yields elements in $H^1(X, U(1))$, i.e. local systems of rank one with unitary monodromy.

This allows the following reformulation of Theorem (A):

Theorem (A'): In the above situation

$$B^{\#}(\overline{\mathbb{Q}})\cap K=B^{\#}(\overline{\mathbb{Q}})_{ ext{torsion}}.$$

The maximal compact subgroup

$$K:=rac{H^1(X,2\pi i\mathbb{R})}{H^1(X,2\pi i\mathbb{Z})}\subseteq B^\#(\mathbb{C})=rac{H^1(X,\mathbb{C})}{H^1(X,2\pi i\mathbb{Z})}\stackrel{\mathsf{exp}}{
ightarrow} H^1(X,\mathbb{C}^*)$$

yields elements in $H^1(X, U(1))$, i.e. local systems of rank one with unitary monodromy.

This allows the following reformulation of Theorem (A):

Theorem (A'): In the above situation

$$B^{\#}(\overline{\mathbb{Q}})\cap K=B^{\#}(\overline{\mathbb{Q}})_{ ext{torsion}}.$$

Theorem (A') was conjectured by D. Bertrand and proved if B is defined over $\overline{\mathbb{Q}} \cap \mathbb{R}$ and admits 'real multiplication'.

Put $A := \mathsf{Alb}\,X := (\mathsf{Pic}^0_{X/\overline{\mathbb{Q}}})^{\vee}$.

Put $A := \operatorname{Alb} X := (\operatorname{Pic}_{X/\overline{\mathbb{Q}}}^0)^{\vee}$. Biduality gives $B := \operatorname{Pic}_{X/\overline{\mathbb{Q}}}^0 = \operatorname{Pic}_{A/\overline{\mathbb{Q}}}^0$.

Put
$$A := \operatorname{Alb} X := (\operatorname{Pic}_{X/\overline{\mathbb{Q}}}^0)^{\vee}$$
.
Biduality gives $B := \operatorname{Pic}_{X/\overline{\mathbb{Q}}}^0 = \operatorname{Pic}_{A/\overline{\mathbb{Q}}}^0$.

Thm (A) holds for X

Put $A := \operatorname{Alb} X := (\operatorname{Pic}_{X/\overline{\mathbb{Q}}}^0)^{\vee}$. Biduality gives $B := \operatorname{Pic}_{X/\overline{\mathbb{Q}}}^0 = \operatorname{Pic}_{A/\overline{\mathbb{Q}}}^0$.

Thm (A) holds for $X \Leftrightarrow \text{Thm (A') holds for } B$

```
Put A := \operatorname{Alb} X := (\operatorname{Pic}_{X/\overline{\mathbb{Q}}}^{0})^{\vee}.
Biduality gives B := \operatorname{Pic}_{X/\overline{\mathbb{Q}}}^{0} = \operatorname{Pic}_{A/\overline{\mathbb{Q}}}^{0}.
```

Thm (A) holds for $X \Leftrightarrow \text{Thm (A') holds for } B \Leftrightarrow \text{Thm (A) holds for } A.$

Put
$$A := \operatorname{Alb} X := (\operatorname{Pic}_{X/\overline{\mathbb{Q}}}^0)^{\vee}$$
.
Biduality gives $B := \operatorname{Pic}_{X/\overline{\mathbb{Q}}}^0 = \operatorname{Pic}_{A/\overline{\mathbb{Q}}}^0$.
Thm (A) holds for $X \Leftrightarrow \operatorname{Thm}$ (A') holds for $B \Leftrightarrow \operatorname{Thm}$ (A) holds for A .

Hence may assume w.l.o.g. X = A is abelian variety.

Put
$$A := \operatorname{Alb} X := (\operatorname{Pic}_{X/\overline{\mathbb{Q}}}^0)^{\vee}$$
.
Biduality gives $B := \operatorname{Pic}_{X/\overline{\mathbb{Q}}}^0 = \operatorname{Pic}_{A/\overline{\mathbb{Q}}}^0$.

Thm (A) holds for $X \Leftrightarrow \text{Thm (A') holds for } B \Leftrightarrow \text{Thm (A) holds for } A.$

Hence may assume w.l.o.g. X = A is abelian variety.

Let L be a line bundle over A which admits a connection ∇ .

Put
$$A := \operatorname{Alb} X := (\operatorname{Pic}_{X/\overline{\mathbb{Q}}}^0)^{\vee}$$
.
Biduality gives $B := \operatorname{Pic}_{X/\overline{\mathbb{Q}}}^0 = \operatorname{Pic}_{A/\overline{\mathbb{Q}}}^0$.

Thm (A) holds for $X \Leftrightarrow \text{Thm (A') holds for } B \Leftrightarrow \text{Thm (A) holds for } A.$

Hence may assume w.l.o.g. X = A is abelian variety.

Let L be a line bundle over A which admits a connection ∇ .

Then ∇ is integrable and L is algebraically equivalent to zero (use $\operatorname{Pic}_{A/\overline{\mathbb{Q}}}^0 = \operatorname{Pic}_{A/\overline{\mathbb{Q}}}^{\tau}$).

Put
$$A := \operatorname{Alb} X := (\operatorname{Pic}_{X/\overline{\mathbb{Q}}}^0)^{\vee}$$
.
Biduality gives $B := \operatorname{Pic}_{X/\overline{\mathbb{Q}}}^0 = \operatorname{Pic}_{A/\overline{\mathbb{Q}}}^0$.

Thm (A) holds for $X \Leftrightarrow \text{Thm (A') holds for } B \Leftrightarrow \text{Thm (A) holds for } A.$

Hence may assume w.l.o.g. X = A is abelian variety.

Let L be a line bundle over A which admits a connection ∇ .

Then ∇ is integrable and L is algebraically equivalent to zero (use $\operatorname{Pic}_{A/\overline{\mathbb{Q}}}^0 = \operatorname{Pic}_{A/\overline{\mathbb{Q}}}^{\tau}$).

Assume
$$\nabla_{\mathbb{C}} = \nabla^u_{L}$$

Put
$$A := \operatorname{Alb} X := (\operatorname{Pic}_{X/\overline{\mathbb{Q}}}^0)^{\vee}$$
.
Biduality gives $B := \operatorname{Pic}_{X/\overline{\mathbb{Q}}}^0 = \operatorname{Pic}_{A/\overline{\mathbb{Q}}}^0$.

Thm (A) holds for
$$X \Leftrightarrow \text{Thm (A') holds for } B \Leftrightarrow \text{Thm (A) holds for } A.$$

Hence may assume w.l.o.g. X = A is abelian variety.

Let *L* be a line bundle over *A* which admits a connection ∇ .

Then ∇ is integrable and L is algebraically equivalent to zero (use $\operatorname{Pic}_{A/\overline{\mathbb{Q}}}^0 = \operatorname{Pic}_{A/\overline{\mathbb{Q}}}^{\tau}$).

Assume $\nabla_{\mathbb{C}} = \nabla_{I}^{u}$ and fix a rigidification $\varphi : \overline{\mathbb{Q}} \stackrel{\sim}{\to} L_{e}$.

$$0 \to \mathbb{G}_m \xrightarrow{\varphi} L^{\times} \xrightarrow{p} A \to 0$$

$$0 \to \mathbb{G}_m \xrightarrow{\varphi} L^{\times} \xrightarrow{p} A \to 0$$

and of Lie algebras

$$0 \to \mathbb{G}_a \stackrel{\mathsf{Lie}\,\varphi}{\to} \mathsf{Lie}\; L^{\times} \stackrel{\mathsf{Lie}\,\rho}{\to} \mathsf{Lie}\; A \to 0.$$

$$0 \to \mathbb{G}_m \xrightarrow{\varphi} L^{\times} \xrightarrow{p} A \to 0$$

and of Lie algebras

$$0 \to \mathbb{G}_a \stackrel{\mathsf{Lie}\,\varphi}{\to} \mathsf{Lie}\; L^{\times} \stackrel{\mathsf{Lie}\,\rho}{\to} \mathsf{Lie}\; A \to 0.$$

Have canonical bijections

$$\left\{ \begin{array}{c} \text{connections} \\ \text{on } L \end{array} \right\} \quad \longleftrightarrow \quad \left\{ \begin{array}{c} \mathbb{G}_m\text{-equiv. splittings of} \\ Dp: TL^\times \to p^*T_A \end{array} \right\}$$

$$0 \to \mathbb{G}_m \xrightarrow{\varphi} L^{\times} \xrightarrow{p} A \to 0$$

and of Lie algebras

$$0 \to \mathbb{G}_a \overset{\mathsf{Lie}\,\varphi}{\to} \mathsf{Lie}\; L^{\times} \overset{\mathsf{Lie}\,p}{\to} \mathsf{Lie}\; A \to 0.$$

Have canonical bijections

$$\left\{ \begin{array}{c} \text{connections} \\ \text{on } L \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{c} \mathbb{G}_m\text{-equiv. splittings of} \\ Dp: TL^\times \to p^*T_A \end{array} \right\} \\ \longleftrightarrow \left\{ \begin{array}{c} L^\times\text{-equiv. splittings of} \\ Dp: TL^\times \to p^*T_A \end{array} \right\}$$

$$0 \to \mathbb{G}_m \xrightarrow{\varphi} L^{\times} \xrightarrow{p} A \to 0$$

and of Lie algebras

$$0 \to \mathbb{G}_a \overset{\text{Lie } \varphi}{\to} \text{Lie } L^{\times} \overset{\text{Lie } p}{\to} \text{Lie } A \to 0.$$

Have canonical bijections

$$\begin{cases} \text{connections} \\ \text{on } L \end{cases} \longleftrightarrow \begin{cases} \mathbb{G}_m\text{-equiv. splittings of} \\ Dp: TL^\times \to p^*T_A \end{cases}$$

$$\longleftrightarrow \begin{cases} L^\times\text{-equiv. splittings of} \\ Dp: TL^\times \to p^*T_A \end{cases}$$

$$\longleftrightarrow \begin{cases} \overline{\mathbb{Q}}\text{-linear splittings} \\ \Sigma: \text{Lie } A \to \text{Lie } L^\times \text{ of Lie } p \end{cases}$$

 $\exp_G : \text{Lie } G_{\mathbb{C}} \to G(\mathbb{C}).$

$$\exp_G$$
: Lie $G_{\mathbb{C}} \to G(\mathbb{C})$.

Let $V \subseteq \text{Lie } G$ be a $\overline{\mathbb{Q}}$ -sub vector space and (v_1, \ldots, v_n) be a \mathbb{C} -basis of $V_{\mathbb{C}}$ such that

$$\exp_G(v_i) \in G(\overline{\mathbb{Q}}) \text{ for } I = 1, \dots, n.$$

$$\mathsf{exp}_G : \mathsf{Lie} \ \textit{G}_\mathbb{C} \to \textit{G}(\mathbb{C}).$$

Let $V \subseteq \text{Lie } G$ be a $\overline{\mathbb{Q}}$ -sub vector space and (v_1, \dots, v_n) be a \mathbb{C} -basis of $V_{\mathbb{C}}$ such that

$$\exp_G(v_i) \in G(\overline{\mathbb{Q}}) \text{ for } I = 1, \dots, n.$$

Then there exists a $\overline{\mathbb{Q}}$ -algebraic subgroup H in G such that Lie H = V.

$$\exp_G : \text{Lie } G_{\mathbb{C}} \to G(\mathbb{C}).$$

Let $V \subseteq \text{Lie } G$ be a $\overline{\mathbb{Q}}$ -sub vector space and (v_1, \dots, v_n) be a \mathbb{C} -basis of $V_{\mathbb{C}}$ such that

$$\exp_G(v_i) \in G(\overline{\mathbb{Q}}) \text{ for } I = 1, \dots, n.$$

Then there exists a $\overline{\mathbb{Q}}$ -algebraic subgroup H in G such that Lie H = V.

Nowadays consequence of more general theorems by Bombieri and Wüstholz.

• A be g-dimensional abelian variety over $\overline{\mathbb{Q}}$,

- A be g-dimensional abelian variety over $\overline{\mathbb{Q}}$,
- $\Gamma_A := \ker \exp_A \cong \pi_1(A(\mathbb{C}), 0),$

- A be g-dimensional abelian variety over $\overline{\mathbb{Q}}$,
- $\Gamma_A := \ker \exp_A \cong \pi_1(A(\mathbb{C}), 0),$
- (L, ∇) a line bundle with connection on A,

- A be g-dimensional abelian variety over $\overline{\mathbb{Q}}$,
- $\Gamma_A := \ker \exp_A \cong \pi_1(A(\mathbb{C}), 0),$
- (L, ∇) a line bundle with connection on A,
- $\rho_{\nabla}: \Gamma_A \to \mathbb{C}^*$ associated monodromy representation.

- A be g-dimensional abelian variety over $\overline{\mathbb{Q}}$,
- $\Gamma_A := \ker \exp_A \cong \pi_1(A(\mathbb{C}), 0),$
- (L, ∇) a line bundle with connection on A,
- $\rho_{\nabla}: \Gamma_{\mathcal{A}} \to \mathbb{C}^*$ associated monodromy representation.

If there exist \mathbb{C} -linear independant elements $(\gamma_1, \dots, \gamma_g)$ in Γ_A such that

$$\rho(\gamma_i) \in \overline{\mathbb{Q}}^* \text{ for } i = 1, \dots, g$$

- A be g-dimensional abelian variety over $\overline{\mathbb{Q}}$,
- $\Gamma_A := \ker \exp_A \cong \pi_1(A(\mathbb{C}), 0),$
- (L, ∇) a line bundle with connection on A,
- $\rho_{\nabla}: \Gamma_{\mathcal{A}} \to \mathbb{C}^*$ associated monodromy representation.

If there exist \mathbb{C} -linear independant elements $(\gamma_1, \dots, \gamma_g)$ in Γ_A such that

$$\rho(\gamma_i) \in \overline{\mathbb{Q}}^* \text{ for } i = 1, \dots, g$$

then there exists n > 0 such that

$$(L,\nabla)^{\otimes n}\cong (\mathcal{O}_X,d).$$

Apply the Theorem of Schneider-Lang to

• $V := \Sigma(\text{Lie } A)$ where $\Sigma : \text{Lie } A \to \text{Lie } L^{\times}$ corr. to ∇

Apply the Theorem of Schneider-Lang to

- $V := \Sigma(\text{Lie } A)$ where $\Sigma : \text{Lie } A \to \text{Lie } L^{\times}$ corr. to ∇
- $n := g, v_i = \Sigma(\gamma_i).$

Apply the Theorem of Schneider-Lang to

- $V := \Sigma(\text{Lie } A)$ where $\Sigma : \text{Lie } A \to \text{Lie } L^{\times}$ corr. to ∇
- $n := g, v_i = \Sigma(\gamma_i).$

Observe that

$$\rho = \exp_{L^{\times}} \circ \Sigma|_{\Gamma_A}.$$

Apply the Theorem of Schneider-Lang to

- $V := \Sigma(\text{Lie } A)$ where $\Sigma : \text{Lie } A \to \text{Lie } L^{\times}$ corr. to ∇
- $n := g, v_i = \Sigma(\gamma_i).$

Observe that

$$\rho = \exp_{L^{\times}} \circ \Sigma|_{\Gamma_A}.$$

Schneider-Lang yields subgroup $H \hookrightarrow L^{\times}$ such that Lie H = V.

Apply the Theorem of Schneider-Lang to

- $V := \Sigma(\text{Lie } A)$ where $\Sigma : \text{Lie } A \to \text{Lie } L^{\times}$ corr. to ∇
- $n := g, v_i = \Sigma(\gamma_i).$

Observe that

$$\rho = \exp_{L^{\times}} \circ \Sigma|_{\Gamma_A}.$$

Schneider-Lang yields subgroup $H \hookrightarrow L^{\times}$ such that Lie H = V.

Hence the map $\pi: H \hookrightarrow L^{\times} \to A$ is etale and an isogeny of abelian varieties.

Apply the Theorem of Schneider-Lang to

- $V := \Sigma(\text{Lie } A)$ where $\Sigma : \text{Lie } A \to \text{Lie } L^{\times}$ corr. to ∇
- $n := g, v_i = \Sigma(\gamma_i).$

Observe that

$$\rho = \exp_{L^{\times}} \circ \Sigma|_{\Gamma_A}.$$

Schneider-Lang yields subgroup $H \hookrightarrow L^{\times}$ such that Lie H = V.

Hence the map $\pi: H \hookrightarrow L^{\times} \to A$ is etale and an isogeny of abelian varieties.

By construction

$$\pi^*(L, \nabla) \cong (\mathcal{O}_X, d)$$

and we can choose $n := deg(\pi)$.

Proof of Theorem (A), conclusion via 'Weil restriction':

Define A_- and (L_-, ∇_-) by base change with respect to complex conjugation $\overline{\mathbb{Q}} \to \overline{\mathbb{Q}}, z \mapsto \overline{z}$.

Define A_- and (L_-, ∇_-) by base change with respect to complex conjugation $\overline{\mathbb{Q}} \to \overline{\mathbb{Q}}, z \mapsto \overline{z}$. Put

$$B := A \times A_{-}, \ (M, \nabla_{M}) := (L, \nabla) \boxtimes (L_{-}, \nabla_{L_{-}}).$$

Define A_- and (L_-, ∇_-) by base change with respect to complex conjugation $\overline{\mathbb{Q}} \to \overline{\mathbb{Q}}, z \mapsto \overline{z}$. Put

$$B := A \times A_{-}, (M, \nabla_{M}) := (L, \nabla) \boxtimes (L_{-}, \nabla_{L_{-}}).$$

Get \mathbb{C} -antilinear map j: Lie $A \to \text{Lie } A_-$ with $j(\Gamma_A) = \Gamma_{A_-}$.

Define A_- and (L_-, ∇_-) by base change with respect to complex conjugation $\overline{\mathbb{Q}} \to \overline{\mathbb{Q}}, z \mapsto \overline{z}$. Put

$$B := A \times A_{-}, \ (M, \nabla_{M}) := (L, \nabla) \boxtimes (L_{-}, \nabla_{L_{-}}).$$

Get \mathbb{C} -antilinear map j: Lie $A \to \text{Lie } A_-$ with $j(\Gamma_A) = \Gamma_{A_-}$. Consider

$$\Delta: \Gamma_A \to \Gamma_B = \Gamma_A \times \Gamma_{A_-},$$

Define A_- and (L_-, ∇_-) by base change with respect to complex conjugation $\overline{\mathbb{Q}} \to \overline{\mathbb{Q}}, z \mapsto \overline{z}$. Put

$$B := A \times A_{-}, \ (M, \nabla_{M}) := (L, \nabla) \boxtimes (L_{-}, \nabla_{L_{-}}).$$

Get \mathbb{C} -antilinear map j: Lie $A \to \text{Lie } A_-$ with $j(\Gamma_A) = \Gamma_{A_-}$. Consider

$$\Delta: \Gamma_{A} \to \Gamma_{B} = \Gamma_{A} \times \Gamma_{A_{-}}, \gamma \mapsto (\gamma, j(\gamma))$$

Define A_- and (L_-, ∇_-) by base change with respect to complex conjugation $\overline{\mathbb{Q}} \to \overline{\mathbb{Q}}, z \mapsto \overline{z}$. Put

$$B := A \times A_{-}, \ (M, \nabla_{M}) := (L, \nabla) \boxtimes (L_{-}, \nabla_{L_{-}}).$$

Get \mathbb{C} -antilinear map j: Lie $A \to \text{Lie } A_-$ with $j(\Gamma_A) = \Gamma_{A_-}$. Consider

$$\Delta: \Gamma_{A} \to \Gamma_{B} = \Gamma_{A} \times \Gamma_{A_{-}}, \gamma \mapsto (\gamma, j(\gamma))$$

As $\nabla_{\mathbb{C}} = \nabla_{L}^{u}$ is unitary

Define A_- and (L_-, ∇_-) by base change with respect to complex conjugation $\overline{\mathbb{Q}} \to \overline{\mathbb{Q}}, z \mapsto \overline{z}$. Put

$$B := A \times A_{-}, \ (M, \nabla_{M}) := (L, \nabla) \boxtimes (L_{-}, \nabla_{L_{-}}).$$

Get \mathbb{C} -antilinear map j: Lie $A \to \text{Lie } A_-$ with $j(\Gamma_A) = \Gamma_{A_-}$. Consider

$$\Delta: \Gamma_{A} \to \Gamma_{B} = \Gamma_{A} \times \Gamma_{A_{-}}, \gamma \mapsto (\gamma, j(\gamma))$$

As $\nabla_{\mathbb{C}} = \nabla^u_L$ is unitary and $\rho_{\nabla_-}(j(\gamma)) = \overline{\rho_{\nabla}(\gamma)}$,

Define A_- and (L_-, ∇_-) by base change with respect to complex conjugation $\overline{\mathbb{Q}} \to \overline{\mathbb{Q}}, z \mapsto \overline{z}$. Put

$$B := A \times A_{-}, \ (M, \nabla_{M}) := (L, \nabla) \boxtimes (L_{-}, \nabla_{L_{-}}).$$

Get \mathbb{C} -antilinear map j: Lie $A \to \text{Lie } A_-$ with $j(\Gamma_A) = \Gamma_{A_-}$. Consider

$$\Delta: \Gamma_{A} \to \Gamma_{B} = \Gamma_{A} \times \Gamma_{A_{-}}, \gamma \mapsto (\gamma, j(\gamma))$$

As
$$\nabla_{\mathbb{C}} = \nabla_{L}^{u}$$
 is unitary and $\rho_{\nabla_{-}}(j(\gamma)) = \overline{\rho_{\nabla}(\gamma)}$, we get

$$\rho_{\nabla_{M}}(\Delta(\gamma))$$

Define A_- and (L_-, ∇_-) by base change with respect to complex conjugation $\overline{\mathbb{Q}} \to \overline{\mathbb{Q}}, z \mapsto \overline{z}$. Put

$$B := A \times A_{-}, \ (M, \nabla_{M}) := (L, \nabla) \boxtimes (L_{-}, \nabla_{L_{-}}).$$

Get \mathbb{C} -antilinear map j: Lie $A \to \text{Lie } A_-$ with $j(\Gamma_A) = \Gamma_{A_-}$. Consider

$$\Delta: \Gamma_{A} \to \Gamma_{B} = \Gamma_{A} \times \Gamma_{A_{-}}, \gamma \mapsto (\gamma, j(\gamma))$$

As $\nabla_{\mathbb{C}} = \nabla^u_L$ is unitary and $\rho_{\nabla_-}(j(\gamma)) = \overline{\rho_{\nabla}(\gamma)}$, we get

$$\rho_{\nabla_{M}}(\Delta(\gamma)) = \rho_{\nabla}(\gamma) \cdot \rho_{\nabla_{-}}(j(\gamma))$$

Define A_- and (L_-, ∇_-) by base change with respect to complex conjugation $\overline{\mathbb{Q}} \to \overline{\mathbb{Q}}, z \mapsto \overline{z}$. Put

$$B := A \times A_{-}, \ (M, \nabla_{M}) := (L, \nabla) \boxtimes (L_{-}, \nabla_{L_{-}}).$$

Get \mathbb{C} -antilinear map j: Lie $A \to \text{Lie } A_-$ with $j(\Gamma_A) = \Gamma_{A_-}$. Consider

$$\Delta: \Gamma_{A} \to \Gamma_{B} = \Gamma_{A} \times \Gamma_{A_{-}}, \gamma \mapsto (\gamma, j(\gamma))$$

As $\nabla_{\mathbb{C}} = \nabla_{L}^{u}$ is unitary and $\rho_{\nabla_{-}}(j(\gamma)) = \overline{\rho_{\nabla}(\gamma)}$, we get

$$\rho_{\nabla_{\mathsf{M}}}(\Delta(\gamma)) = \rho_{\nabla}(\gamma) \cdot \rho_{\nabla_{-}}(j(\gamma)) = |\rho_{\nabla}(\gamma)|^{2}$$

Define A_- and (L_-, ∇_-) by base change with respect to complex conjugation $\overline{\mathbb{Q}} \to \overline{\mathbb{Q}}, z \mapsto \overline{z}$. Put

$$B := A \times A_{-}, \ (M, \nabla_{M}) := (L, \nabla) \boxtimes (L_{-}, \nabla_{L_{-}}).$$

Get \mathbb{C} -antilinear map j: Lie $A \to \text{Lie } A_-$ with $j(\Gamma_A) = \Gamma_{A_-}$. Consider

$$\Delta: \Gamma_A \to \Gamma_B = \Gamma_A \times \Gamma_{A_-}, \gamma \mapsto (\gamma, j(\gamma))$$

As $\nabla_{\mathbb{C}} = \nabla_{L}^{u}$ is unitary and $\rho_{\nabla_{-}}(j(\gamma)) = \overline{\rho_{\nabla}(\gamma)}$, we get

$$\rho_{\nabla_{M}}(\Delta(\gamma)) = \rho_{\nabla}(\gamma) \cdot \rho_{\nabla_{-}}(j(\gamma)) = |\rho_{\nabla}(\gamma)|^{2} = 1.$$

Define A_- and (L_-, ∇_-) by base change with respect to complex conjugation $\overline{\mathbb{Q}} \to \overline{\mathbb{Q}}, z \mapsto \overline{z}$. Put

$$B := A \times A_{-}, \ (M, \nabla_{M}) := (L, \nabla) \boxtimes (L_{-}, \nabla_{L_{-}}).$$

Get \mathbb{C} -antilinear map j: Lie $A \to \text{Lie } A_-$ with $j(\Gamma_A) = \Gamma_{A_-}$. Consider

$$\Delta: \Gamma_{A} \to \Gamma_{B} = \Gamma_{A} \times \Gamma_{A_{-}}, \gamma \mapsto (\gamma, j(\gamma))$$

As $\nabla_{\mathbb{C}} = \nabla_{L}^{u}$ is unitary and $\rho_{\nabla_{-}}(j(\gamma)) = \overline{\rho_{\nabla}(\gamma)}$, we get

$$\rho_{\nabla_{M}}(\Delta(\gamma)) = \rho_{\nabla}(\gamma) \cdot \rho_{\nabla_{-}}(j(\gamma)) = |\rho_{\nabla}(\gamma)|^{2} = 1.$$

 Γ_A contains \mathbb{R} -basis of Lie $A_{\mathbb{C}}$

Define A_- and (L_-, ∇_-) by base change with respect to complex conjugation $\overline{\mathbb{Q}} \to \overline{\mathbb{Q}}, z \mapsto \overline{z}$. Put

$$B := A \times A_{-}, \ (M, \nabla_{M}) := (L, \nabla) \boxtimes (L_{-}, \nabla_{L_{-}}).$$

Get \mathbb{C} -antilinear map j: Lie $A \to \text{Lie } A_-$ with $j(\Gamma_A) = \Gamma_{A_-}$. Consider

$$\Delta: \Gamma_{A} \to \Gamma_{B} = \Gamma_{A} \times \Gamma_{A_{-}}, \gamma \mapsto (\gamma, j(\gamma))$$

As $\nabla_{\mathbb{C}} = \nabla_{L}^{u}$ is unitary and $\rho_{\nabla_{-}}(j(\gamma)) = \overline{\rho_{\nabla}(\gamma)}$, we get

$$\rho_{\nabla_{M}}(\Delta(\gamma)) = \rho_{\nabla}(\gamma) \cdot \rho_{\nabla_{-}}(j(\gamma)) = |\rho_{\nabla}(\gamma)|^{2} = 1.$$

 Γ_A contains \mathbb{R} -basis of Lie $A_{\mathbb{C}} \Rightarrow \Delta(\Gamma_A)$ contains \mathbb{C} -basis of Lie $B_{\mathbb{C}}$.

Define A_- and (L_-, ∇_-) by base change with respect to complex conjugation $\overline{\mathbb{Q}} \to \overline{\mathbb{Q}}, z \mapsto \overline{z}$. Put

$$B := A \times A_{-}, \ (M, \nabla_{M}) := (L, \nabla) \boxtimes (L_{-}, \nabla_{L_{-}}).$$

Get \mathbb{C} -antilinear map j: Lie $A \to \text{Lie } A_-$ with $j(\Gamma_A) = \Gamma_{A_-}$. Consider

$$\Delta: \Gamma_A \to \Gamma_B = \Gamma_A \times \Gamma_{A_-}, \gamma \mapsto (\gamma, j(\gamma))$$

As $\nabla_{\mathbb{C}} = \nabla_{L}^{u}$ is unitary and $\rho_{\nabla_{-}}(j(\gamma)) = \overline{\rho_{\nabla}(\gamma)}$, we get

$$\rho_{\nabla_{M}}(\Delta(\gamma)) = \rho_{\nabla}(\gamma) \cdot \rho_{\nabla_{-}}(j(\gamma)) = |\rho_{\nabla}(\gamma)|^{2} = 1.$$

 Γ_A contains \mathbb{R} -basis of Lie $A_{\mathbb{C}} \Rightarrow \Delta(\Gamma_A)$ contains \mathbb{C} -basis of Lie $B_{\mathbb{C}}$.

Corollary \Rightarrow (M, ∇_M) and $(L, \nabla_L) = (M, \nabla_M)|_{A \times e}$ are torsion.

We say that abelian variety $\operatorname{Pic}^0_{X_K/K}$ has **no fixed part** if

$$\operatorname{\mathsf{Hom}}_{\mathcal{K}}(A\otimes_k K,\operatorname{Pic}^0_{X_K/K})=0.$$

for any abelian variety A over k.

We say that abelian variety $\operatorname{Pic}^0_{X_K/K}$ has **no fixed part** if

$$\operatorname{\mathsf{Hom}}_{\mathcal{K}}(A\otimes_{k}K,\operatorname{Pic}_{X_{\mathcal{K}}/K}^{0})=0.$$

for any abelian variety A over k. Equivalent to

$$\pi^*: \operatorname{Pic}_{C/k}^0 \to \operatorname{Pic}_{X/k}^0$$

being an isogeny

We say that abelian variety $Pic_{X_K/K}^0$ has **no fixed part** if

$$\operatorname{\mathsf{Hom}}_{\mathcal{K}}(A\otimes_{k}K,\operatorname{Pic}_{X_{\mathcal{K}}/K}^{0})=0.$$

for any abelian variety A over k. Equivalent to

$$\pi^*: \operatorname{Pic}_{C/k}^0 \to \operatorname{Pic}_{X/k}^0$$

being an isogeny or to the bijectivity of the map

$$\pi^*: H^1(C, \mathcal{O}_C) \to H^1(X, \mathcal{O}_X).$$

We say that abelian variety $Pic_{X_K/K}^0$ has **no fixed part** if

$$\operatorname{\mathsf{Hom}}_{\mathcal{K}}(A\otimes_{k}K,\operatorname{Pic}_{X_{\mathcal{K}}/K}^{0})=0.$$

for any abelian variety A over k. Equivalent to

$$\pi^*: \operatorname{Pic}_{C/k}^0 \to \operatorname{Pic}_{X/k}^0$$

being an isogeny or to the bijectivity of the map

$$\pi^*: H^1(\mathcal{C}, \mathcal{O}_{\mathcal{C}}) \to H^1(X, \mathcal{O}_X).$$

If we assume in the situation of Theorem (B) that $\operatorname{Pic}_{X_K/K}^0$ has **no fixed part**, Theorem (B) gives:

We say that abelian variety $\operatorname{Pic}^0_{X_K/K}$ has **no fixed part** if

$$\operatorname{\mathsf{Hom}}_{\mathcal{K}}(A\otimes_{k}K,\operatorname{Pic}_{X_{\mathcal{K}}/K}^{0})=0.$$

for any abelian variety A over k. Equivalent to

$$\pi^*: \operatorname{Pic}_{C/k}^0 \to \operatorname{Pic}_{X/k}^0$$

being an isogeny or to the bijectivity of the map

$$\pi^*: H^1(C, \mathcal{O}_C) \to H^1(X, \mathcal{O}_X).$$

If we assume in the situation of Theorem (B) that ${\rm Pic}^0_{X_K/K}$ has **no fixed part**, Theorem (B) gives:

$$at_{X/C}(L) = 0$$
 in $H^1(X, \Omega^1_{X/C})$ if and only if

We say that abelian variety $Pic_{X_K/K}^0$ has **no fixed part** if

$$\operatorname{\mathsf{Hom}}_{\mathcal{K}}(A\otimes_{k}K,\operatorname{Pic}_{X_{\mathcal{K}}/K}^{0})=0.$$

for any abelian variety A over k. Equivalent to

$$\pi^*: \operatorname{Pic}_{C/k}^0 \to \operatorname{Pic}_{X/k}^0$$

being an isogeny or to the bijectivity of the map

$$\pi^*: H^1(C, \mathcal{O}_C) \to H^1(X, \mathcal{O}_X).$$

If we assume in the situation of Theorem (B) that $\operatorname{Pic}^0_{X_K/K}$ has **no fixed part**, Theorem (B) gives:

 $at_{X/C}(L)=0$ in $H^1(X,\Omega^1_{X/C})$ if and only if there exist n>0 and a line bundle M on C s.t. $L^{\otimes n}\cong \pi^*M$.

Let X be a projective, smooth, connected variety over k, $d := \dim X \ge 2$, and $\mathcal{O}(1)$ very ample on X.

Let X be a projective, smooth, connected variety over k, $d := \dim X \ge 2$, and $\mathcal{O}(1)$ very ample on X.

Hodge cohomology: $H^{p,q}(X) := H^p(X, \Omega^q_{X/k}),$

Let X be a projective, smooth, connected variety over k, $d := \dim X \ge 2$, and $\mathcal{O}(1)$ very ample on X.

Hodge cohomology: $H^{p,q}(X) := H^p(X, \Omega^q_{X/k}),$

 $\bullet \oplus_{p,q\geq 0} H^{p,q}(X)$ (k-algebra),

Let X be a projective, smooth, connected variety over k, $d := \dim X \ge 2$, and $\mathcal{O}(1)$ very ample on X.

Hodge cohomology: $H^{p,q}(X) := H^p(X, \Omega^q_{X/k}),$

- $\bigoplus_{p,q\geq 0} H^{p,q}(X)$ (k-algebra),
- $tr_{X/k}: H^{d,d}(X) \xrightarrow{\sim} k$ (trace),

Let X be a projective, smooth, connected variety over k, $d := \dim X \ge 2$, and $\mathcal{O}(1)$ very ample on X.

Hodge cohomology: $H^{p,q}(X) := H^p(X, \Omega_{X/k}^q),$

- ullet $\bigoplus_{p,q\geq 0} H^{p,q}(X)$ (k-algebra),
- $tr_{X/k}: H^{d,d}(X) \xrightarrow{\sim} k$ (trace),
- $c_1 : Pic(X) \rightarrow H^{1,1}(X), [L] \mapsto at_{X/k}L$ (1st Chern class)

Let X be a projective, smooth, connected variety over k, $d := \dim X \ge 2$, and $\mathcal{O}(1)$ very ample on X.

Hodge cohomology: $H^{p,q}(X) := H^p(X, \Omega^q_{X/k}),$

- $\bigoplus_{p,q\geq 0} H^{p,q}(X)$ (k-algebra),
- $tr_{X/k}: H^{d,d}(X) \xrightarrow{\sim} k$ (trace),
- $c_1 : \text{Pic } (X) \to H^{1,1}(X), [L] \mapsto at_{X/k}L \text{ (1st Chern class)}$

Define $\mu_X \in H^{d,d}(X)$ by $tr_{X/k}(\mu_X) = 1$ and $h := c_1(\mathcal{O}(1))$.

Let X be a projective, smooth, connected variety over k, $d := \dim X \ge 2$, and $\mathcal{O}(1)$ very ample on X.

Hodge cohomology: $H^{p,q}(X) := H^p(X, \Omega^q_{X/k}),$

- ullet $\bigoplus_{p,q\geq 0} H^{p,q}(X)$ (k-algebra),
- $tr_{X/k}: H^{d,d}(X) \xrightarrow{\sim} k$ (trace),
- c_1 : Pic $(X) o H^{1,1}(X), [L] \mapsto at_{X/k}L$ (1st Chern class)

Define $\mu_X \in H^{d,d}(X)$ by $tr_{X/k}(\mu_X) = 1$ and $h := c_1(\mathcal{O}(1))$.

Consequence of the Hodge index theorem: For any $\alpha \in \mathbb{Q} \cdot c_1(\operatorname{Pic} X) \subseteq H^{1,1}(X)$, we have

$$\alpha = \mathbf{0} \Leftrightarrow \alpha . h^{d-1} = \mathbf{0} \wedge \alpha^2 . h^{d-1} = \mathbf{0}.$$

$$0 \to \pi^*\Omega^1_{C/k} \xrightarrow{\iota} \Omega^1_{X/k} \xrightarrow{p} \Omega^1_{X/C} \to 0,$$

$$0 \to \pi^*\Omega^1_{C/k} \xrightarrow{\iota} \Omega^1_{X/k} \xrightarrow{p} \Omega^1_{X/C} \to 0,$$

and for any line bundle L on X

•
$$at_{X/k} L \in H^{1,1}(X) := H^1(X, \Omega^1_{X/k}),$$

$$0 \to \pi^*\Omega^1_{C/k} \overset{\iota}{\to} \Omega^1_{X/k} \overset{p}{\to} \Omega^1_{X/C} \to 0,$$

and for any line bundle L on X

- $at_{X/k} L \in H^{1,1}(X) := H^1(X, \Omega^1_{X/k}),$
- $at_{X/C} L = H^1(p)(at_{X/k} L) \in H^1(X, \Omega^1_{X/C}).$

$$0 \to \pi^*\Omega^1_{C/k} \overset{\iota}{\to} \Omega^1_{X/k} \overset{p}{\to} \Omega^1_{X/C} \to 0,$$

and for any line bundle L on X

- $at_{X/k} L \in H^{1,1}(X) := H^1(X, \Omega^1_{X/k}),$
- $at_{X/C} L = H^1(p)(at_{X/k} L) \in H^1(X, \Omega^1_{X/C}).$

For any effective divisor *E* on *C*

$$F := \pi^* \mu_C = \frac{1}{\deg E} c_1(\pi^* \mathcal{O}(E)) \in H^{1,1}(X).$$

$$i) \beta \in \mathbb{Q}.F$$
,

i)
$$\beta \in \mathbb{Q}.F$$
, ii) $\beta^2 = \beta.F = 0$,

i)
$$\beta \in \mathbb{Q}.F$$
, ii) $\beta^2 = \beta.F = 0$, iii) $\beta^2.h^{d-2} = \beta.F.h^{d-2} = 0$.

i)
$$\beta \in \mathbb{Q}.F$$
, ii) $\beta^2 = \beta.F = 0$, iii) $\beta^2.h^{d-2} = \beta.F.h^{d-2} = 0$.

Proof: i)
$$\Rightarrow$$
 ii) $F.F = \pi^*(\mu_C.\mu_C) = 0$.

i)
$$\beta \in \mathbb{Q}.F$$
, ii) $\beta^2 = \beta.F = 0$, iii) $\beta^2.h^{d-2} = \beta.F.h^{d-2} = 0$.

Proof: i)
$$\Rightarrow$$
 ii) $F.F = \pi^*(\mu_C.\mu_C) = 0$.
ii) \Rightarrow iii) clear

i)
$$\beta \in \mathbb{Q}.F$$
, ii) $\beta^2 = \beta.F = 0$, iii) $\beta^2.h^{d-2} = \beta.F.h^{d-2} = 0$.

Proof: i) \Rightarrow ii) $F.F = \pi^*(\mu_C.\mu_C) = 0$.

- ii) \Rightarrow iii) clear
- iii) \Rightarrow i) Let $\beta := c_1(L)$.

i)
$$\beta \in \mathbb{Q}.F$$
, ii) $\beta^2 = \beta.F = 0$, iii) $\beta^2.h^{d-2} = \beta.F.h^{d-2} = 0$.

Proof: i)
$$\Rightarrow$$
 ii) $F.F = \pi^*(\mu_C.\mu_C) = 0$.

- ii) \Rightarrow iii) clear
- iii) \Rightarrow i) Let $\beta := c_1(L)$.

$$p := \beta.h^{d-1}$$

i)
$$\beta \in \mathbb{Q}.F$$
, ii) $\beta^2 = \beta.F = 0$, iii) $\beta^2.h^{d-2} = \beta.F.h^{d-2} = 0$.

Proof: i) \Rightarrow ii) $F.F = \pi^*(\mu_C.\mu_C) = 0$.

- ii) \Rightarrow iii) clear
- iii) \Rightarrow i) Let $\beta := c_1(L)$.

$$p := \beta . h^{d-1} = c_1(L) . c_1(\mathcal{O}(1))^{d-1} \in \mathbb{Z}$$

i)
$$\beta \in \mathbb{Q}.F$$
, ii) $\beta^2 = \beta.F = 0$, iii) $\beta^2.h^{d-2} = \beta.F.h^{d-2} = 0$.

Proof: i)
$$\Rightarrow$$
 ii) $F.F = \pi^*(\mu_C.\mu_C) = 0$.

- ii) \Rightarrow iii) clear
- iii) \Rightarrow i) Let $\beta := c_1(L)$.

$$p := \beta.h^{d-1} = c_1(L).c_1(\mathcal{O}(1))^{d-1} \in \mathbb{Z}$$

$$a := F.h^{d-1}$$

i)
$$\beta \in \mathbb{Q}.F$$
, ii) $\beta^2 = \beta.F = 0$, iii) $\beta^2.h^{d-2} = \beta.F.h^{d-2} = 0$.

Proof: i)
$$\Rightarrow$$
 ii) $F.F = \pi^*(\mu_C.\mu_C) = 0$.

- ii) \Rightarrow iii) clear
- iii) \Rightarrow i) Let $\beta := c_1(L)$.

$$p := \beta.h^{d-1} = c_1(L).c_1(\mathcal{O}(1))^{d-1} \in \mathbb{Z}$$

$$q := F.h^{d-1} = c_1(\mathcal{O}(1)|_{X_K})^{d-1} \in \mathbb{Z}_{>0}$$

i)
$$\beta \in \mathbb{Q}.F$$
, ii) $\beta^2 = \beta.F = 0$, iii) $\beta^2.h^{d-2} = \beta.F.h^{d-2} = 0$.

Proof: i)
$$\Rightarrow$$
 ii) $F.F = \pi^*(\mu_C \cdot \mu_C) = 0$.

- ii) \Rightarrow iii) clear
- iii) \Rightarrow i) Let $\beta := c_1(L)$.

$$p := \beta.h^{d-1} = c_1(L).c_1(\mathcal{O}(1))^{d-1} \in \mathbb{Z}$$

$$q := F.h^{d-1} = c_1(\mathcal{O}(1)|_{X_K})^{d-1} \in \mathbb{Z}_{>0}$$

$$\alpha := \mathbf{q} \cdot \beta - \mathbf{p} \cdot \mathbf{F} \in \mathbb{Q} \cdot \mathbf{c}_1(\operatorname{Pic}(\mathbf{X}))$$

i)
$$\beta \in \mathbb{Q}.F$$
, ii) $\beta^2 = \beta.F = 0$, iii) $\beta^2.h^{d-2} = \beta.F.h^{d-2} = 0$.

Proof: i)
$$\Rightarrow$$
 ii) $F.F = \pi^*(\mu_C.\mu_C) = 0$.

- ii) \Rightarrow iii) clear
- iii) \Rightarrow i) Let $\beta := c_1(L)$.

$$p := \beta.h^{d-1} = c_1(L).c_1(\mathcal{O}(1))^{d-1} \in \mathbb{Z}$$

$$q := F.h^{d-1} = c_1(\mathcal{O}(1)|_{X_K})^{d-1} \in \mathbb{Z}_{>0}$$

$$\alpha := \mathbf{q} \cdot \beta - \mathbf{p} \cdot \mathbf{F} \in \mathbb{Q} \cdot \mathbf{c}_1(\operatorname{Pic}(\mathbf{X}))$$

$$\alpha$$
 satisfies $\alpha.h^{d-1}=\alpha^2.h^{d-2}=0$.

i)
$$\beta \in \mathbb{Q}.F$$
, ii) $\beta^2 = \beta.F = 0$, iii) $\beta^2.h^{d-2} = \beta.F.h^{d-2} = 0$.

Proof: i)
$$\Rightarrow$$
 ii) $F.F = \pi^*(\mu_C.\mu_C) = 0$.

- ii) \Rightarrow iii) clear
- iii) \Rightarrow i) Let $\beta := c_1(L)$.

$$p := \beta.h^{d-1} = c_1(L).c_1(\mathcal{O}(1))^{d-1} \in \mathbb{Z}$$

$$q := F.h^{d-1} = c_1(\mathcal{O}(1)|_{X_K})^{d-1} \in \mathbb{Z}_{>0}$$

$$\alpha := \mathbf{q} \cdot \beta - \mathbf{p} \cdot \mathbf{F} \in \mathbb{Q} \cdot \mathbf{c}_1(\operatorname{Pic}(X))$$

$$\alpha$$
 satisfies $\alpha . h^{d-1} = \alpha^2 . h^{d-2} = 0$.

Hence $\alpha = 0$ by Hodge index theorem and $\beta = \frac{p}{a} \cdot F$.

$$H^1(p)(\alpha) = 0 \Rightarrow \alpha \in \mathbb{Q}.F.$$

$$H^1(p)(\alpha) = 0 \Rightarrow \alpha \in \mathbb{Q}.F.$$

Have exact sequence

$$H^1(X, \pi^*\Omega_{C/k}) \xrightarrow{H^1(\iota)} H^1(X, \Omega_{X/k}) \xrightarrow{H^1(\rho)} H^1(X, \Omega_{X/C}).$$

$$H^1(p)(\alpha) = 0 \Rightarrow \alpha \in \mathbb{Q}.F.$$

Have exact sequence

$$H^1(X, \pi^*\Omega_{C/k}) \xrightarrow{H^1(\iota)} H^1(X, \Omega_{X/k}) \xrightarrow{H^1(\rho)} H^1(X, \Omega_{X/C}).$$

Corollary \Rightarrow sufficient to show $\alpha . \alpha = \alpha . F = 0$.

$$H^1(p)(\alpha) = 0 \Rightarrow \alpha \in \mathbb{Q}.F.$$

Have exact sequence

$$H^1(X, \pi^*\Omega_{C/k}) \stackrel{H^1(\iota)}{\longrightarrow} H^1(X, \Omega_{X/k}) \stackrel{H^1(p)}{\longrightarrow} H^1(X, \Omega_{X/C}).$$

Corollary \Rightarrow sufficient to show $\alpha.\alpha = \alpha.F = 0$.

This follows from

the above exact sequence,

$$H^1(p)(\alpha) = 0 \Rightarrow \alpha \in \mathbb{Q}.F.$$

Have exact sequence

$$H^1(X, \pi^*\Omega_{C/k}) \stackrel{H^1(\iota)}{\longrightarrow} H^1(X, \Omega_{X/k}) \stackrel{H^1(\rho)}{\longrightarrow} H^1(X, \Omega_{X/C}).$$

Corollary \Rightarrow sufficient to show $\alpha.\alpha = \alpha.F = 0$. This follows from

- the above exact sequence,
- $F \in \text{im } H^i(\iota)$

$$H^1(p)(\alpha) = 0 \Rightarrow \alpha \in \mathbb{Q}.F.$$

Have exact sequence

$$H^1(X,\pi^*\Omega_{C/k})\stackrel{H^1(\iota)}{\longrightarrow} H^1(X,\Omega_{X/k})\stackrel{H^1(p)}{\longrightarrow} H^1(X,\Omega_{X/C}).$$

Corollary \Rightarrow sufficient to show $\alpha.\alpha = \alpha.F = 0$.

This follows from

- the above exact sequence,
- $F \in \text{im } H^i(\iota)$
- ullet the vanishing of products in Hodge cohomology in im $H^i(\iota)$

$$H^1(p)(\alpha) = 0 \Rightarrow \alpha \in \mathbb{Q}.F.$$

Have exact sequence

$$H^1(X, \pi^*\Omega_{C/k}) \stackrel{H^1(\iota)}{\longrightarrow} H^1(X, \Omega_{X/k}) \stackrel{H^1(p)}{\longrightarrow} H^1(X, \Omega_{X/C}).$$

Corollary \Rightarrow sufficient to show $\alpha.\alpha = \alpha.F = 0$. This follows from

- the above exact sequence,
- $F \in \text{im } H^i(\iota)$
- the vanishing of products in Hodge cohomology in im $H^{i}(\iota)$ as consequence of the vanishing of

$$\pi^*\Omega^1_{C/k}\otimes \pi^*\Omega^1_{C/k}\to \Omega^1_{X/k}\otimes \Omega^1_{X/k}\stackrel{\wedge}{\to} \Omega^2_{X/k}.$$

Question: Given a hermitian vector bundle \overline{E} on an arithmetic scheme X. When does $\widehat{at}_{X/S}(\overline{E})$ vanish?

Question: Given a hermitian vector bundle \overline{E} on an arithmetic scheme X. When does $\widehat{at}_{X/S}(\overline{E})$ vanish?

Given a smooth, projective variety X over $\overline{\mathbb{Q}}$ and (E, ∇) a vector bundle with integrable connection over X.

Question: Given a hermitian vector bundle \overline{E} on an arithmetic scheme X. When does $\widehat{at}_{X/S}(\overline{E})$ vanish?

Question: Given a hermitian vector bundle \overline{E} on an arithmetic scheme X. When does $\widehat{at}_{X/S}(\overline{E})$ vanish?

Given a smooth, projective variety X over $\overline{\mathbb{Q}}$ and (E, ∇) a vector bundle with integrable connection over X. If the monodromy of $(E_{\mathbb{C}}, \nabla_{\mathbb{C}})$ is relatively compact/unitary, does it follow that the monodromy is finite?

• positive: rk(E) = 1 is OK,

Question: Given a hermitian vector bundle \overline{E} on an arithmetic scheme X. When does $\widehat{at}_{X/S}(\overline{E})$ vanish?

- positive: rk(E) = 1 is OK,
- positive: OK for Gauss-Manin systems $(R^n f_* \Omega^{\cdot}_{Y/X}, \nabla_{GM})$,

Question: Given a hermitian vector bundle \overline{E} on an arithmetic scheme X. When does $\widehat{at}_{X/S}(\overline{E})$ vanish?

- positive: rk(E) = 1 is OK,
- positive: OK for Gauss-Manin systems $(R^n f_* \Omega^{\cdot}_{Y/X}, \nabla_{GM})$,
- positive: OK for certain Shimura varieties X,

Question: Given a hermitian vector bundle \overline{E} on an arithmetic scheme X. When does $\widehat{at}_{X/S}(\overline{E})$ vanish?

- positive: rk(E) = 1 is OK,
- positive: OK for Gauss-Manin systems $(R^n f_* \Omega^{\cdot}_{Y/X}, \nabla_{GM})$,
- positive: OK for certain Shimura varieties X,
- negative (?): theory of conformal blocks.

Thank you for your attention!