Line bundles with connections on projective varieties over function fields and number fields

Klaus Künnemann (Regensburg)
Fields Institute, Toronto, October 23rd 2008

Line bundles with connections on projective varieties over function fields and number fields

Klaus Künnemann (Regensburg)
Fields Institute, Toronto, October 23rd 2008
joint work with Jean-Benoît Bost (Orsay)

Line bundles with connections on projective varieties over function fields and number fields

Klaus Künnemann (Regensburg)
Fields Institute, Toronto, October 23rd 2008
joint work with Jean-Benoît Bost (Orsay)
available at arXive: mathAG0807.4374

1 Line bundles with connections

1 Line bundles with connections

2 The main theorems

1 Line bundles with connections
 2 The main theorems
 3 Remarks on Theorem (A)

1 Line bundles with connections
 2 The main theorems
 3 Remarks on Theorem (A)
 4 Proof of Theorem (A)

1 Line bundles with connections

2 The main theorems
3 Remarks on Theorem (A)
4 Proof of Theorem (A)
5 A remark on Theorem (B)

1 Line bundles with connections
2 The main theorems
3 Remarks on Theorem (A)
4 Proof of Theorem (A)
5 A remark on Theorem (B)
6 Proof of Theorem (B)

1 Line bundles with connections
2 The main theorems
3 Remarks on Theorem (A)
4 Proof of Theorem (A)
5 A remark on Theorem (B)
6 Proof of Theorem (B)
7 From line bundles to vector bundles

1 Line bundles with connections

1 Line bundles with connections

- k a field of characteristic zero

1 Line bundles with connections

- k a field of characteristic zero
- X a smooth, projective, geometrically connected variety over k

1 Line bundles with connections

- k a field of characteristic zero
- X a smooth, projective, geometrically connected variety over k
- E a vector bundle over X

1 Line bundles with connections

- k a field of characteristic zero
- X a smooth, projective, geometrically connected variety over k
- E a vector bundle over X

Consider

$$
X \xrightarrow{\Delta} X \times_{k} X
$$

1 Line bundles with connections

- k a field of characteristic zero
- X a smooth, projective, geometrically connected variety over k
- E a vector bundle over X

Consider

\[

\]

1 Line bundles with connections

- k a field of characteristic zero
- X a smooth, projective, geometrically connected variety over k
- E a vector bundle over X

Consider

\[

\]

Define \mathcal{O}_{X}-module of principal parts or 1 -jets of E as

$$
P_{X / k}^{1}(E)=q_{1 *} q_{2}^{*} E
$$

1 Line bundles with connections

- k a field of characteristic zero
- X a smooth, projective, geometrically connected variety over k
- E a vector bundle over X

Consider

$$
\begin{aligned}
& X \xrightarrow{\Delta} X \times_{k} X
\end{aligned}
$$

Define \mathcal{O}_{X}-module of principal parts or 1 -jets of E as

$$
P_{X / k}^{1}(E)=q_{1 *} q_{2}^{*} E=E \oplus\left(\Omega_{X / k}^{1} \otimes E\right)
$$

with \mathcal{O}_{X}-module structure $\lambda \cdot[\boldsymbol{e}, \omega]=[\lambda \cdot \boldsymbol{e}, \lambda \cdot \omega-d \lambda \otimes e]$.

We obtain the Atiyah extension

$$
A t_{X / k}(E): 0 \rightarrow \Omega_{X / k}^{1} \otimes E \rightarrow P_{X / k}^{1}(E) \rightarrow E \rightarrow 0 .
$$

We obtain the Atiyah extension

$$
A t_{X / k}(E): 0 \rightarrow \Omega_{X / k}^{1} \otimes E \rightarrow P_{X / k}^{1}(E) \rightarrow E \rightarrow 0 .
$$

There is a 1-1-correspondence

$$
\left\{\begin{array}{c}
\text { connections } \\
\nabla: E \rightarrow \Omega_{X / k}^{1} \otimes E
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\mathcal{O}_{X} \text {-linear splittings } \\
s: E \rightarrow P_{X / k}^{1}(E)
\end{array}\right\}
$$

mapping ∇ to splitting $s_{\nabla}: e \mapsto[e,-\nabla(e)]$.

We obtain the Atiyah extension

$$
A t_{X / k}(E): 0 \rightarrow \Omega_{X / k}^{1} \otimes E \rightarrow P_{X / k}^{1}(E) \rightarrow E \rightarrow 0 .
$$

There is a 1-1-correspondence

$$
\left\{\begin{array}{c}
\text { connections } \\
\nabla: E \rightarrow \Omega_{X / k}^{1} \otimes E
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\mathcal{O}_{X} \text {-linear splittings } \\
s: E \rightarrow P_{X / k}^{1}(E)
\end{array}\right\}
$$

mapping ∇ to splitting $s_{\nabla}: e \mapsto[e,-\nabla(e)]$. Hence the Atiyah class

$$
\operatorname{at}_{X / k}(E) \in \operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(E, \Omega_{X / k}^{1} \otimes E\right)=H^{1}\left(X, \Omega_{X / k}^{1} \otimes \operatorname{End}(E)\right)
$$

is an obstruction to the existence of a connection on E.

We obtain the Atiyah extension

$$
A t_{X / k}(E): 0 \rightarrow \Omega_{X / k}^{1} \otimes E \rightarrow P_{X / k}^{1}(E) \rightarrow E \rightarrow 0 .
$$

There is a 1-1-correspondence

$$
\left\{\begin{array}{c}
\text { connections } \\
\nabla: E \rightarrow \Omega_{X / k}^{1} \otimes E
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\mathcal{O}_{X} \text {-linear splittings } \\
s: E \rightarrow P_{X / k}^{1}(E)
\end{array}\right\}
$$

mapping ∇ to splitting $s_{\nabla}: e \mapsto[e,-\nabla(e)]$. Hence the Atiyah class

$$
\operatorname{at}_{X / k}(E) \in \operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(E, \Omega_{X / k}^{1} \otimes E\right)=H^{1}\left(X, \Omega_{X / k}^{1} \otimes \operatorname{End}(E)\right)
$$

is an obstruction to the existence of a connection on E. If $k=\mathbb{C}$ we may apply GAGA to holomorphic connections on $E_{\mathbb{C}}$ over $X(\mathbb{C})$.

Define first Chern class of a line bundle L on X as

$c_{1}(L):=a t_{X / k}(L) \in H^{1}\left(X, \Omega_{X / k}^{1}\right)=$ 'Hodge cohomology'

Define first Chern class of a line bundle L on X as

$$
c_{1}(L):=a t_{X / k}(L) \in H^{1}\left(X, \Omega_{X / k}^{1}\right)=\text { 'Hodge cohomology' }
$$

Well known fact:
$c_{1}(L)=0 \Leftrightarrow \exists n>0$ s.t. $L^{\otimes n}$ algebraically equiv. to zero.

Define first Chern class of a line bundle L on X as

$$
c_{1}(L):=a t_{X / k}(L) \in H^{1}\left(X, \Omega_{X / k}^{1}\right)=\text { 'Hodge cohomology' }
$$

Well known fact:

$$
c_{1}(L)=0 \Leftrightarrow \exists n>0 \text { s.t. } L^{\otimes n} \text { algebraically equiv. to zero. }
$$

If $k=\mathbb{C}$ this is furthermore equivalent to

$$
c_{1}\left(L_{\mathbb{C}}\right)=0 \text { in } H^{2}(X(\mathbb{C}), \mathbb{Q}) .
$$

Define first Chern class of a line bundle L on X as

$$
c_{1}(L):=a t_{X / k}(L) \in H^{1}\left(X, \Omega_{X / k}^{1}\right)=\text { 'Hodge cohomology' }
$$

Well known fact:

$$
c_{1}(L)=0 \Leftrightarrow \exists n>0 \text { s.t. } L^{\otimes n} \text { algebraically equiv. to zero. }
$$

If $k=\mathbb{C}$ this is furthermore equivalent to

$$
c_{1}\left(L_{\mathbb{C}}\right)=0 \text { in } H^{2}(X(\mathbb{C}), \mathbb{Q}) .
$$

In this case $L_{\mathbb{C}}$ carries up to multiplication by $\mathbb{R}_{>0}$ unique hermitian metric $\|$.$\| with curvature zero.$

Define first Chern class of a line bundle L on X as

$$
c_{1}(L):=a t_{X / k}(L) \in H^{1}\left(X, \Omega_{X / k}^{1}\right)=\text { 'Hodge cohomology' }
$$

Well known fact:

$$
c_{1}(L)=0 \Leftrightarrow \exists n>0 \text { s.t. } L^{\otimes n} \text { algebraically equiv. to zero. }
$$

If $k=\mathbb{C}$ this is furthermore equivalent to

$$
c_{1}\left(L_{\mathbb{C}}\right)=0 \text { in } H^{2}(X(\mathbb{C}), \mathbb{Q}) .
$$

In this case $L_{\mathbb{C}}$ carries up to multiplication by $\mathbb{R}_{>0}$ unique hermitian metric $\|$.$\| with curvature zero. Let \nabla_{\bar{L}}$ denote the Chern connection on $L_{\mathbb{C}}$ (i.e. $\nabla_{\bar{L}}$ is the unique unitary connection which is compatible with the complex structure).

Define first Chern class of a line bundle L on X as

$$
c_{1}(L):=a t_{X / k}(L) \in H^{1}\left(X, \Omega_{X / k}^{1}\right)=\text { 'Hodge cohomology' }
$$

Well known fact:

$$
c_{1}(L)=0 \Leftrightarrow \exists n>0 \text { s.t. } L^{\otimes n} \text { algebraically equiv. to zero. }
$$

If $k=\mathbb{C}$ this is furthermore equivalent to

$$
c_{1}\left(L_{\mathbb{C}}\right)=0 \text { in } H^{2}(X(\mathbb{C}), \mathbb{Q}) .
$$

In this case $L_{\mathbb{C}}$ carries up to multiplication by $\mathbb{R}_{>0}$ unique hermitian metric $\|$.$\| with curvature zero. Let \nabla_{\bar{L}}$ denote the Chern connection on $L_{\mathbb{C}}$ (i.e. $\nabla_{\bar{L}}$ is the unique unitary connection which is compatible with the complex structure). Let ∇_{L}^{u} denote the $(1,0)$-part of $\nabla_{\bar{L}}$.

Define first Chern class of a line bundle L on X as

$$
c_{1}(L):=a t_{X / k}(L) \in H^{1}\left(X, \Omega_{X / k}^{1}\right)=\text { 'Hodge cohomology' }
$$

Well known fact:

$$
c_{1}(L)=0 \Leftrightarrow \exists n>0 \text { s.t. } L^{\otimes n} \text { algebraically equiv. to zero. }
$$

If $k=\mathbb{C}$ this is furthermore equivalent to

$$
c_{1}\left(L_{\mathbb{C}}\right)=0 \text { in } H^{2}(X(\mathbb{C}), \mathbb{Q}) .
$$

In this case $L_{\mathbb{C}}$ carries up to multiplication by $\mathbb{R}_{>0}$ unique hermitian metric $\|$.$\| with curvature zero. Let \nabla_{\bar{L}}$ denote the Chern connection on $L_{\mathbb{C}}$ (i.e. $\nabla_{\bar{L}}$ is the unique unitary connection which is compatible with the complex structure). Let ∇_{L}^{u} denote the (1,0)-part of $\nabla_{\bar{L}}$.
Observe: ∇_{L}^{u} is holomorphic and algebraizes by GAGA.

2 The main theorems

Theorem (A): Consider
 - $\mathbb{Q} \hookrightarrow \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$,

2 The main theorems

Theorem (A): Consider

- $\mathbb{Q} \hookrightarrow \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$,
- X a smooth, projective, connected variety over $\overline{\mathbb{Q}}$,

2 The main theorems

Theorem (A): Consider

- $\mathbb{Q} \hookrightarrow \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$,
- X a smooth, projective, connected variety over $\overline{\mathbb{Q}}$,
- La line bundle on X,

2 The main theorems

Theorem (A): Consider

- $\mathbb{Q} \hookrightarrow \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$,
- X a smooth, projective, connected variety over $\overline{\mathbb{Q}}$,
- La line bundle on X,
- $\nabla: L \rightarrow \Omega_{X / \mathbb{Q}} \otimes L$ a connection

2 The main theorems

Theorem (A): Consider

- $\mathbb{Q} \hookrightarrow \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$,
- X a smooth, projective, connected variety over $\overline{\mathbb{Q}}$,
- La line bundle on X,
- $\nabla: L \rightarrow \Omega_{X / \bar{Q}} \otimes L$ a connection $\left(\Rightarrow c_{1}(L)=0\right)$.

2 The main theorems

Theorem (A): Consider

- $\mathbb{Q} \hookrightarrow \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$,
- X a smooth, projective, connected variety over $\overline{\mathbb{Q}}$,
- La line bundle on X,
- $\nabla: L \rightarrow \Omega_{X / \overline{\mathbb{Q}}} \otimes L$ a connection $\left(\Rightarrow c_{1}(L)=0\right)$.

If the monodromy of ∇ is unitary (i.e. if $\nabla_{\mathbb{C}}=\nabla_{L}^{u}$)

2 The main theorems

Theorem (A): Consider

- $\mathbb{Q} \hookrightarrow \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$,
- X a smooth, projective, connected variety over $\overline{\mathbb{Q}}$,
- La line bundle on X,
- $\nabla: L \rightarrow \Omega_{X / \overline{\mathbb{Q}}} \otimes L$ a connection $\left(\Rightarrow c_{1}(L)=0\right)$.

If the monodromy of ∇ is unitary (i.e. if $\nabla_{\mathbb{C}}=\nabla_{L}^{u}$) there exists $n>0$ such that

$$
(L, \nabla)^{\otimes n} \cong\left(\mathcal{O}_{x}, d\right) .
$$

- Let X, k be as in section 1 ,
- Let X, k be as in section 1 ,
- C a smooth, projective, geometrically connected k-curve,
- Let X, k be as in section 1 ,
- C a smooth, projective, geometrically connected k-curve,
- $\pi: X \rightarrow C$ a flat k-morphism with geom. connected fibers,
- Let X, k be as in section 1 ,
- C a smooth, projective, geometrically connected k-curve,
- π : $X \rightarrow C$ a flat k-morphism with geom. connected fibers,
- $K=\kappa(C)$ function field, $X_{K}=X \times{ }_{C} \operatorname{Spec} K$,
- Let X, k be as in section 1 ,
- C a smooth, projective, geometrically connected k-curve,
- $\pi: X \rightarrow C$ a flat k-morphism with geom. connected fibers,
- $K=\kappa(C)$ function field, $X_{K}=X \times{ }_{C} \operatorname{Spec} K$,
- La line bundle on X with relative Atiyah extension

$$
A t_{X / C}(L): 0 \rightarrow \Omega_{X / C}^{1} \otimes L \rightarrow P_{X / C}^{1}(L) \rightarrow L \rightarrow 0
$$

- Let X, k be as in section 1 ,
- C a smooth, projective, geometrically connected k-curve,
- $\pi: X \rightarrow C$ a flat k-morphism with geom. connected fibers,
- $K=\kappa(C)$ function field, $X_{K}=X \times{ }_{C} \operatorname{Spec} K$,
- La line bundle on X with relative Atiyah extension

$$
A t_{X / C}(L): 0 \rightarrow \Omega_{X / C}^{1} \otimes L \rightarrow P_{X / C}^{1}(L) \rightarrow L \rightarrow 0
$$

where $\mathbb{L}_{X / C} \xrightarrow{\sim} \Omega_{X / C}^{1}$.

- Let X, k be as in section 1 ,
- C a smooth, projective, geometrically connected k-curve,
- $\pi: X \rightarrow C$ a flat k-morphism with geom. connected fibers,
- $K=\kappa(C)$ function field, $X_{K}=X \times{ }_{C} \operatorname{Spec} K$,
- L a line bundle on X with relative Atiyah extension

$$
A t_{X / C}(L): 0 \rightarrow \Omega_{X / C}^{1} \otimes L \rightarrow P_{X / C}^{1}(L) \rightarrow L \rightarrow 0
$$

where $\mathbb{L}_{x / C} \xrightarrow{\sim} \Omega_{x / C}^{1}$.
Theorem (B): $a t_{X / C}(L)=0$ in $H^{1}\left(X, \Omega_{X / C}^{1}\right)$ if and only if

- Let X, k be as in section 1 ,
- C a smooth, projective, geometrically connected k-curve,
- $\pi: X \rightarrow C$ a flat k-morphism with geom. connected fibers,
- $K=\kappa(C)$ function field, $X_{K}=X \times{ }_{C} \operatorname{Spec} K$,
- L a line bundle on X with relative Atiyah extension

$$
A t_{X / C}(L): 0 \rightarrow \Omega_{X / C}^{1} \otimes L \rightarrow P_{X / C}^{1}(L) \rightarrow L \rightarrow 0
$$

where $\mathbb{L}_{x / C} \xrightarrow{\sim} \Omega_{x / C}^{1}$.
Theorem (B): $a t_{x / C}(L)=0$ in $H^{1}\left(X, \Omega_{x / C}^{1}\right)$ if and only if there exist $n>0$ and a line bundle M on C such that $L^{\otimes n} \otimes \pi^{*} M$ is algebraically equivalent to zero.

3 Remarks on Theorem (A):

3 Remarks on Theorem (A):

The following example shows that the projectivity assumption in Theorem (A) is necessary:

3 Remarks on Theorem (A):

The following example shows that the projectivity assumption in Theorem (A) is necessary:

- $X:=\mathbb{P}_{\overline{\mathbb{Q}}}^{1} \backslash\left\{a_{1}, \ldots, a_{r}, \infty\right\}, a_{1}, \ldots, a_{n} \in \overline{\mathbb{Q}}$,

3 Remarks on Theorem (A):

The following example shows that the projectivity assumption in Theorem (A) is necessary:

- $X:=\mathbb{P}_{\overline{\mathbb{Q}}}^{1} \backslash\left\{a_{1}, \ldots, a_{r}, \infty\right\}, a_{1}, \ldots, a_{n} \in \overline{\mathbb{Q}}$,
- $L:=\mathcal{O}_{X}$,

3 Remarks on Theorem (A):

The following example shows that the projectivity assumption in Theorem (A) is necessary:

- $X:=\mathbb{P}_{\overline{\mathbb{Q}}}^{1} \backslash\left\{a_{1}, \ldots, a_{r}, \infty\right\}, a_{1}, \ldots, a_{n} \in \overline{\mathbb{Q}}$,
- $L:=\mathcal{O}_{X}, \nabla:=d+\sum_{j=1}^{r} \frac{\lambda_{j}}{z-a_{j}} d z, \lambda_{1}, \ldots, \lambda_{n} \in \overline{\mathbb{Q}}$

3 Remarks on Theorem (A):

The following example shows that the projectivity assumption in Theorem (A) is necessary:

- $X:=\mathbb{P}_{\overline{\mathbb{Q}}}^{1} \backslash\left\{a_{1}, \ldots, a_{r}, \infty\right\}, a_{1}, \ldots, a_{n} \in \overline{\mathbb{Q}}$,
- $L:=\mathcal{O}_{X}, \nabla:=d+\sum_{j=1}^{r} \frac{\lambda_{j}}{z-a_{j}} d z, \lambda_{1}, \ldots, \lambda_{n} \in \overline{\mathbb{Q}}$ defined over $\overline{\mathbb{Q}}$,

3 Remarks on Theorem (A):

The following example shows that the projectivity assumption in Theorem (A) is necessary:

- $X:=\mathbb{P}_{\overline{\mathbb{Q}}}^{1} \backslash\left\{a_{1}, \ldots, a_{r}, \infty\right\}, a_{1}, \ldots, a_{n} \in \overline{\mathbb{Q}}$,
- $L:=\mathcal{O}_{X}, \nabla:=d+\sum_{j=1}^{r} \frac{\lambda_{j}}{z-a_{j}} d z, \lambda_{1}, \ldots, \lambda_{n} \in \overline{\mathbb{Q}}$ defined over $\overline{\mathbb{Q}}$,
- image of monodromy is

$$
\exp \left\{2 \pi i \sum_{j=1}^{n} \mathbb{Z} \cdot \lambda_{j}\right\} \subseteq \mathbb{C}^{*}
$$

3 Remarks on Theorem (A):

The following example shows that the projectivity assumption in Theorem (A) is necessary:

- $X:=\mathbb{P}_{\overline{\mathbb{Q}}}^{1} \backslash\left\{a_{1}, \ldots, a_{r}, \infty\right\}, a_{1}, \ldots, a_{n} \in \overline{\mathbb{Q}}$,
- $L:=\mathcal{O}_{X}, \nabla:=d+\sum_{j=1}^{r} \frac{\lambda_{j}}{z-a_{j}} d z, \lambda_{1}, \ldots, \lambda_{n} \in \overline{\mathbb{Q}}$
defined over $\overline{\mathbb{Q}}$,
- image of monodromy is

$$
\exp \left\{2 \pi i \sum_{j=1}^{n} \mathbb{Z} \cdot \lambda_{j}\right\} \subseteq \mathbb{C}^{*}
$$

- unitary (i.e. $\subseteq U(1)$) if $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R} \cap \overline{\mathbb{Q}}$,

3 Remarks on Theorem (A):

The following example shows that the projectivity assumption in Theorem (A) is necessary:

- $X:=\mathbb{P}_{\overline{\mathbb{Q}}}^{1} \backslash\left\{a_{1}, \ldots, a_{r}, \infty\right\}, a_{1}, \ldots, a_{n} \in \overline{\mathbb{Q}}$,
- $L:=\mathcal{O}_{X}, \nabla:=d+\sum_{j=1}^{r} \frac{\lambda_{j}}{z-a_{j}} d z, \lambda_{1}, \ldots, \lambda_{n} \in \overline{\mathbb{Q}}$
defined over $\overline{\mathbb{Q}}$,
- image of monodromy is

$$
\exp \left\{2 \pi i \sum_{j=1}^{n} \mathbb{Z} \cdot \lambda_{j}\right\} \subseteq \mathbb{C}^{*}
$$

- unitary (i.e. $\subseteq U(1)$) if $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R} \cap \overline{\mathbb{Q}}$,
- but infinite if there is one $\lambda_{j} \in \overline{\mathbb{Q}} \backslash \mathbb{Q}$.

Our motivation for Theorem (A) comes from the theory of arithmetic extension groups:

Our motivation for Theorem (A) comes from the theory of arithmetic extension groups:
 Let $\left(R, \Sigma, F_{\infty}\right)$ be an arithmetic ring, for example

$$
a)(K,\{\sigma: K \hookrightarrow \mathbb{C}\}), \text { or } b)\left(\mathcal{O}_{K}[1 / N],\{\sigma: K \hookrightarrow \mathbb{C}\}\right),
$$

where K is a number field.

Our motivation for Theorem (A) comes from the theory of

 arithmetic extension groups:Let $\left(R, \Sigma, F_{\infty}\right)$ be an arithmetic ring, for example

$$
a)(K,\{\sigma: K \hookrightarrow \mathbb{C}\}), \text { or } b)\left(\mathcal{O}_{K}[1 / N],\{\sigma: K \hookrightarrow \mathbb{C}\}\right),
$$

where K is a number field. Let X be a smooth, projective scheme over $S=\operatorname{Spec} R$ with geometrically connected fibers.

Our motivation for Theorem (A) comes from the theory of

 arithmetic extension groups:Let $\left(R, \Sigma, F_{\infty}\right)$ be an arithmetic ring, for example

$$
a)(K,\{\sigma: K \hookrightarrow \mathbb{C}\}), \text { or } b)\left(\mathcal{O}_{K}[1 / N],\{\sigma: K \hookrightarrow \mathbb{C}\}\right),
$$

where K is a number field. Let X be a smooth, projective scheme over $S=\operatorname{Spec} R$ with geometrically connected fibers. An arithmetic extension (\mathcal{E}, s) over X is given by extension of \mathcal{O}_{X}-modules

$$
\mathcal{E}: 0 \rightarrow G \rightarrow E \rightarrow F \rightarrow 0
$$

Our motivation for Theorem (A) comes from the theory of

 arithmetic extension groups:Let $\left(R, \Sigma, F_{\infty}\right)$ be an arithmetic ring, for example

$$
a)(K,\{\sigma: K \hookrightarrow \mathbb{C}\}), \text { or } b)\left(\mathcal{O}_{K}[1 / N],\{\sigma: K \hookrightarrow \mathbb{C}\}\right),
$$

where K is a number field. Let X be a smooth, projective scheme over $S=\operatorname{Spec} R$ with geometrically connected fibers. An arithmetic extension (\mathcal{E}, s) over X is given by extension of \mathcal{O}_{X}-modules

$$
\mathcal{E}: 0 \rightarrow G \rightarrow E \rightarrow F \rightarrow 0
$$

with a \mathcal{C}^{∞}-splitting $s: F_{\mathbb{C}} \rightarrow E_{\mathbb{C}}$ over $X_{\Sigma}(\mathbb{C})=\coprod_{\sigma \in \Sigma} X_{\sigma}(\mathbb{C})$.

Our motivation for Theorem (A) comes from the theory of

 arithmetic extension groups:Let $\left(R, \Sigma, F_{\infty}\right)$ be an arithmetic ring, for example

$$
a)(K,\{\sigma: K \hookrightarrow \mathbb{C}\}), \text { or } b)\left(\mathcal{O}_{K}[1 / N],\{\sigma: K \hookrightarrow \mathbb{C}\}\right),
$$

where K is a number field. Let X be a smooth, projective scheme over $S=\operatorname{Spec} R$ with geometrically connected fibers. An arithmetic extension (\mathcal{E}, s) over X is given by extension of \mathcal{O}_{X}-modules

$$
\mathcal{E}: 0 \rightarrow G \rightarrow E \rightarrow F \rightarrow 0
$$

with a \mathcal{C}^{∞}-splitting $s: F_{\mathbb{C}} \rightarrow E_{\mathbb{C}}$ over $X_{\Sigma}(\mathbb{C})=\coprod_{\sigma \in \Sigma} X_{\sigma}(\mathbb{C})$.
$\widehat{\operatorname{Ext}}_{x}^{1}(F, G):=\{$ arithmetic extensions of F by $G\} / \sim$.

Our motivation for Theorem (A) comes from the theory of

 arithmetic extension groups:Let $\left(R, \Sigma, F_{\infty}\right)$ be an arithmetic ring, for example

$$
a)(K,\{\sigma: K \hookrightarrow \mathbb{C}\}), \text { or } b)\left(\mathcal{O}_{K}[1 / N],\{\sigma: K \hookrightarrow \mathbb{C}\}\right),
$$

where K is a number field. Let X be a smooth, projective scheme over $S=\operatorname{Spec} R$ with geometrically connected fibers. An arithmetic extension (\mathcal{E}, s) over X is given by extension of \mathcal{O}_{X}-modules

$$
\mathcal{E}: 0 \rightarrow G \rightarrow E \rightarrow F \rightarrow 0
$$

with a \mathcal{C}^{∞}-splitting $s: F_{\mathbb{C}} \rightarrow E_{\mathbb{C}}$ over $X_{\Sigma}(\mathbb{C})=\coprod_{\sigma \in \Sigma} X_{\sigma}(\mathbb{C})$.
$\widehat{\operatorname{Ext}}_{x}^{1}(F, G):=\{$ arithmetic extensions of F by $G\} / \sim$.
Group structure from 'Baer sum' or homological algebra.

Arithmetic Atiyah extension:

Arithmetic Atiyah extension: To hermitian vector bundle $\bar{E}=(E,\|\|$.$) on X$ associate Chern connection $\nabla_{\bar{E}}$ on $E_{\mathbb{C}}$ and

Arithmetic Atiyah extension: To hermitian vector bundle $\bar{E}=(E,\|\cdot\|)$ on X associate Chern connection $\nabla_{\bar{E}}$ on $E_{\mathbb{C}}$ and

$$
\hat{a t}_{x / S}(\bar{E})=\left(\operatorname{At}_{x / S}(E), s_{\nabla_{\bar{E}}^{1,0}}\right) \in \widehat{E x t}^{1}\left(E, \Omega_{X / S}^{1} \otimes E\right) .
$$

Arithmetic Atiyah extension: To hermitian vector bundle $\bar{E}=(E,\|\|$.$) on X$ associate Chern connection $\nabla_{\bar{E}}$ on $E_{\mathbb{C}}$ and

$$
\hat{a t}_{X / S}(\bar{E})=\left(\operatorname{At}_{x / S}(E), s_{\nabla_{\bar{E}}^{1,0}}\right) \in \widehat{E x t}^{1}\left(E, \Omega_{x / s}^{1} \otimes E\right) .
$$

Get a group homomorphism

$$
\hat{c}_{1}^{H}: \widehat{\operatorname{Pic}}(X) \rightarrow \widehat{E x t}^{1}\left(\mathcal{O}_{X}, \Omega_{X / S}^{1}\right),[\bar{L}] \mapsto \widehat{a t} t_{X / S}(\bar{L})
$$

Arithmetic Atiyah extension: To hermitian vector bundle $\bar{E}=(E,\|\cdot\|)$ on X associate Chern connection $\nabla_{\bar{E}}$ on $E_{\mathbb{C}}$ and

$$
\hat{a t}_{X / S}(\bar{E})=\left(\operatorname{At}_{x / S}(E), s_{\nabla_{\bar{E}}^{1,0}}\right) \in \widehat{E x t}^{1}\left(E, \Omega_{x / s}^{1} \otimes E\right) .
$$

Get a group homomorphism

$$
\hat{c}_{1}^{H}: \widehat{\operatorname{Pic}}(X) \rightarrow \widehat{E x t}^{1}\left(\mathcal{O}_{x}, \Omega_{X / s}^{1}\right),[\bar{L}] \mapsto \widehat{a t} t_{X / S}(\bar{L})
$$

with $\operatorname{im}\left(\pi^{*}: \widehat{\operatorname{Pic}}(S) \rightarrow \widehat{\operatorname{Pic}}(X)\right) \subseteq \operatorname{ker}\left(\hat{c}_{1}^{H}\right)$.

Arithmetic Atiyah extension: To hermitian vector bundle $\bar{E}=(E,\|\|$.$) on X$ associate Chern connection $\nabla_{\bar{E}}$ on $E_{\mathbb{C}}$ and

$$
\hat{a t}_{X / S}(\bar{E})=\left(\operatorname{At}_{x / S}(E), s_{\nabla_{\bar{E}}^{1,0}}\right) \in \widehat{E x t}^{1}\left(E, \Omega_{x / s}^{1} \otimes E\right) .
$$

Get a group homomorphism

$$
\hat{c}_{1}^{H}: \widehat{\operatorname{Pic}}(X) \rightarrow \widehat{E x t}^{1}\left(\mathcal{O}_{x}, \Omega_{X / S}^{1}\right),[\bar{L}] \mapsto \widehat{a t}_{X / s}(\bar{L})
$$

with $\operatorname{im}\left(\pi^{*}: \widehat{\operatorname{Pic}}(S) \rightarrow \widehat{\operatorname{Pic}}(X)\right) \subseteq \operatorname{ker}\left(\hat{c}_{1}^{H}\right)$.
Corollary to Theorem (A):

$$
\operatorname{ker}\left(c_{1}^{H}\right) / \operatorname{im}\left(\pi^{*}\right)
$$

is a finite group in situation a) and b).

Theorem (A) and rational points of the universal vector extension of $\mathrm{Pic}_{X / k}^{0}$:

Theorem (A) and rational points of the universal vector extension of $\mathrm{Pic}_{x / k}^{0}$:
In the situation of Theorem (A) the Picard variety $B:=\mathrm{Pic}_{X / k}^{0}$ classifies line bundles L on X algebraically equivalent to zero.

Theorem (A) and rational points of the universal vector extension of $\mathrm{Pic}_{x / k}^{0}$:
In the situation of Theorem (A) the Picard variety $B:=\operatorname{Pic}_{X / k}^{0}$ classifies line bundles L on X algebraically equivalent to zero. The universal vector extension $B^{\#}=\mathrm{Pic}_{x / k}^{0 \#}$ of B classifies line bundles L as above equipped with an integrable connection ∇.

Theorem (A) and rational points of the universal vector extension of $\mathrm{Pic}_{x / k}^{0}$:
In the situation of Theorem (A) the Picard variety $B:=\operatorname{Pic}_{X / k}^{0}$ classifies line bundles L on X algebraically equivalent to zero. The universal vector extension $B^{\#}=\mathrm{Pic}_{x / k}^{0 \# \#}$ of B classifies line bundles L as above equipped with an integrable connection ∇. It fits into an extension

$$
0 \rightarrow \Gamma\left(X, \Omega_{X / \overline{\mathbb{Q}}}\right) \rightarrow B^{\#} \rightarrow B \rightarrow 0 .
$$

Theorem (A) and rational points of the universal vector

 extension of $\mathrm{Pic}_{X / k}^{0}$:In the situation of Theorem (A) the Picard variety $B:=\mathrm{Pic}_{X / k}^{0}$ classifies line bundles L on X algebraically equivalent to zero. The universal vector extension $B^{\#}=\mathrm{Pic}_{x / k}^{0 \#}$ of B classifies line bundles L as above equipped with an integrable connection ∇. It fits into an extension

$$
0 \rightarrow \Gamma\left(X, \Omega_{X / \overline{\mathbb{Q}}}\right) \rightarrow B^{\#} \rightarrow B \rightarrow 0 .
$$

After base change to \mathbb{C} this becomes $(X=X(\mathbb{C}))$

$$
0 \rightarrow \Gamma\left(X, \Omega_{X / \mathbb{C}}\right) \rightarrow \frac{H^{1}(X, \mathbb{C})}{H^{1}(X, 2 \pi i \mathbb{Z})} \rightarrow \frac{H^{1}\left(X, \mathcal{O}_{X}\right)}{H^{1}(X, 2 \pi i \mathbb{Z})} \rightarrow 0
$$

(use the exponential sequence).

The maximal compact subgroup

$$
K:=\frac{H^{1}(X, 2 \pi i \mathbb{R})}{H^{1}(X, 2 \pi i \mathbb{Z})} \subseteq B^{\#}(\mathbb{C})=\frac{H^{1}(X, \mathbb{C})}{H^{1}(X, 2 \pi i \mathbb{Z})} \stackrel{\exp }{\rightarrow} H^{1}\left(X, \mathbb{C}^{*}\right)
$$

yields elements in $H^{1}(X, U(1))$, i.e. local systems of rank one with unitary monodromy.

The maximal compact subgroup

$$
K:=\frac{H^{1}(X, 2 \pi i \mathbb{R})}{H^{1}(X, 2 \pi i \mathbb{Z})} \subseteq B^{\#}(\mathbb{C})=\frac{H^{1}(X, \mathbb{C})}{H^{1}(X, 2 \pi i \mathbb{Z})} \stackrel{\exp }{\rightarrow} H^{1}\left(X, \mathbb{C}^{*}\right)
$$

yields elements in $H^{1}(X, U(1))$, i.e. local systems of rank one with unitary monodromy.

This allows the following reformulation of Theorem (A):

The maximal compact subgroup

$$
K:=\frac{H^{1}(X, 2 \pi i \mathbb{R})}{H^{1}(X, 2 \pi i \mathbb{Z})} \subseteq B^{\#}(\mathbb{C})=\frac{H^{1}(X, \mathbb{C})}{H^{1}(X, 2 \pi i \mathbb{Z})} \xrightarrow{\exp } H^{1}\left(X, \mathbb{C}^{*}\right)
$$

yields elements in $H^{1}(X, U(1))$, i.e. local systems of rank one with unitary monodromy.

This allows the following reformulation of Theorem (A):
Theorem (\mathbf{A}^{\prime}): In the above situation

$$
B^{\#}(\overline{\mathbb{Q}}) \cap K=B^{\#}(\overline{\mathbb{Q}})_{\text {torsion }} .
$$

The maximal compact subgroup

$$
K:=\frac{H^{1}(X, 2 \pi i \mathbb{R})}{H^{1}(X, 2 \pi i \mathbb{Z})} \subseteq B^{\#}(\mathbb{C})=\frac{H^{1}(X, \mathbb{C})}{H^{1}(X, 2 \pi i \mathbb{Z})} \xrightarrow{\exp } H^{1}\left(X, \mathbb{C}^{*}\right)
$$

yields elements in $H^{1}(X, U(1))$, i.e. local systems of rank one with unitary monodromy.

This allows the following reformulation of Theorem (A):
Theorem (\mathbf{A}^{\prime}): In the above situation

$$
B^{\#}(\overline{\mathbb{Q}}) \cap K=B^{\#}(\overline{\mathbb{Q}})_{\text {torsion }} .
$$

Theorem (A^{\prime}) was conjectured by D. Bertrand and proved if B is defined over $\overline{\mathbb{Q}} \cap \mathbb{R}$ and admits 'real multiplication'.

4 Proof of Theorem (A)

Put $A:=\operatorname{Alb} X:=\left(\operatorname{Pic}_{X / \overline{\mathbb{Q}}}^{0}\right)^{\vee}$.

4 Proof of Theorem (A)

Put $A:=\operatorname{Alb} X:=\left(\operatorname{Pic}_{X / \mathbb{Q}}^{0}\right)^{V}$.
Biduality gives $B:=\mathrm{Pic}_{X / \overline{\mathbb{Q}}}^{0}=\mathrm{Pic}_{A / \overline{\mathbb{Q}}}^{0}$.

4 Proof of Theorem (A)

Put $A:=\operatorname{Alb} X:=\left(\operatorname{Pic}_{X / \mathbb{Q}}^{0}\right)^{V}$.
Biduality gives $B:=\operatorname{Pic}_{X / \overline{\mathbb{Q}}}^{0}=\operatorname{Pic}_{A / \overline{\mathbb{Q}}}^{0}$.
Thm (A) holds for X

4 Proof of Theorem (A)

Put $A:=\operatorname{Alb} X:=\left(\operatorname{Pic}_{X / \overline{\mathbb{Q}}}^{0}\right)^{V}$.
Biduality gives $B:=\mathrm{Pic}_{X / \overline{\mathbb{Q}}}^{0}=\mathrm{Pic}_{A / \overline{\mathbb{Q}}}^{0}$.
Thm (A) holds for $X \Leftrightarrow$ Thm (A') holds for B

4 Proof of Theorem (A)

Put $A:=\operatorname{Alb} X:=\left(\operatorname{Pic}_{X / \overline{\mathbb{Q}}}^{0}\right)^{V}$.
Biduality gives $B:=\operatorname{Pic}_{X / \overline{\mathbb{Q}}}^{0}=\operatorname{Pic}_{A / \overline{\mathbb{Q}}}^{0}$.
Thm (A) holds for $X \Leftrightarrow$ Thm (A') holds for B
\Leftrightarrow Thm (A) holds for A.

4 Proof of Theorem (A)

Put $A:=\operatorname{Alb} X:=\left(\operatorname{Pic}_{X / \overline{\mathbb{Q}}}^{0}\right)^{V}$.
Biduality gives $B:=\mathrm{Pic}_{X / \overline{\mathbb{Q}}}^{0}=\mathrm{Pic}_{A / \overline{\mathbb{Q}}}^{0}$.
Thm (A) holds for $X \Leftrightarrow$ Thm (A') holds for B
\Leftrightarrow Thm (A) holds for A.
Hence may assume w.l.o.g. $X=A$ is abelian variety.

4 Proof of Theorem (A)

Put $A:=\operatorname{Alb} X:=\left(\operatorname{Pic}_{X / \bar{Q}}^{0}\right)^{V}$.
Biduality gives $B:=\mathrm{Pic}_{X / \overline{\mathbb{Q}}}^{0}=\mathrm{Pic}_{A / \overline{\mathbb{Q}}}^{0}$.
Thm (A) holds for $X \Leftrightarrow$ Thm (A') holds for B
\Leftrightarrow Thm (A) holds for A.
Hence may assume w.l.o.g. $X=A$ is abelian variety.
Let L be a line bundle over A which admits a connection ∇.

4 Proof of Theorem (A)

Put $A:=\operatorname{Alb} X:=\left(\operatorname{Pic}_{X / \bar{Q}}^{0}\right)^{V}$.
Biduality gives $B:=\operatorname{Pic}_{X / \overline{\mathbb{Q}}}^{0}=\operatorname{Pic}_{A / \overline{\mathbb{Q}}}^{0}$.
Thm (A) holds for $X \Leftrightarrow$ Thm (A') holds for B
\Leftrightarrow Thm (A) holds for A.
Hence may assume w.l.o.g. $X=A$ is abelian variety.
Let L be a line bundle over A which admits a connection ∇.
Then ∇ is integrable and L is algebraically equivalent to zero (use $\mathrm{Pic}_{A / \mathbb{Q}}^{0}=\mathrm{Pic}_{A / \overline{\mathbb{Q}}}^{\tau}$).

4 Proof of Theorem (A)

Put $A:=\operatorname{Alb} X:=\left(\operatorname{Pic}_{X / \bar{Q}}^{0}\right)^{V}$.
Biduality gives $B:=\operatorname{Pic}_{X / \overline{\mathbb{Q}}}^{0}=\operatorname{Pic}_{A / \overline{\mathbb{Q}}}^{0}$.
Thm (A) holds for $X \Leftrightarrow$ Thm (A') holds for B
\Leftrightarrow Thm (A) holds for A.
Hence may assume w.l.o.g. $X=A$ is abelian variety.
Let L be a line bundle over A which admits a connection ∇.
Then ∇ is integrable and L is algebraically equivalent to zero (use $\mathrm{Pic}_{\mathrm{A} / \overline{\mathbb{Q}}}^{0}=\mathrm{Pic}_{A / \overline{\mathbb{Q}}}^{\tau}$).
Assume $\nabla_{\mathbb{C}}=\nabla_{L}^{u}$

4 Proof of Theorem (A)

Put $A:=\operatorname{Alb} X:=\left(\operatorname{Pic}_{X / \bar{Q}}^{0}\right)^{V}$.
Biduality gives $B:=\operatorname{Pic}_{X / \overline{\mathbb{Q}}}^{0}=\operatorname{Pic}_{A / \overline{\mathbb{Q}}}^{0}$.
Thm (A) holds for $X \Leftrightarrow$ Thm (A') holds for B
\Leftrightarrow Thm (A) holds for A.
Hence may assume w.l.o.g. $X=A$ is abelian variety.
Let L be a line bundle over A which admits a connection ∇.
Then ∇ is integrable and L is algebraically equivalent to zero (use $\mathrm{Pic}_{A / \mathbb{Q}}^{0}=\mathrm{Pic}_{A / \overline{\mathbb{Q}}}^{\tau}$).
Assume $\nabla_{\mathbb{C}}=\nabla_{L}^{u}$ and fix a rigidification $\varphi: \overline{\mathbb{Q}} \xrightarrow{\sim} L_{e}$.
\mathbb{G}_{m}-torsor L^{\times}associated with L defines extension of $\overline{\mathbb{Q}}$-algebraic groups (use Theorem of the square)

$$
0 \rightarrow \mathbb{G}_{m} \xrightarrow{\varphi} L^{\times} \xrightarrow{p} A \rightarrow 0
$$

\mathbb{G}_{m}-torsor L^{\times}associated with L defines extension of $\overline{\mathbb{Q}}$-algebraic groups (use Theorem of the square)

$$
0 \rightarrow \mathbb{G}_{m} \xrightarrow{\varphi} L^{\times} \xrightarrow{p} A \rightarrow 0
$$

and of Lie algebras

$$
0 \rightarrow \mathbb{G}_{a} \xrightarrow{\text { Lie } \varphi} \text { Lie } L^{\times} \xrightarrow{\text { Lie } p} \text { Lie } A \rightarrow 0 .
$$

\mathbb{G}_{m}-torsor L^{\times}associated with L defines extension of $\overline{\mathbb{Q}}$-algebraic groups (use Theorem of the square)

$$
0 \rightarrow \mathbb{G}_{m} \xrightarrow{\varphi} L^{\times} \xrightarrow{p} A \rightarrow 0
$$

and of Lie algebras

$$
0 \rightarrow \mathbb{G}_{a} \xrightarrow{\text { Lie } \varphi} \text { Lie } L^{\times} \xrightarrow{\text { Lie } p} \text { Lie } A \rightarrow 0 .
$$

Have canonical bijections

$$
\left\{\begin{array}{c}
\text { connections } \\
\text { on } L
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\mathbb{G}_{m} \text {-equiv. splittings of } \\
D p: T L^{\times} \rightarrow p^{*} T_{A}
\end{array}\right\}
$$

\mathbb{G}_{m}-torsor L^{\times}associated with L defines extension of $\overline{\mathbb{Q}}$-algebraic groups (use Theorem of the square)

$$
0 \rightarrow \mathbb{G}_{m} \xrightarrow{\varphi} L^{\times} \xrightarrow{p} A \rightarrow 0
$$

and of Lie algebras

$$
0 \rightarrow \mathbb{G}_{a} \xrightarrow{\text { Lie } \varphi} \text { Lie } L^{\times} \xrightarrow{\text { Lie } p} \text { Lie } A \rightarrow 0 .
$$

Have canonical bijections

$$
\begin{aligned}
\left\{\begin{array}{c}
\text { connections } \\
\text { on } L
\end{array}\right\} & \longleftrightarrow\left\{\begin{array}{c}
\mathbb{G}_{m} \text {-equiv. splittings of } \\
D p: T L^{\times} \rightarrow p^{*} T_{A}
\end{array}\right\} \\
& \longleftrightarrow\left\{\begin{array}{c}
L^{\times} \text {-equiv. splittings of } \\
D p: T L^{\times} \rightarrow p^{*} T_{A}
\end{array}\right\}
\end{aligned}
$$

\mathbb{G}_{m}-torsor L^{\times}associated with L defines extension of $\overline{\mathbb{Q}}$-algebraic groups (use Theorem of the square)

$$
0 \rightarrow \mathbb{G}_{m} \xrightarrow{\varphi} L^{\times} \xrightarrow{p} A \rightarrow 0
$$

and of Lie algebras

$$
0 \rightarrow \mathbb{G}_{a} \xrightarrow{\text { Lie } \varphi} \text { Lie } L^{\times} \xrightarrow{\text { Lie } p} \text { Lie } A \rightarrow 0 .
$$

Have canonical bijections

$$
\begin{aligned}
\left\{\begin{array}{c}
\text { connections } \\
\text { on } L
\end{array}\right\} & \longleftrightarrow\left\{\begin{array}{c}
\mathbb{G}_{m} \text {-equiv. splittings of } \\
D p: T L^{\times} \rightarrow p^{*} T_{A}
\end{array}\right\} \\
& \longleftrightarrow\left\{\begin{array}{c}
L^{\times} \text {-equiv. splittings of } \\
D p: T L^{\times} \rightarrow p^{*} T_{A}
\end{array}\right\} \\
& \longleftrightarrow\left\{\begin{array}{c}
\overline{\mathbb{Q}} \text {-linear splittings } \\
\Sigma: \text { Lie } A \rightarrow \text { Lie } L^{\times} \text {of Lie } p
\end{array}\right\}
\end{aligned}
$$

Theorem (Schneider-Lang): Let G be a commutative algebraic group over $\overline{\mathbb{Q}}$ with exponential map

$$
\exp _{G}: \text { Lie } G_{\mathbb{C}} \rightarrow G(\mathbb{C}) .
$$

Theorem (Schneider-Lang): Let G be a commutative algebraic group over $\overline{\mathbb{Q}}$ with exponential map

$$
\exp _{G}: \text { Lie } G_{\mathbb{C}} \rightarrow G(\mathbb{C}) .
$$

Let $V \subseteq$ Lie G be a $\overline{\mathbb{Q}}$-sub vector space and $\left(v_{1}, \ldots, v_{n}\right)$ be a \mathbb{C}-basis of $V_{\mathbb{C}}$ such that

$$
\exp _{G}\left(v_{i}\right) \in G(\overline{\mathbb{Q}}) \text { for } I=1, \ldots, n .
$$

Theorem (Schneider-Lang): Let G be a commutative algebraic group over $\overline{\mathbb{Q}}$ with exponential map

$$
\exp _{G}: \text { Lie } G_{\mathbb{C}} \rightarrow G(\mathbb{C})
$$

Let $V \subseteq$ Lie G be a $\overline{\mathbb{Q}}$-sub vector space and $\left(v_{1}, \ldots, v_{n}\right)$ be a \mathbb{C}-basis of $V_{\mathbb{C}}$ such that

$$
\exp _{G}\left(v_{i}\right) \in G(\overline{\mathbb{Q}}) \text { for } I=1, \ldots, n .
$$

Then there exists a $\overline{\mathbb{Q}}$-algebraic subgroup H in G such that Lie $H=V$.

Theorem (Schneider-Lang): Let G be a commutative algebraic group over $\overline{\mathbb{Q}}$ with exponential map

$$
\exp _{G}: \text { Lie } G_{\mathbb{C}} \rightarrow G(\mathbb{C})
$$

Let $V \subseteq$ Lie G be a $\overline{\mathbb{Q}}$-sub vector space and $\left(v_{1}, \ldots, v_{n}\right)$ be a \mathbb{C}-basis of $V_{\mathbb{C}}$ such that

$$
\exp _{G}\left(v_{i}\right) \in G(\overline{\mathbb{Q}}) \text { for } I=1, \ldots, n .
$$

Then there exists a $\overline{\mathbb{Q}}$-algebraic subgroup H in G such that Lie $H=V$.

Nowadays consequence of more general theorems by Bombieri and Wüstholz.

Corollary: Let

- A be g-dimensional abelian variety over $\overline{\mathbb{Q}}$,

Corollary: Let

- A be g-dimensional abelian variety over $\overline{\mathbb{Q}}$,
- $\Gamma_{A}:=\operatorname{ker} \exp _{A} \cong \pi_{1}(A(\mathbb{C}), 0)$,

Corollary: Let

- A be g-dimensional abelian variety over $\overline{\mathbb{Q}}$,
- $\Gamma_{A}:=$ ker $\exp _{A} \cong \pi_{1}(A(\mathbb{C}), 0)$,
- (L, ∇) a line bundle with connection on A,

Corollary: Let

- A be g-dimensional abelian variety over $\overline{\mathbb{Q}}$,
- $\Gamma_{A}:=$ ker $\exp _{A} \cong \pi_{1}(A(\mathbb{C}), 0)$,
- (L, ∇) a line bundle with connection on A,
- $\rho_{\nabla}: \Gamma_{A} \rightarrow \mathbb{C}^{*}$ associated monodromy representation.

Corollary: Let

- A be g-dimensional abelian variety over $\overline{\mathbb{Q}}$,
- $\Gamma_{A}:=\operatorname{ker} \exp _{A} \cong \pi_{1}(A(\mathbb{C}), 0)$,
- (L, ∇) a line bundle with connection on A,
- $\rho_{\nabla}: \Gamma_{A} \rightarrow \mathbb{C}^{*}$ associated monodromy representation.

If there exist \mathbb{C}-linear independant elements $\left(\gamma_{1}, \ldots, \gamma_{g}\right)$ in Γ_{A} such that

$$
\rho\left(\gamma_{i}\right) \in \overline{\mathbb{Q}}^{*} \text { for } i=1, \ldots, g
$$

Corollary: Let

- A be g-dimensional abelian variety over $\overline{\mathbb{Q}}$,
- $\Gamma_{A}:=\operatorname{ker} \exp _{A} \cong \pi_{1}(A(\mathbb{C}), 0)$,
- (L, ∇) a line bundle with connection on A,
- $\rho_{\nabla}: \Gamma_{A} \rightarrow \mathbb{C}^{*}$ associated monodromy representation.

If there exist \mathbb{C}-linear independant elements $\left(\gamma_{1}, \ldots, \gamma_{g}\right)$ in Γ_{A} such that

$$
\rho\left(\gamma_{i}\right) \in \overline{\mathbb{Q}}^{*} \text { for } i=1, \ldots, g
$$

then there exists $n>0$ such that

$$
(L, \nabla)^{\otimes n} \cong\left(\mathcal{O}_{x}, d\right)
$$

Proof of the Corollary:

Proof of the Corollary:

Apply the Theorem of Schneider-Lang to

- $V:=\Sigma($ Lie $A)$ where Σ : Lie $A \rightarrow$ Lie L^{\times}corr. to ∇

Proof of the Corollary:

Apply the Theorem of Schneider-Lang to

- $V:=\Sigma($ Lie $A)$ where Σ : Lie $A \rightarrow$ Lie L^{\times}corr. to ∇
- $n:=g, v_{i}=\Sigma\left(\gamma_{i}\right)$.

Proof of the Corollary:

Apply the Theorem of Schneider-Lang to

- $V:=\Sigma($ Lie $A)$ where Σ : Lie $A \rightarrow$ Lie L^{\times}corr. to ∇
- $n:=g, v_{i}=\Sigma\left(\gamma_{i}\right)$.

Observe that

$$
\rho=\left.\exp _{L \times} \circ \Sigma\right|_{\Gamma_{A}} .
$$

Proof of the Corollary:

Apply the Theorem of Schneider-Lang to

- $V:=\Sigma($ Lie $A)$ where Σ : Lie $A \rightarrow$ Lie L^{\times}corr. to ∇
- $n:=g, v_{i}=\Sigma\left(\gamma_{i}\right)$.

Observe that

$$
\rho=\left.\exp _{L \times} \circ \Sigma\right|_{\Gamma_{A}} .
$$

Schneider-Lang yields subgroup $H \hookrightarrow L^{\times}$such that Lie $H=V$.

Proof of the Corollary:

Apply the Theorem of Schneider-Lang to

- $V:=\Sigma($ Lie $A)$ where Σ : Lie $A \rightarrow$ Lie L^{\times}corr. to ∇
- $n:=g, v_{i}=\Sigma\left(\gamma_{i}\right)$.

Observe that

$$
\rho=\left.\exp _{L \times} \circ \Sigma\right|_{\Gamma_{A}} .
$$

Schneider-Lang yields subgroup $H \hookrightarrow L^{\times}$such that Lie $H=V$. Hence the $\operatorname{map} \pi: H \hookrightarrow L^{\times} \rightarrow A$ is etale and an isogeny of abelian varieties.

Proof of the Corollary:

Apply the Theorem of Schneider-Lang to

- $V:=\Sigma($ Lie $A)$ where Σ : Lie $A \rightarrow$ Lie L^{\times}corr. to ∇
- $n:=g, v_{i}=\Sigma\left(\gamma_{i}\right)$.

Observe that

$$
\rho=\left.\exp _{L \times} \circ \Sigma\right|_{\Gamma_{A}} .
$$

Schneider-Lang yields subgroup $H \hookrightarrow L^{\times}$such that Lie $H=V$. Hence the map $\pi: H \hookrightarrow L^{\times} \rightarrow A$ is etale and an isogeny of abelian varieties.

By construction

$$
\pi^{*}(L, \nabla) \cong\left(\mathcal{O}_{X}, d\right)
$$

and we can choose $n:=\operatorname{deg}(\pi)$.

Proof of Theorem (A), conclusion via 'Weil restriction':

Proof of Theorem (A), conclusion via 'Weil restriction':

 Define A_{-}and $\left(L_{-}, \nabla_{-}\right)$by base change with respect to complex conjugation $\overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}, z \mapsto \bar{z}$.
Proof of Theorem (A), conclusion via 'Weil restriction':

 Define A_{-}and $\left(L_{-}, \nabla_{-}\right)$by base change with respect to complex conjugation $\overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}, z \mapsto \bar{z}$. Put$$
B:=A \times A_{-},\left(M, \nabla_{M}\right):=(L, \nabla) \boxtimes\left(L_{-}, \nabla_{L_{-}}\right) .
$$

Proof of Theorem (A), conclusion via 'Weil restriction': Define A_{-}and $\left(L_{-}, \nabla_{-}\right)$by base change with respect to complex conjugation $\overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}, z \mapsto \bar{z}$. Put

$$
B:=A \times A_{-},\left(M, \nabla_{M}\right):=(L, \nabla) \boxtimes\left(L_{-}, \nabla_{L_{-}}\right) .
$$

Get \mathbb{C}-antilinear map $j:$ Lie $A \rightarrow$ Lie A_{-}with $j\left(\Gamma_{A}\right)=\Gamma_{A_{-}}$.

Proof of Theorem (A), conclusion via 'Weil restriction':

 Define A_{-}and $\left(L_{-}, \nabla_{-}\right)$by base change with respect to complex conjugation $\overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}, z \mapsto \bar{z}$. Put$$
B:=A \times A_{-},\left(M, \nabla_{M}\right):=(L, \nabla) \boxtimes\left(L_{-}, \nabla_{L_{-}}\right) .
$$

Get \mathbb{C}-antilinear map $j:$ Lie $A \rightarrow$ Lie A_{-}with $j\left(\Gamma_{A}\right)=\Gamma_{A_{-}}$. Consider

$$
\Delta: \Gamma_{A} \rightarrow \Gamma_{B}=\Gamma_{A} \times \Gamma_{A_{-}},
$$

Proof of Theorem (A), conclusion via 'Weil restriction':

 Define A_{-}and $\left(L_{-}, \nabla_{-}\right)$by base change with respect to complex conjugation $\overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}, z \mapsto \bar{z}$. Put$$
B:=A \times A_{-},\left(M, \nabla_{M}\right):=(L, \nabla) \boxtimes\left(L_{-}, \nabla_{L_{-}}\right) .
$$

Get \mathbb{C}-antilinear map $j:$ Lie $A \rightarrow$ Lie A_{-}with $j\left(\Gamma_{A}\right)=\Gamma_{A_{-}}$. Consider

$$
\Delta: \Gamma_{A} \rightarrow \Gamma_{B}=\Gamma_{A} \times \Gamma_{A_{-}}, \gamma \mapsto(\gamma, j(\gamma))
$$

Proof of Theorem (A), conclusion via 'Weil restriction':

Define A_{-}and $\left(L_{-}, \nabla_{-}\right)$by base change with respect to complex conjugation $\overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}, z \mapsto \bar{z}$. Put

$$
B:=A \times A_{-},\left(M, \nabla_{M}\right):=(L, \nabla) \boxtimes\left(L_{-}, \nabla_{L_{-}}\right) .
$$

Get \mathbb{C}-antilinear map $j:$ Lie $A \rightarrow$ Lie A_{-}with $j\left(\Gamma_{A}\right)=\Gamma_{A_{-}}$. Consider

$$
\Delta: \Gamma_{A} \rightarrow \Gamma_{B}=\Gamma_{A} \times \Gamma_{A_{-}}, \gamma \mapsto(\gamma, j(\gamma))
$$

As $\nabla_{\mathbb{C}}=\nabla_{L}^{u}$ is unitary

Proof of Theorem (A), conclusion via 'Weil restriction':

Define A_{-}and $\left(L_{-}, \nabla_{-}\right)$by base change with respect to complex conjugation $\overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}, z \mapsto \bar{z}$. Put

$$
B:=A \times A_{-},\left(M, \nabla_{M}\right):=(L, \nabla) \boxtimes\left(L_{-}, \nabla_{L_{-}}\right) .
$$

Get \mathbb{C}-antilinear map $j:$ Lie $A \rightarrow$ Lie A_{-}with $j\left(\Gamma_{A}\right)=\Gamma_{A_{-}}$. Consider

$$
\Delta: \Gamma_{A} \rightarrow \Gamma_{B}=\Gamma_{A} \times \Gamma_{A_{-}}, \gamma \mapsto(\gamma, j(\gamma))
$$

As $\nabla_{\mathbb{C}}=\nabla_{L}^{u}$ is unitary and $\rho_{\nabla_{-}}(j(\gamma))=\overline{\rho_{\nabla}(\gamma)}$,

Proof of Theorem (A), conclusion via 'Weil restriction':

Define A_{-}and $\left(L_{-}, \nabla_{-}\right)$by base change with respect to complex conjugation $\overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}, z \mapsto \bar{z}$. Put

$$
B:=A \times A_{-},\left(M, \nabla_{M}\right):=(L, \nabla) \boxtimes\left(L_{-}, \nabla_{L_{-}}\right) .
$$

Get \mathbb{C}-antilinear map j : Lie $A \rightarrow$ Lie A_{-}with $j\left(\Gamma_{A}\right)=\Gamma_{A_{-}}$. Consider

$$
\Delta: \Gamma_{A} \rightarrow \Gamma_{B}=\Gamma_{A} \times \Gamma_{A_{-}}, \gamma \mapsto(\gamma, j(\gamma))
$$

As $\nabla_{\mathbb{C}}=\nabla_{L}^{u}$ is unitary and $\rho_{\nabla_{-}}(j(\gamma))=\overline{\rho_{\nabla}(\gamma)}$, we get

$$
\rho_{\nabla_{M}}(\Delta(\gamma))
$$

Proof of Theorem (A), conclusion via 'Weil restriction':

Define A_{-}and $\left(L_{-}, \nabla_{-}\right)$by base change with respect to complex conjugation $\overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}, z \mapsto \bar{z}$. Put

$$
B:=A \times A_{-},\left(M, \nabla_{M}\right):=(L, \nabla) \boxtimes\left(L_{-}, \nabla_{L_{-}}\right) .
$$

Get \mathbb{C}-antilinear map $j:$ Lie $A \rightarrow$ Lie A_{-}with $j\left(\Gamma_{A}\right)=\Gamma_{A_{-}}$. Consider

$$
\Delta: \Gamma_{A} \rightarrow \Gamma_{B}=\Gamma_{A} \times \Gamma_{A_{-}, \gamma} \mapsto(\gamma, j(\gamma))
$$

As $\nabla_{\mathbb{C}}=\nabla_{L}^{u}$ is unitary and $\rho_{\nabla_{-}}(j(\gamma))=\overline{\rho_{\nabla}(\gamma)}$, we get

$$
\rho_{\nabla_{M}}(\Delta(\gamma))=\rho_{\nabla}(\gamma) \cdot \rho_{\nabla_{-}}(j(\gamma))
$$

Proof of Theorem (A), conclusion via 'Weil restriction':

Define A_{-}and $\left(L_{-}, \nabla_{-}\right)$by base change with respect to complex conjugation $\overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}, z \mapsto \bar{z}$. Put

$$
B:=A \times A_{-},\left(M, \nabla_{M}\right):=(L, \nabla) \boxtimes\left(L_{-}, \nabla_{L_{-}}\right) .
$$

Get \mathbb{C}-antilinear map $j:$ Lie $A \rightarrow$ Lie A_{-}with $j\left(\Gamma_{A}\right)=\Gamma_{A_{-}}$. Consider

$$
\Delta: \Gamma_{A} \rightarrow \Gamma_{B}=\Gamma_{A} \times \Gamma_{A_{-}, \gamma} \mapsto(\gamma, j(\gamma))
$$

As $\nabla_{\mathbb{C}}=\nabla_{L}^{u}$ is unitary and $\rho_{\nabla_{-}}(j(\gamma))=\overline{\rho_{\nabla}(\gamma)}$, we get

$$
\rho_{\nabla_{M}}(\Delta(\gamma))=\rho_{\nabla}(\gamma) \cdot \rho_{\nabla_{-}}(j(\gamma))=\left|\rho_{\nabla}(\gamma)\right|^{2}
$$

Proof of Theorem (A), conclusion via 'Weil restriction':

Define A_{-}and $\left(L_{-}, \nabla_{-}\right)$by base change with respect to complex conjugation $\overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}, z \mapsto \bar{z}$. Put

$$
B:=A \times A_{-},\left(M, \nabla_{M}\right):=(L, \nabla) \boxtimes\left(L_{-}, \nabla_{L_{-}}\right) .
$$

Get \mathbb{C}-antilinear map $j:$ Lie $A \rightarrow$ Lie A_{-}with $j\left(\Gamma_{A}\right)=\Gamma_{A_{-}}$. Consider

$$
\Delta: \Gamma_{A} \rightarrow \Gamma_{B}=\Gamma_{A} \times \Gamma_{A_{-}, \gamma} \mapsto(\gamma, j(\gamma))
$$

As $\nabla_{\mathbb{C}}=\nabla_{L}^{u}$ is unitary and $\rho_{\nabla_{-}}(j(\gamma))=\overline{\rho_{\nabla}(\gamma)}$, we get

$$
\rho_{\nabla_{M}}(\Delta(\gamma))=\rho_{\nabla}(\gamma) \cdot \rho_{\nabla_{-}}(j(\gamma))=\left|\rho_{\nabla}(\gamma)\right|^{2}=1 .
$$

Proof of Theorem (A), conclusion via 'Weil restriction':

Define A_{-}and $\left(L_{-}, \nabla_{-}\right)$by base change with respect to complex conjugation $\overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}, z \mapsto \bar{z}$. Put

$$
B:=A \times A_{-},\left(M, \nabla_{M}\right):=(L, \nabla) \boxtimes\left(L_{-}, \nabla_{L_{-}}\right) .
$$

Get \mathbb{C}-antilinear map $j:$ Lie $A \rightarrow$ Lie A_{-}with $j\left(\Gamma_{A}\right)=\Gamma_{A_{-}}$. Consider

$$
\Delta: \Gamma_{A} \rightarrow \Gamma_{B}=\Gamma_{A} \times \Gamma_{A_{-}, \gamma} \mapsto(\gamma, j(\gamma))
$$

As $\nabla_{\mathbb{C}}=\nabla_{L}^{u}$ is unitary and $\rho_{\nabla_{-}}(j(\gamma))=\overline{\rho_{\nabla}(\gamma)}$, we get

$$
\rho_{\nabla_{M}}(\Delta(\gamma))=\rho_{\nabla}(\gamma) \cdot \rho_{\nabla_{-}}(j(\gamma))=\left|\rho_{\nabla}(\gamma)\right|^{2}=1 .
$$

Γ_{A} contains \mathbb{R}-basis of Lie $A_{\mathbb{C}}$

Proof of Theorem (A), conclusion via 'Weil restriction':

Define A_{-}and $\left(L_{-}, \nabla_{-}\right)$by base change with respect to complex conjugation $\overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}, z \mapsto \bar{z}$. Put

$$
B:=A \times A_{-},\left(M, \nabla_{M}\right):=(L, \nabla) \boxtimes\left(L_{-}, \nabla_{L_{-}}\right) .
$$

Get \mathbb{C}-antilinear map $j:$ Lie $A \rightarrow$ Lie A_{-}with $j\left(\Gamma_{A}\right)=\Gamma_{A_{-}}$. Consider

$$
\Delta: \Gamma_{A} \rightarrow \Gamma_{B}=\Gamma_{A} \times \Gamma_{A_{-}}, \gamma \mapsto(\gamma, j(\gamma))
$$

As $\nabla_{\mathbb{C}}=\nabla_{L}^{u}$ is unitary and $\rho_{\nabla_{-}}(j(\gamma))=\overline{\rho_{\nabla}(\gamma)}$, we get

$$
\rho_{\nabla_{M}}(\Delta(\gamma))=\rho_{\nabla}(\gamma) \cdot \rho_{\nabla_{-}}(j(\gamma))=\left|\rho_{\nabla}(\gamma)\right|^{2}=1 .
$$

Γ_{A} contains \mathbb{R}-basis of Lie $A_{\mathbb{C}} \Rightarrow \Delta\left(\Gamma_{A}\right)$ contains \mathbb{C}-basis of Lie $B_{\mathbb{C}}$.

Proof of Theorem (A), conclusion via 'Weil restriction':

Define A_{-}and $\left(L_{-}, \nabla_{-}\right)$by base change with respect to complex conjugation $\overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}, z \mapsto \bar{z}$. Put

$$
B:=A \times A_{-},\left(M, \nabla_{M}\right):=(L, \nabla) \boxtimes\left(L_{-}, \nabla_{L_{-}}\right) .
$$

Get \mathbb{C}-antilinear map $j:$ Lie $A \rightarrow$ Lie A_{-}with $j\left(\Gamma_{A}\right)=\Gamma_{A_{-}}$. Consider

$$
\Delta: \Gamma_{A} \rightarrow \Gamma_{B}=\Gamma_{A} \times \Gamma_{A_{-}, \gamma} \mapsto(\gamma, j(\gamma))
$$

As $\nabla_{\mathbb{C}}=\nabla_{L}^{u}$ is unitary and $\rho_{\nabla_{-}}(j(\gamma))=\overline{\rho_{\nabla}(\gamma)}$, we get

$$
\rho_{\nabla_{M}}(\Delta(\gamma))=\rho_{\nabla}(\gamma) \cdot \rho_{\nabla_{-}}(j(\gamma))=\left|\rho_{\nabla}(\gamma)\right|^{2}=1 .
$$

Γ_{A} contains \mathbb{R}-basis of Lie $A_{\mathbb{C}} \Rightarrow \Delta\left(\Gamma_{A}\right)$ contains \mathbb{C}-basis of Lie $B_{\mathbb{C}}$.
Corollary $\Rightarrow\left(M, \nabla_{M}\right)$ and $\left(L, \nabla_{L}\right)=\left.\left(M, \nabla_{M}\right)\right|_{A \times e}$ are torsion.

5 A remark on Theorem (B)

We say that abelian variety $\operatorname{Pic}_{X_{K} / K}^{0}$ has no fixed part if

$$
\operatorname{Hom}_{K}\left(A \otimes_{k} K, \operatorname{Pic}_{X_{K} / K}^{0}\right)=0 .
$$

for any abelian variety A over k.

5 A remark on Theorem (B)

We say that abelian variety $\operatorname{Pic}_{X_{K} / K}^{0}$ has no fixed part if

$$
\operatorname{Hom}_{K}\left(A \otimes_{K} K, \operatorname{Pic}_{X_{K} / K}^{0}\right)=0 .
$$

for any abelian variety A over k. Equivalent to

$$
\pi^{*}: \operatorname{Pic}_{C / k}^{0} \rightarrow \operatorname{Pic}_{X / k}^{0}
$$

being an isogeny

5 A remark on Theorem (B)

We say that abelian variety $\operatorname{Pic}_{X_{K} / K}^{0}$ has no fixed part if

$$
\operatorname{Hom}_{K}\left(A \otimes_{K} K, \operatorname{Pic}_{X_{K} / K}^{0}\right)=0
$$

for any abelian variety A over k. Equivalent to

$$
\pi^{*}: \operatorname{Pic}_{C / k}^{0} \rightarrow \operatorname{Pic}_{X / k}^{0}
$$

being an isogeny or to the bijectivity of the map

$$
\pi^{*}: H^{1}\left(C, \mathcal{O}_{C}\right) \rightarrow H^{1}\left(X, \mathcal{O}_{X}\right)
$$

5 A remark on Theorem (B)

We say that abelian variety $\operatorname{Pic}_{X_{K} / K}^{0}$ has no fixed part if

$$
\operatorname{Hom}_{K}\left(A \otimes_{k} K, \operatorname{Pic}_{X_{K} / K}^{0}\right)=0
$$

for any abelian variety A over k. Equivalent to

$$
\pi^{*}: \operatorname{Pic}_{C / k}^{0} \rightarrow \operatorname{Pic}_{X / k}^{0}
$$

being an isogeny or to the bijectivity of the map

$$
\pi^{*}: H^{1}\left(C, \mathcal{O}_{C}\right) \rightarrow H^{1}\left(X, \mathcal{O}_{X}\right)
$$

If we assume in the situation of Theorem (B) that $\operatorname{Pic}_{X_{K} / K}^{0}$ has no fixed part, Theorem (B) gives:

5 A remark on Theorem (B)

We say that abelian variety $\operatorname{Pic}_{X_{K} / K}^{0}$ has no fixed part if

$$
\operatorname{Hom}_{K}\left(A \otimes_{k} K, \operatorname{Pic}_{X_{K} / K}^{0}\right)=0
$$

for any abelian variety A over k. Equivalent to

$$
\pi^{*}: \operatorname{Pic}_{C / k}^{0} \rightarrow \operatorname{Pic}_{X / k}^{0}
$$

being an isogeny or to the bijectivity of the map

$$
\pi^{*}: H^{1}\left(C, \mathcal{O}_{C}\right) \rightarrow H^{1}\left(X, \mathcal{O}_{X}\right)
$$

If we assume in the situation of Theorem (B) that $\operatorname{Pic}_{X_{K} / K}^{0}$ has no fixed part, Theorem (B) gives:
$a t_{X / C}(L)=0$ in $H^{1}\left(X, \Omega_{X / C}^{1}\right)$ if and only if

5 A remark on Theorem (B)

We say that abelian variety $\operatorname{Pic}_{X_{K} / K}^{0}$ has no fixed part if

$$
\operatorname{Hom}_{K}\left(A \otimes_{k} K, \operatorname{Pic}_{X_{K} / K}^{0}\right)=0 .
$$

for any abelian variety A over k. Equivalent to

$$
\pi^{*}: \operatorname{Pic}_{C / k}^{0} \rightarrow \operatorname{Pic}_{X / k}^{0}
$$

being an isogeny or to the bijectivity of the map

$$
\pi^{*}: H^{1}\left(C, \mathcal{O}_{C}\right) \rightarrow H^{1}\left(X, \mathcal{O}_{X}\right)
$$

If we assume in the situation of Theorem (B) that $\operatorname{Pic}_{X_{K} / K}^{0}$ has no fixed part, Theorem (B) gives:
$a t_{X / C}(L)=0$ in $H^{1}\left(X, \Omega_{X / C}^{1}\right)$ if and only if there exist $n>0$ and a line bundle M on C s.t. $L^{\otimes n} \cong \pi^{*} M$.

6 Proof of Theorem (B):

Let X be a projective,smooth, connected variety over k, $d:=\operatorname{dim} X \geq 2$, and $\mathcal{O}(1)$ very ample on X.

6 Proof of Theorem (B):

Let X be a projective,smooth, connected variety over k, $d:=\operatorname{dim} X \geq 2$, and $\mathcal{O}(1)$ very ample on X.
Hodge cohomology: $H^{p, q}(X):=H^{p}\left(X, \Omega_{X / k}^{q}\right)$,

6 Proof of Theorem (B):

Let X be a projective,smooth, connected variety over k, $d:=\operatorname{dim} X \geq 2$, and $\mathcal{O}(1)$ very ample on X.
Hodge cohomology: $H^{p, q}(X):=H^{p}\left(X, \Omega_{X / k}^{q}\right)$,

- $\oplus_{p, q \geq 0} H^{p, q}(X)$ (k-algebra),

6 Proof of Theorem (B):

Let X be a projective,smooth, connected variety over k, $d:=\operatorname{dim} X \geq 2$, and $\mathcal{O}(1)$ very ample on X.
Hodge cohomology: $H^{p, q}(X):=H^{p}\left(X, \Omega_{X / k}^{q}\right)$,

- $\oplus_{p, q \geq 0} H^{p, q}(X)$ (k-algebra),
- $\operatorname{tr}_{X / k}: H^{d, d}(X) \xrightarrow{\sim} k$ (trace),

6 Proof of Theorem (B):

Let X be a projective,smooth, connected variety over k, $d:=\operatorname{dim} X \geq 2$, and $\mathcal{O}(1)$ very ample on X.
Hodge cohomology: $H^{p, q}(X):=H^{p}\left(X, \Omega_{X / k}^{q}\right)$,

- $\oplus_{p, q \geq 0} H^{p, q}(X)$ (k-algebra),
- $\operatorname{tr}_{X / k}: H^{d, d}(X) \xrightarrow{\sim} k$ (trace),
- $c_{1}: \operatorname{Pic}(X) \rightarrow H^{1,1}(X),[L] \mapsto a t_{X / k} L$ (1st Chern class)

6 Proof of Theorem (B):

Let X be a projective,smooth, connected variety over k, $d:=\operatorname{dim} X \geq 2$, and $\mathcal{O}(1)$ very ample on X.
Hodge cohomology: $H^{p, q}(X):=H^{p}\left(X, \Omega_{X / k}^{q}\right)$,

- $\oplus_{p, q \geq 0} H^{p, q}(X)$ (k-algebra),
- $\operatorname{tr}_{X / k}: H^{d, d}(X) \xrightarrow{\sim} k$ (trace),
- $c_{1}: \operatorname{Pic}(X) \rightarrow H^{1,1}(X),[L] \mapsto a t_{X / k} L$ (1st Chern class)

Define $\mu_{X} \in H^{d, d}(X)$ by $\operatorname{tr}_{X / k}\left(\mu_{X}\right)=1$ and $h:=c_{1}(\mathcal{O}(1))$.

6 Proof of Theorem (B):

Let X be a projective,smooth, connected variety over k, $d:=\operatorname{dim} X \geq 2$, and $\mathcal{O}(1)$ very ample on X.
Hodge cohomology: $H^{p, q}(X):=H^{p}\left(X, \Omega_{X / k}^{q}\right)$,

- $\oplus_{p, q \geq 0} H^{p, q}(X)$ (k-algebra),
- $\operatorname{tr}_{X / k}: H^{d, d}(X) \xrightarrow{\sim} k$ (trace),
- $c_{1}: \operatorname{Pic}(X) \rightarrow H^{1,1}(X),[L] \mapsto a t_{X / k} L$ (1st Chern class)

Define $\mu_{X} \in H^{d, d}(X)$ by $\operatorname{tr}_{X / k}\left(\mu_{X}\right)=1$ and $h:=c_{1}(\mathcal{O}(1))$.
Consequence of the Hodge index theorem: For any $\alpha \in \mathbb{Q} \cdot c_{1}(\operatorname{Pic} X) \subseteq H^{1,1}(X)$, we have

$$
\alpha=0 \Leftrightarrow \alpha \cdot h^{d-1}=0 \wedge \alpha^{2} \cdot h^{d-1}=0
$$

Consider $\pi: X \rightarrow C$ as in Theorem (B).

Consider $\pi: X \rightarrow C$ as in Theorem (B). Have

$$
0 \rightarrow \pi^{*} \Omega_{C / k}^{1} \xrightarrow{\iota} \Omega_{X / k}^{1} \xrightarrow{p} \Omega_{X / C}^{1} \rightarrow 0,
$$

Consider $\pi: X \rightarrow C$ as in Theorem (B). Have

$$
0 \rightarrow \pi^{*} \Omega_{C / k}^{1} \xrightarrow{\iota} \Omega_{X / k}^{1} \xrightarrow{p} \Omega_{X / C}^{1} \rightarrow 0,
$$

and for any line bundle L on X

- $a t_{X / k} L \in H^{1,1}(X):=H^{1}\left(X, \Omega_{X / k}^{1}\right)$,

Consider $\pi: X \rightarrow C$ as in Theorem (B). Have

$$
0 \rightarrow \pi^{*} \Omega_{C / k}^{1} \xrightarrow{\iota} \Omega_{X / k}^{1} \xrightarrow{p} \Omega_{X / C}^{1} \rightarrow 0,
$$

and for any line bundle L on X

- $a t_{X / k} L \in H^{1,1}(X):=H^{1}\left(X, \Omega_{X / k}^{1}\right)$,
- $a t_{x / C} L=H^{1}(p)\left(a t_{X / k} L\right) \in H^{1}\left(X, \Omega_{X / C}^{1}\right)$.

Consider $\pi: X \rightarrow C$ as in Theorem (B). Have

$$
0 \rightarrow \pi^{*} \Omega_{C / k}^{1} \xrightarrow{\iota} \Omega_{X / k}^{1} \xrightarrow{p} \Omega_{X / C}^{1} \rightarrow 0,
$$

and for any line bundle L on X

- $a t_{X / k} L \in H^{1,1}(X):=H^{1}\left(X, \Omega_{X / k}^{1}\right)$,
- $a t_{X / C} L=H^{1}(p)\left(a t_{X / k} L\right) \in H^{1}\left(X, \Omega_{X / C}^{1}\right)$.

For any effective divisor E on C

$$
F:=\pi^{*} \mu_{C}=\frac{1}{\operatorname{deg} E} c_{1}\left(\pi^{*} \mathcal{O}(E)\right) \in H^{1,1}(X) .
$$

Corollary: For $\beta \in c_{1}(\operatorname{Pic}(X)) \subseteq H^{1,1}(X)$ the following are equivalent:

Corollary: For $\beta \in c_{1}(\operatorname{Pic}(X)) \subseteq H^{1,1}(X)$ the following are equivalent:
i) $\beta \in \mathbb{Q} . F$,

Corollary: For $\beta \in c_{1}(\operatorname{Pic}(X)) \subseteq H^{1,1}(X)$ the following are equivalent:

$$
\text { i) } \beta \in \mathbb{Q} . F, \text { ii) } \beta^{2}=\beta . F=0,
$$

Corollary: For $\beta \in c_{1}(\operatorname{Pic}(X)) \subseteq H^{1,1}(X)$ the following are equivalent:

$$
\text { i) } \beta \in \mathbb{Q} . F, \text { ii) } \beta^{2}=\beta . F=0, \text { iii) } \beta^{2} . h^{d-2}=\beta . F . h^{d-2}=0 \text {. }
$$

Corollary: For $\beta \in c_{1}(\operatorname{Pic}(X)) \subseteq H^{1,1}(X)$ the following are equivalent:

$$
\text { i) } \beta \in \mathbb{Q} . F, \text { ii) } \beta^{2}=\beta . F=0, \text { iii) } \beta^{2} . h^{d-2}=\beta . F . h^{d-2}=0 \text {. }
$$

Proof: i) \Rightarrow ii) $F . F=\pi^{*}\left(\mu_{C} . \mu_{C}\right)=0$.

Corollary: For $\beta \in c_{1}(\operatorname{Pic}(X)) \subseteq H^{1,1}(X)$ the following are equivalent:

$$
\text { i) } \beta \in \mathbb{Q} . F, \text { ii) } \beta^{2}=\beta . F=0, \text { iii) } \beta^{2} . h^{d-2}=\beta . F . h^{d-2}=0 \text {. }
$$

Proof: i) \Rightarrow ii) $F . F=\pi^{*}\left(\mu_{C} . \mu_{C}\right)=0$.
ii) \Rightarrow iii) clear

Corollary: For $\beta \in c_{1}(\operatorname{Pic}(X)) \subseteq H^{1,1}(X)$ the following are equivalent:

$$
\text { i) } \beta \in \mathbb{Q} . F, \text { ii) } \beta^{2}=\beta . F=0, \text { iii) } \beta^{2} . h^{d-2}=\beta . F . h^{d-2}=0 \text {. }
$$

Proof: i) \Rightarrow ii) $F . F=\pi^{*}\left(\mu_{C} . \mu_{C}\right)=0$.
ii) \Rightarrow iii) clear
iii) \Rightarrow i) Let $\beta:=c_{1}(L)$.

Corollary: For $\beta \in c_{1}(\operatorname{Pic}(X)) \subseteq H^{1,1}(X)$ the following are equivalent:

$$
\text { i) } \beta \in \mathbb{Q} . F, \text { ii) } \beta^{2}=\beta . F=0, \text { iii) } \beta^{2} . h^{d-2}=\beta . F . h^{d-2}=0 \text {. }
$$

Proof: i) \Rightarrow ii) $F . F=\pi^{*}\left(\mu_{C} \cdot \mu_{C}\right)=0$.
ii) \Rightarrow iii) clear
iii) \Rightarrow i) Let $\beta:=c_{1}(L)$.
$p:=\beta . h^{d-1}$

Corollary: For $\beta \in c_{1}(\operatorname{Pic}(X)) \subseteq H^{1,1}(X)$ the following are equivalent:

$$
\text { i) } \beta \in \mathbb{Q} . F, \text { ii) } \beta^{2}=\beta . F=0, \text { iii) } \beta^{2} . h^{d-2}=\beta . F . h^{d-2}=0 \text {. }
$$

Proof: i) \Rightarrow ii) $F . F=\pi^{*}\left(\mu_{C} . \mu_{C}\right)=0$.
ii) \Rightarrow iii) clear
iii) \Rightarrow i) Let $\beta:=c_{1}(L)$.

$$
p:=\beta \cdot h^{d-1}=c_{1}(L) \cdot c_{1}(\mathcal{O}(1))^{d-1} \in \mathbb{Z}
$$

Corollary: For $\beta \in c_{1}(\operatorname{Pic}(X)) \subseteq H^{1,1}(X)$ the following are equivalent:

$$
\text { i) } \beta \in \mathbb{Q} . F, \text { ii) } \beta^{2}=\beta . F=0, \text { iii) } \beta^{2} . h^{d-2}=\beta . F . h^{d-2}=0 \text {. }
$$

Proof: i) \Rightarrow ii) $F . F=\pi^{*}\left(\mu_{C} . \mu_{C}\right)=0$.
ii) \Rightarrow iii) clear
iii) \Rightarrow i) Let $\beta:=c_{1}(L)$.
$p:=\beta \cdot h^{d-1}=c_{1}(L) \cdot c_{1}(\mathcal{O}(1))^{d-1} \in \mathbb{Z}$
$q:=F . h^{d-1}$

Corollary: For $\beta \in c_{1}(\operatorname{Pic}(X)) \subseteq H^{1,1}(X)$ the following are equivalent:

$$
\text { i) } \beta \in \mathbb{Q} . F, \text { ii) } \beta^{2}=\beta . F=0, \text { iii) } \beta^{2} . h^{d-2}=\beta . F . h^{d-2}=0 \text {. }
$$

Proof: i) \Rightarrow ii) $F . F=\pi^{*}\left(\mu_{C} . \mu_{C}\right)=0$.
ii) \Rightarrow iii) clear
iii) \Rightarrow i) Let $\beta:=c_{1}(L)$.
$p:=\beta \cdot h^{d-1}=c_{1}(L) \cdot c_{1}(\mathcal{O}(1))^{d-1} \in \mathbb{Z}$
$q:=F . h^{d-1}=c_{1}\left(\mathcal{O}(1) \mid x_{K}\right)^{d-1} \in \mathbb{Z}_{>0}$

Corollary: For $\beta \in c_{1}(\operatorname{Pic}(X)) \subseteq H^{1,1}(X)$ the following are equivalent:

$$
\text { i) } \beta \in \mathbb{Q} . F, \text { ii) } \beta^{2}=\beta . F=0, \text { iii) } \beta^{2} . h^{d-2}=\beta . F . h^{d-2}=0 \text {. }
$$

Proof: i) \Rightarrow ii) $F . F=\pi^{*}\left(\mu_{C} . \mu_{C}\right)=0$.
ii) \Rightarrow iii) clear
iii) \Rightarrow i) Let $\beta:=c_{1}(L)$.
$p:=\beta \cdot h^{d-1}=c_{1}(L) \cdot c_{1}(\mathcal{O}(1))^{d-1} \in \mathbb{Z}$
$q:=F . h^{d-1}=c_{1}\left(\mathcal{O}(1) \mid x_{K}\right)^{d-1} \in \mathbb{Z}_{>0}$
$\alpha:=q \cdot \beta-p \cdot F \in \mathbb{Q} \cdot c_{1}(\operatorname{Pic}(X))$

Corollary: For $\beta \in c_{1}(\operatorname{Pic}(X)) \subseteq H^{1,1}(X)$ the following are equivalent:

$$
\text { i) } \beta \in \mathbb{Q} . F, \text { ii) } \beta^{2}=\beta . F=0, \text { iii) } \beta^{2} . h^{d-2}=\beta . F . h^{d-2}=0 \text {. }
$$

Proof: i) \Rightarrow ii) $F . F=\pi^{*}\left(\mu_{C} \cdot \mu_{C}\right)=0$.
ii) \Rightarrow iii) clear
iii) \Rightarrow i) Let $\beta:=c_{1}(L)$.
$p:=\beta \cdot h^{d-1}=c_{1}(L) \cdot c_{1}(\mathcal{O}(1))^{d-1} \in \mathbb{Z}$
$q:=F . h^{d-1}=c_{1}\left(\mathcal{O}(1) \mid x_{K}\right)^{d-1} \in \mathbb{Z}_{>0}$
$\alpha:=q \cdot \beta-p \cdot F \in \mathbb{Q} \cdot c_{1}(\operatorname{Pic}(X))$
α satisfies $\alpha . h^{d-1}=\alpha^{2} . h^{d-2}=0$.

Corollary: For $\beta \in c_{1}(\operatorname{Pic}(X)) \subseteq H^{1,1}(X)$ the following are equivalent:

$$
\text { i) } \beta \in \mathbb{Q} . F, \text { ii) } \beta^{2}=\beta . F=0, \text { iii) } \beta^{2} . h^{d-2}=\beta . F . h^{d-2}=0 \text {. }
$$

Proof: i) \Rightarrow ii) $F . F=\pi^{*}\left(\mu_{C} . \mu_{C}\right)=0$.
ii) \Rightarrow iii) clear
iii) \Rightarrow i) Let $\beta:=c_{1}(L)$.
$p:=\beta \cdot h^{d-1}=c_{1}(L) \cdot c_{1}(\mathcal{O}(1))^{d-1} \in \mathbb{Z}$
$q:=F . h^{d-1}=c_{1}\left(\mathcal{O}(1) \mid x_{K}\right)^{d-1} \in \mathbb{Z}_{>0}$
$\alpha:=q \cdot \beta-p \cdot F \in \mathbb{Q} \cdot c_{1}(\operatorname{Pic}(X))$
α satisfies $\alpha . h^{d-1}=\alpha^{2} . h^{d-2}=0$.
Hence $\alpha=0$ by Hodge index theorem and $\beta=\frac{p}{q} \cdot F$.

Reformulation of Theorem (B): For any $\alpha \in c_{1}(\operatorname{Pic}(X))$

$$
H^{1}(p)(\alpha)=0 \Rightarrow \alpha \in \mathbb{Q} . F .
$$

Reformulation of Theorem (B): For any $\alpha \in c_{1}(\operatorname{Pic}(X))$

$$
H^{1}(p)(\alpha)=0 \Rightarrow \alpha \in \mathbb{Q} \cdot F .
$$

Have exact sequence

$$
H^{1}\left(X, \pi^{*} \Omega_{C / k}\right) \xrightarrow{H^{1}(\iota)} H^{1}\left(X, \Omega_{X / k}\right) \xrightarrow{H^{1}(p)} H^{1}\left(X, \Omega_{X / C}\right) .
$$

Reformulation of Theorem (B): For any $\alpha \in c_{1}(\operatorname{Pic}(X))$

$$
H^{1}(p)(\alpha)=0 \Rightarrow \alpha \in \mathbb{Q} \cdot F .
$$

Have exact sequence

$$
H^{1}\left(X, \pi^{*} \Omega_{C / k}\right) \xrightarrow{H^{1}(t)} H^{1}\left(X, \Omega_{X / k}\right) \xrightarrow{H^{1}(p)} H^{1}\left(X, \Omega_{X / C}\right) .
$$

Corollary \Rightarrow sufficient to show $\alpha . \alpha=\alpha . F=0$.

Reformulation of Theorem (B): For any $\alpha \in c_{1}(\operatorname{Pic}(X))$

$$
H^{1}(p)(\alpha)=0 \Rightarrow \alpha \in \mathbb{Q} \cdot F .
$$

Have exact sequence

$$
H^{1}\left(X, \pi^{*} \Omega_{C / k}\right) \xrightarrow{H^{1}(t)} H^{1}\left(X, \Omega_{X / k}\right) \xrightarrow{H^{1}(p)} H^{1}\left(X, \Omega_{X / C}\right) .
$$

Corollary \Rightarrow sufficient to show $\alpha . \alpha=\alpha . F=0$. This follows from

- the above exact sequence,

Reformulation of Theorem (B): For any $\alpha \in c_{1}(\operatorname{Pic}(X))$

$$
H^{1}(p)(\alpha)=0 \Rightarrow \alpha \in \mathbb{Q} \cdot F .
$$

Have exact sequence

$$
H^{1}\left(X, \pi^{*} \Omega_{C / k}\right) \xrightarrow{H^{1}(t)} H^{1}\left(X, \Omega_{X / k}\right) \xrightarrow{H^{1}(p)} H^{1}\left(X, \Omega_{X / C}\right) .
$$

Corollary \Rightarrow sufficient to show $\alpha . \alpha=\alpha . F=0$. This follows from

- the above exact sequence,
- $F \in \operatorname{im} H^{i}(\iota)$

Reformulation of Theorem (B): For any $\alpha \in c_{1}(\operatorname{Pic}(X))$

$$
H^{1}(p)(\alpha)=0 \Rightarrow \alpha \in \mathbb{Q} \cdot F .
$$

Have exact sequence

$$
H^{1}\left(X, \pi^{*} \Omega_{C / k}\right) \xrightarrow{H^{1}(t)} H^{1}\left(X, \Omega_{X / k}\right) \xrightarrow{H^{1}(p)} H^{1}\left(X, \Omega_{X / C}\right) .
$$

Corollary \Rightarrow sufficient to show $\alpha . \alpha=\alpha . F=0$.
This follows from

- the above exact sequence,
- $F \in \operatorname{im} H^{i}(\iota)$
- the vanishing of products in Hodge cohomology in im $H^{i}(\iota)$

Reformulation of Theorem (B): For any $\alpha \in c_{1}(\operatorname{Pic}(X))$

$$
H^{1}(p)(\alpha)=0 \Rightarrow \alpha \in \mathbb{Q} \cdot F .
$$

Have exact sequence

$$
H^{1}\left(X, \pi^{*} \Omega_{C / k}\right) \xrightarrow{H^{1}(t)} H^{1}\left(X, \Omega_{X / k}\right) \xrightarrow{H^{1}(p)} H^{1}\left(X, \Omega_{X / C}\right) .
$$

Corollary \Rightarrow sufficient to show $\alpha . \alpha=\alpha . F=0$.
This follows from

- the above exact sequence,
- $F \in \operatorname{im} H^{i}(\iota)$
- the vanishing of products in Hodge cohomology in im $H^{i}(\iota)$ as consequence of the vanishing of

$$
\pi^{*} \Omega_{C / k}^{1} \otimes \pi^{*} \Omega_{C / k}^{1} \rightarrow \Omega_{X / k}^{1} \otimes \Omega_{X / k}^{1} \xrightarrow{\wedge} \Omega_{X / k}^{2} .
$$

7 From line bundles to vector bundles

Question: Given a hermitian vector bundle \bar{E} on an arithmetic scheme X. When does $\widehat{a t} t_{X / S}(\bar{E})$ vanish?

7 From line bundles to vector bundles

Question: Given a hermitian vector bundle \bar{E} on an arithmetic scheme X. When does $\widehat{a t} t_{X / S}(\bar{E})$ vanish?

Given a smooth, projective variety X over $\overline{\mathbb{Q}}$ and (E, ∇) a vector bundle with integrable connection over X.

7 From line bundles to vector bundles

Question: Given a hermitian vector bundle \bar{E} on an arithmetic scheme X. When does $\widehat{a t} t_{X / S}(\bar{E})$ vanish?
Given a smooth, projective variety X over $\overline{\mathbb{Q}}$ and (E, ∇) a vector bundle with integrable connection over X. If the monodromy of $\left(E_{\mathbb{C}}, \nabla_{\mathbb{C}}\right)$ is relatively compact/unitary, does it follow that the monodromy is finite?

7 From line bundles to vector bundles

Question: Given a hermitian vector bundle \bar{E} on an arithmetic scheme X. When does $\widehat{a t} t_{X / S}(\bar{E})$ vanish?
Given a smooth, projective variety X over $\overline{\mathbb{Q}}$ and (E, ∇) a vector bundle with integrable connection over X. If the monodromy of $\left(E_{\mathbb{C}}, \nabla_{\mathbb{C}}\right)$ is relatively compact/unitary, does it follow that the monodromy is finite?

- positive: $r k(E)=1$ is OK,

7 From line bundles to vector bundles

Question: Given a hermitian vector bundle \bar{E} on an arithmetic scheme X. When does $\widehat{a t} t_{X / S}(\bar{E})$ vanish?
Given a smooth, projective variety X over $\overline{\mathbb{Q}}$ and (E, ∇) a vector bundle with integrable connection over X. If the monodromy of $\left(E_{\mathbb{C}}, \nabla_{\mathbb{C}}\right)$ is relatively compact/unitary, does it follow that the monodromy is finite?

- positive: $r k(E)=1$ is OK,
- positive: OK for Gauss-Manin systems $\left(R^{n} f_{*} \Omega_{Y / X}, \nabla_{G M}\right)$,

7 From line bundles to vector bundles

Question: Given a hermitian vector bundle \bar{E} on an arithmetic scheme X. When does $\widehat{a t} t_{X / S}(\bar{E})$ vanish?
Given a smooth, projective variety X over $\overline{\mathbb{Q}}$ and (E, ∇) a vector bundle with integrable connection over X. If the monodromy of $\left(E_{\mathbb{C}}, \nabla_{\mathbb{C}}\right)$ is relatively compact/unitary, does it follow that the monodromy is finite?

- positive: $r k(E)=1$ is OK,
- positive: OK for Gauss-Manin systems $\left(R^{n} f_{*} \Omega_{Y / X}, \nabla_{G M}\right)$,
- positive: OK for certain Shimura varieties X,

7 From line bundles to vector bundles

Question: Given a hermitian vector bundle \bar{E} on an arithmetic scheme X. When does $\widehat{a t} t_{X / S}(\bar{E})$ vanish?
Given a smooth, projective variety X over $\overline{\mathbb{Q}}$ and (E, ∇) a vector bundle with integrable connection over X. If the monodromy of $\left(E_{\mathbb{C}}, \nabla_{\mathbb{C}}\right)$ is relatively compact/unitary, does it follow that the monodromy is finite?

- positive: $r k(E)=1$ is OK,
- positive: OK for Gauss-Manin systems $\left(R^{n} f_{*} \Omega_{Y / X}, \nabla_{G M}\right)$,
- positive: OK for certain Shimura varieties X,
- negative (?): theory of conformal blocks.

Thank you for your attention!

