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1 Line bundles with connections

k a field of characteristic zero
X a smooth, projective, geometrically connected variety
over k
E a vector bundle over X

Consider
X ∆−→ X ×k X
↓ ↗ ↓pri

X (1)
∆

qi−→ X .

Define OX -module of principal parts or 1-jets of E as

P1
X/k (E) = q1∗q∗2E = E ⊕ (Ω1

X/k ⊗ E)

with OX -module structure λ · [e, ω] = [λ · e, λ · ω − dλ⊗ e].
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We obtain the Atiyah extension

AtX/k (E) : 0→ Ω1
X/k ⊗ E → P1

X/k (E)→ E → 0.

There is a 1-1-correspondence{
connections

∇ : E → Ω1
X/k ⊗ E

}
←→

{
OX -linear splittings

s : E → P1
X/k (E)

}
mapping ∇ to splitting s∇ : e 7→ [e,−∇(e)].
Hence the Atiyah class

atX/k (E) ∈ Ext1OX
(E ,Ω1

X/k ⊗ E) = H1(X ,Ω1
X/k ⊗ End(E))

is an obstruction to the existence of a connection on E .
If k = C we may apply GAGA to holomorphic connections on EC
over X (C).
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Define first Chern class of a line bundle L on X as

c1(L) := atX/k (L) ∈ H1(X ,Ω1
X/k ) = ’Hodge cohomology’

Well known fact:

c1(L) = 0 ⇔ ∃n > 0 s.t. L⊗n algebraically equiv. to zero.

If k = C this is furthermore equivalent to

c1(LC) = 0 in H2(X (C),Q).

In this case LC carries up to multiplication by R>0 unique
hermitian metric ‖.‖ with curvature zero. Let ∇L denote the
Chern connection on LC (i.e. ∇L is the unique unitary
connection which is compatible with the complex structure).
Let ∇u

L denote the (1,0)-part of ∇L.
Observe: ∇u

L is holomorphic and algebraizes by GAGA.
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2 The main theorems

Theorem (A): Consider
Q ↪→ Q ↪→ C,

X a smooth, projective, connected variety over Q,
L a line bundle on X ,
∇ : L→ ΩX/Q ⊗ L a connection (⇒ c1(L) = 0).

If the monodromy of ∇ is unitary (i.e. if ∇C = ∇u
L) there exists

n > 0 such that
(L,∇)⊗n ∼= (OX ,d).

K. Künnemann (joint work with J.-B. Bost) Line bundles with connections ... 23. Oktober 2008 6 / 25



2 The main theorems

Theorem (A): Consider
Q ↪→ Q ↪→ C,
X a smooth, projective, connected variety over Q,

L a line bundle on X ,
∇ : L→ ΩX/Q ⊗ L a connection (⇒ c1(L) = 0).

If the monodromy of ∇ is unitary (i.e. if ∇C = ∇u
L) there exists

n > 0 such that
(L,∇)⊗n ∼= (OX ,d).

K. Künnemann (joint work with J.-B. Bost) Line bundles with connections ... 23. Oktober 2008 6 / 25



2 The main theorems

Theorem (A): Consider
Q ↪→ Q ↪→ C,
X a smooth, projective, connected variety over Q,
L a line bundle on X ,

∇ : L→ ΩX/Q ⊗ L a connection (⇒ c1(L) = 0).
If the monodromy of ∇ is unitary (i.e. if ∇C = ∇u

L) there exists
n > 0 such that

(L,∇)⊗n ∼= (OX ,d).

K. Künnemann (joint work with J.-B. Bost) Line bundles with connections ... 23. Oktober 2008 6 / 25



2 The main theorems

Theorem (A): Consider
Q ↪→ Q ↪→ C,
X a smooth, projective, connected variety over Q,
L a line bundle on X ,
∇ : L→ ΩX/Q ⊗ L a connection

(⇒ c1(L) = 0).
If the monodromy of ∇ is unitary (i.e. if ∇C = ∇u

L) there exists
n > 0 such that

(L,∇)⊗n ∼= (OX ,d).

K. Künnemann (joint work with J.-B. Bost) Line bundles with connections ... 23. Oktober 2008 6 / 25



2 The main theorems

Theorem (A): Consider
Q ↪→ Q ↪→ C,
X a smooth, projective, connected variety over Q,
L a line bundle on X ,
∇ : L→ ΩX/Q ⊗ L a connection (⇒ c1(L) = 0).

If the monodromy of ∇ is unitary (i.e. if ∇C = ∇u
L) there exists

n > 0 such that
(L,∇)⊗n ∼= (OX ,d).

K. Künnemann (joint work with J.-B. Bost) Line bundles with connections ... 23. Oktober 2008 6 / 25



2 The main theorems

Theorem (A): Consider
Q ↪→ Q ↪→ C,
X a smooth, projective, connected variety over Q,
L a line bundle on X ,
∇ : L→ ΩX/Q ⊗ L a connection (⇒ c1(L) = 0).

If the monodromy of ∇ is unitary (i.e. if ∇C = ∇u
L)

there exists
n > 0 such that

(L,∇)⊗n ∼= (OX ,d).

K. Künnemann (joint work with J.-B. Bost) Line bundles with connections ... 23. Oktober 2008 6 / 25



2 The main theorems

Theorem (A): Consider
Q ↪→ Q ↪→ C,
X a smooth, projective, connected variety over Q,
L a line bundle on X ,
∇ : L→ ΩX/Q ⊗ L a connection (⇒ c1(L) = 0).

If the monodromy of ∇ is unitary (i.e. if ∇C = ∇u
L) there exists

n > 0 such that
(L,∇)⊗n ∼= (OX ,d).

K. Künnemann (joint work with J.-B. Bost) Line bundles with connections ... 23. Oktober 2008 6 / 25



Let X , k be as in section 1,

C a smooth, projective, geometrically connected k -curve,
π : X → C a flat k -morphism with geom. connected fibers,
K = κ(C) function field, XK = X ×C Spec K ,
L a line bundle on X with relative Atiyah extension

AtX/C(L) : 0→ Ω1
X/C ⊗ L→ P1

X/C(L)→ L→ 0

where L·X/C
∼→ Ω1

X/C.

Theorem (B): atX/C(L) = 0 in H1(X ,Ω1
X/C) if and only if there

exist n > 0 and a line bundle M on C such that L⊗n ⊗ π∗M is
algebraically equivalent to zero.
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3 Remarks on Theorem (A):

The following example shows that the projectivity assumption in
Theorem (A) is necessary:

X := P1
Q \ {a1, . . . ,ar ,∞} , a1, . . . ,an ∈ Q,

L := OX , ∇ := d +
r∑

j=1

λj
z−aj

dz , λ1, . . . , λn ∈ Q

defined over Q,
image of monodromy is

exp
{

2πi
n∑

j=1

Z · λj
}
⊆ C∗

unitary (i.e. ⊆ U(1)) if λ1, . . . , λn ∈ R ∩Q,
but infinite if there is one λj ∈ Q \Q.
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Our motivation for Theorem (A) comes from the theory of
arithmetic extension groups:

Let (R,Σ,F∞) be an arithmetic ring, for example

a)(K , {σ : K ↪→ C}), or b)(OK [1/N], {σ : K ↪→ C}),

where K is a number field. Let X be a smooth, projective
scheme over S = Spec R with geometrically connected fibers.
An arithmetic extension (E , s) over X is given by extension of
OX -modules

E : 0→ G→ E → F → 0

with a C∞-splitting s : FC → EC over XΣ(C) =
∐

σ∈Σ Xσ(C).

Êxt
1
X (F ,G) :=

{
arithmetic extensions of F by G

}
/ ∼ .

Group structure from ’Baer sum’ or homological algebra.
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Arithmetic Atiyah extension:

To hermitian vector bundle
E = (E , ‖.‖) on X associate Chern connection ∇E on EC and

âtX/S(E) = (AtX/S(E), s∇1,0
E

) ∈ Êxt
1
(E ,Ω1

X/S ⊗ E).

Get a group homomorphism

ĉH
1 : P̂ic(X )→ Êxt

1
(OX ,Ω

1
X/S) , [L] 7→ âtX/S(L)

with im
(
π∗ : P̂ic(S)→ P̂ic(X )

)
⊆ ker

(
ĉH

1

)
.

Corollary to Theorem (A):

ker (̂cH
1 )
/

im (π∗)

is a finite group in situation a) and b).
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1
(OX ,Ω

1
X/S) , [L] 7→ âtX/S(L)
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Theorem (A) and rational points of the universal vector
extension of Pic0

X/k :

In the situation of Theorem (A) the Picard variety B := Pic0
X/k

classifies line bundles L on X algebraically equivalent to zero.
The universal vector extension B# = Pic0#

X/k of B classifies line
bundles L as above equipped with an integrable connection ∇.
It fits into an extension

0→ Γ(X ,ΩX/Q)→ B# → B → 0.

After base change to C this becomes (X = X (C))

0→ Γ(X ,ΩX/C)→ H1(X ,C)

H1(X ,2πiZ)
→ H1(X ,OX )

H1(X ,2πiZ)
→ 0

(use the exponential sequence).
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The maximal compact subgroup

K :=
H1(X ,2πiR)

H1(X ,2πiZ)
⊆ B#(C) =

H1(X ,C)

H1(X ,2πiZ)

exp→ H1(X ,C∗)

yields elements in H1(X ,U(1)), i.e. local systems of rank one
with unitary monodromy.

This allows the following reformulation of Theorem (A):

Theorem (A’): In the above situation

B#(Q) ∩ K = B#(Q)torsion.

Theorem (A’) was conjectured by D. Bertrand and proved if B is
defined over Q ∩ R and admits ’real multiplication’.
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4 Proof of Theorem (A)

Put A := Alb X := (Pic0
X/Q)∨.

Biduality gives B := Pic0
X/Q = Pic0

A/Q.

Thm (A) holds for X ⇔ Thm (A’) holds for B
⇔ Thm (A) holds for A.

Hence may assume w.l.o.g. X = A is abelian variety.

Let L be a line bundle over A which admits a connection ∇.

Then ∇ is integrable and L is algebraically equivalent to zero
(use Pic0

A/Q = PicτA/Q).

Assume ∇C = ∇u
L and fix a rigidification ϕ : Q ∼→ Le.
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Gm-torsor L× associated with L defines extension of Q-algebraic
groups (use Theorem of the square)

0→ Gm
ϕ→ L× p→ A→ 0

and of Lie algebras

0→ Ga
Lie ϕ→ Lie L× Lie p→ Lie A→ 0.

Have canonical bijections{
connections

on L

}
←→

{
Gm-equiv. splittings of

Dp : TL× → p∗TA

}
←→

{
L×-equiv. splittings of

Dp : TL× → p∗TA

}
←→

{
Q-linear splittings

Σ : Lie A→ Lie L× of Lie p

}
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Theorem (Schneider-Lang): Let G be a commutative algebraic
group over Q with exponential map

expG : Lie GC → G(C).

Let V ⊆ Lie G be a Q-sub vector space and (v1, . . . , vn) be a
C-basis of VC such that

expG(vi) ∈ G(Q) for I = 1, . . . ,n.

Then there exists a Q-algebraic subgroup H in G such that
Lie H = V .

Nowadays consequence of more general theorems by Bombieri
and Wüstholz.
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Corollary: Let
A be g-dimensional abelian variety over Q,

ΓA := ker expA
∼= π1(A(C),0),

(L,∇) a line bundle with connection on A,
ρ∇ : ΓA → C∗ associated monodromy representation.

If there exist C-linear independant elements (γ1, . . . , γg) in ΓA

such that
ρ(γi) ∈ Q∗ for i = 1, . . . ,g

then there exists n > 0 such that

(L,∇)⊗n ∼= (OX ,d).
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Proof of the Corollary:

Apply the Theorem of Schneider-Lang to
V := Σ(Lie A) where Σ : Lie A→ Lie L× corr. to ∇
n := g, vi = Σ(γi).

Observe that
ρ = expL× ◦Σ|ΓA .

Schneider-Lang yields subgroup H ↪→ L× such that Lie H = V .

Hence the map π : H ↪→ L× → A is etale and an isogeny of
abelian varieties.

By construction
π∗(L,∇) ∼= (OX ,d)

and we can choose n := deg (π).
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Proof of Theorem (A), conclusion via ’Weil restriction’:

Define A− and (L−,∇−) by base change with respect to complex
conjugation Q→ Q, z 7→ z. Put

B := A× A− , (M,∇M) := (L,∇) � (L−,∇L−).

Get C-antilinear map j : Lie A→ Lie A− with j(ΓA) = ΓA−.
Consider

∆ : ΓA → ΓB = ΓA × ΓA− , γ 7→ (γ, j(γ))

As ∇C = ∇u
L is unitary and ρ∇−(j(γ)) = ρ∇(γ), we get

ρ∇M (∆(γ)) = ρ∇(γ) · ρ∇−(j(γ)) = |ρ∇(γ)|2 = 1.

ΓA contains R-basis of Lie AC ⇒ ∆(ΓA) contains C-basis of
Lie BC.
Corollary⇒ (M,∇M) and (L,∇L) = (M,∇M)|A×e are torsion.
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Define A− and (L−,∇−) by base change with respect to complex
conjugation Q→ Q, z 7→ z. Put

B := A× A− , (M,∇M) := (L,∇) � (L−,∇L−).

Get C-antilinear map j : Lie A→ Lie A− with j(ΓA) = ΓA−.
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∆ : ΓA → ΓB = ΓA × ΓA− , γ 7→ (γ, j(γ))

As ∇C = ∇u
L is unitary and ρ∇−(j(γ)) = ρ∇(γ), we get
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5 A remark on Theorem (B)
We say that abelian variety Pic0

XK /K has no fixed part if

HomK (A⊗k K ,Pic0
XK /K ) = 0.

for any abelian variety A over k .

Equivalent to

π∗ : Pic0
C/k → Pic0

X/k

being an isogeny or to the bijectivity of the map

π∗ : H1(C,OC)→ H1(X ,OX ).

If we assume in the situation of Theorem (B) that Pic0
XK /K has no

fixed part, Theorem (B) gives:
atX/C(L) = 0 in H1(X ,Ω1

X/C) if and only if there exist n > 0 and a
line bundle M on C s.t. L⊗n ∼= π∗M.
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6 Proof of Theorem (B):

Let X be a projective,smooth, connected variety over k ,
d := dim X ≥ 2, and O(1) very ample on X .

Hodge cohomology: Hp,q(X ) := Hp(X ,Ωq
X/k ),

⊕p,q≥0Hp,q(X ) (k-algebra),
trX/k : Hd ,d (X )

∼→ k (trace),
c1 : Pic (X )→ H1,1(X ), [L] 7→ atX/kL (1st Chern class)

Define µX ∈ Hd ,d (X ) by trX/k (µX ) = 1 and h := c1(O(1)).

Consequence of the Hodge index theorem: For any
α ∈ Q · c1(Pic X ) ⊆ H1,1(X ), we have

α = 0⇔ α.hd−1 = 0 ∧ α2.hd−1 = 0.
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Consider π : X → C as in Theorem (B).

Have

0→ π∗Ω1
C/k

ι→ Ω1
X/k

p→ Ω1
X/C → 0,

and for any line bundle L on X
atX/k L ∈ H1,1(X ) := H1(X ,Ω1

X/k ),

atX/C L = H1(p)(atX/k L) ∈ H1(X ,Ω1
X/C).

For any effective divisor E on C

F := π∗µC =
1

deg E
c1(π∗O(E)) ∈ H1,1(X ).
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Corollary: For β ∈ c1(Pic(X )) ⊆ H1,1(X ) the following are
equivalent:

i) β ∈ Q.F , ii) β2 = β.F = 0, iii) β2.hd−2 = β.F .hd−2 = 0.

Proof: i)⇒ ii) F .F = π∗(µC .µC) = 0.
ii)⇒ iii) clear
iii)⇒ i) Let β := c1(L).

p := β.hd−1 = c1(L).c1(O(1))d−1 ∈ Z

q := F .hd−1 = c1(O(1)|XK )d−1 ∈ Z>0

α := q · β − p · F ∈ Q · c1(Pic(X ))

α satisfies α.hd−1 = α2.hd−2 = 0.

Hence α = 0 by Hodge index theorem and β = p
q · F .
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Reformulation of Theorem (B): For any α ∈ c1(Pic (X ))

H1(p)(α) = 0⇒ α ∈ Q.F .

Have exact sequence

H1(X , π∗ΩC/k )
H1(ι)−→ H1(X ,ΩX/k )

H1(p)−→ H1(X ,ΩX/C).

Corollary⇒ sufficient to show α.α = α.F = 0.
This follows from

the above exact sequence,
F ∈ im H i(ι)

the vanishing of products in Hodge cohomology in im H i(ι)
as consequence of the vanishing of

π∗Ω1
C/k ⊗ π∗Ω1

C/k → Ω1
X/k ⊗ Ω1

X/k
∧→ Ω2

X/k .
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7 From line bundles to vector bundles

Question: Given a hermitian vector bundle E on an arithmetic
scheme X . When does âtX/S(E) vanish?

Given a smooth, projective variety X over Q and (E ,∇) a vector
bundle with integrable connection over X . If the monodromy of
(EC,∇C) is relatively compact/unitary, does it follow that the
monodromy is finite?

positive: rk(E) = 1 is OK,
positive: OK for Gauss-Manin systems (Rnf∗Ω·Y/X ,∇GM),
positive: OK for certain Shimura varieties X ,
negative (?): theory of conformal blocks.
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Thank you for your attention!
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