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Rationality of formal power series

Let a formal power series f =
∞∑
n=0

anxn be given.

How to decide if it is the Taylor expansion of a rational
function ?

We search for a criterion of an arithmetic nature :
1 we assume that the coefficients an lie in a number field ;
2 we impose arithmetic conditions on the coefficients (e.g.,

that they are algebraic integers) ;
3 geometric conditions on the analytic behaviour (radius

of convergence, of meromorphy), possibly at all places
of the number field.
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The theorem of Borel-Dwork-Pólya-Bertrandias

Theorem
Let F be a number field, let f ∈ F [[x−1]].
Assumptions :

1 the coefficients of f are S-integral for a finite set S of finite
primes in F;

2 for any place v ∈ S, f defines a meromorphic function on
the complement of a bounded subset Kv of Cv .

3 the product of the transfinite diameters of the Kv is
smaller than 1.

Then f is a rational function.
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Transfinite diameter

The transfinite diameter of a bounded metric space (X ,d) is
the limit tdiam(X) of the decreasing sequence (dn) defined
by

dn =

 sup
(x1,...,xn)∈Xn

∏
i 6=j

d(xi , xj)

1/n(n−1)

.

Examples :
disk in a valued field : tdiam = radius ;
lemniscate : {|P(z)| 6 1} in a valued field, P = adzd + . . . :
tdiam = |ad |−1/d ;
segment in C : tdiam = length/4;
compact subset in C : tdiam = capacity with respect to
the point at infinity.
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The theorem of BDPB
History and applications

1 É. Borel, 1894, Sur une application d’un théorème de
M. Hadamard. f ∈ Z[[1/x ]], Kv = D(0, r), r < 1.

2 G. Pólya, 1928, Über notwendige Determinantenkriterien
für die Fortsetzbarkeit einer Potenzreihe.

3 B. Dwork, 1960, On the rationality of the zeta function of
an algebraic variety.
⇒ If V is an algebraic variety over a finite field Fq, then its

zeta function ζV (t) = exp

∑
n>1

#V (Fqn)
tn
n

 is a rational

function.
4 F. Bertrandias, 1963, see Y. Amice’s book Les nombres

p-adiques.
5 D. Cantor, 1980, R. Rumely, 1989.
6 J-P. Bézivin, P. Robba, 1989 : New proof of the theorem of

Lindemann-Weierstrass.
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The theorem of BDPW
Remarks

1 If f is holomorphic, this is easy. For example consider
f ∈ Z[[x ]], holomorphic on D(0, r), with r > 1.
Write f =

∑anxn.
By Cauchy inequalities, |an| 6 M/rn goes to 0.
Since an ∈ Z, an = 0 for n� 0 : f is a polynomial.

2 In some cases, one can prove that f is rational when∏ tdiam(Kv) = 1, if one assumes moreover that f is
algebraic.
D. Harbater : Kv = D(0, rv).

3 However : f =
√
1− 4/x ∈ Z[[x ]]. Two ramification points,

in 0 and 4, one can extends f to a holomorphic function
outside the interval K = [0, 4]. One has tdiam(K ) = 1 but f
is not rational.
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The theorem of BDPB
Proofs

1 Original proof : establish the vanishing of appropriate
Hankel/Kronecker determinants.
Using analytical properties of f , show that they satisfy∏

v |D|v < 1.
By the product formula, D = 0.

2 In his book G-functions and geometry (1989), Y. André
gives a similar criterion for algebraicity/rationality, based
on classical diophantine approximation techniques.

3 Small variation : In my Bourbaki Seminar (2001) about the
work of Chudnovsky, André and Bost, proof of those
criteria using the formalism of Arakelov geometry and
Bost’s slope inequality.

“Even if all rationality proofs rely on proving the vanishing of the
KN(a) [Kronecker determinants] , the form of the criteria may
well disguise that fact.” A. van der Poorten
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Our main theorem
Consider an algebraic curve C over a number field F , a point
o ∈ C(F) and a formal function f ∈ ÔC,o at the point o .
Assume that at all places v of F , f is induced by an
meromorphic function on a v-adic open subset Ωv of C ⊗ Fv .
Conclusion : if the global capacity of the family (Ωv) is at
most 1, then f comes from a meromorphic function on C.

The measure of the size of the Ωv relies on capacity theory for
algebraic curves — generalization of the product of the
transfinite diameters.

Proof in two steps :
1 f is algebraic. This part uses diophantine approximation

(in the dialect of Arakelov geometry and slopes).
2 f is rational. This part uses the Hodge index theorem in

Arakelov geometry.
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The complex case
Let M be a Riemann surface, compact, connected
K ⊂ M a compact subset, Ω = {K , P ∈ Ω.
There is a unique potential gK : Ω→ R such that

1 gK is harmonic on Ω \ {P};
2 for nearly every x ∈ ∂K , limz→x gK (z) = 0;
3 if t is a local coordinate around P, then

gK = − log(cK |t − t(P)|) + o(1).

The real number cK is the capacity of K with respect to P; it
depends on the choice of t .
On the complex line TPM, the hermitian norm defined by∥∥∥∥ ∂∂t

∥∥∥∥ = cK

does not depend on any choice : capacitary norm on TPM.
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The p-adic case (after Rumely)
Let M be a projective smooth connected curve over a
p-adic field F , K ⊂ M an affinoid, Ω = {K , P ∈ Ω.
There is a full potential theory on M (R. Rumely, A. Thuillier).
Easier definition (inspired by Rumely’s theory and a theorem
of Fresnel/Matignon) relying on the following Theorem :
Theorem
If Ω is connected, there is a rational function f ∈ F(M) regular
outside P such that K = {x , |f (x)| 6 1}.

Let d be the order of f at the point P;
then gK := 1

d max(log |f | , 0) is the analogue of the potential.
If t is a local coordinate around P, define the capacity cK
such that

gK = − log(cK |t − t(P)|) + o(1)

and the capacitary norm on TPM by
∥∥∥∥ ∂∂t

∥∥∥∥ = cK .
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Global capacity

Let M be an algebraic curve over a number field F , P ∈ M(F).
For all places v choose a compact/affinoid subset Kv of the
analytic curve over Fv such that P 6∈ Kv .
Assume that there is a rational function on M defining Kv for
almost all finite places v .

Definition
The global capacity is the real number defined by

logcap((Kv);P) =
1

[F : Q]

∑
v

log
∥∥∥∥ ∂∂t

∥∥∥∥
v

= − d̂eg(TPM, ‖·‖cap).

(The product formula implies that it does not depend on a
chosen local parameter t ∈ OM,P on M.)

Capacity theory on algebraic curves. p. 13



Statement of the main rationality theorem

Keep M, P, (Kv) as above.

Theorem
Let f ∈ ÔM,P be a formal function around P.
Assume

1 “the denominators of the coefficients of the Taylor
expansion of f are divisible by only finitely many prime
numbers”;

2 for any place v, f defines a v-adic meromorphic function
outside Kv ;

3 cap((Kv);P) < 1.
Then f comes from a rational function on M.
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Examples

The simplest example is that of the projective line. Our
theorem generalizes the classical results of
Borel-Dwork-Pólya-Bertrandias.

Borel-Dwork : F = Q, M = P1, P = 0, t = usual coordinate.
Take Kv = D(0,Rv), with Rv = 1 for almost all v . Then
cKv = 1/Rv and cap((Kv);P) = (

∏Rv)−1.
Pólya-Bertrandias : M = P1 (say over Q), P =∞,
t = 1/usual coordinate.
Let Kv be an compact/affinoid subset of P1(Cv), then cKv
is its transfinite diameter.

The theorem extends readily to more general subsets than
affinoid provided that the product of their “outer capacities”
is less than 1.
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Diophantine approximation vs. Slope inequalities

We prove that f is algebraic using diophantine
approximation. In principle, we find a “small” polynomial P in
two variables such that P(x , f (x)) vanishes with so high order
at P that it must vanish everywhere.
We use however the method of slopes inequalities in
Arakelov geometry due to J.-B. Bost.
The general idea consists in proving the algebraicity of a
suitable formal subscheme:

in (Bost, 2001) : formal leaf of a foliation
here: formal graph of f in X = ×P1 at the point (P, f (P)).
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Slope inequality
We need to algebraize the formal graph (V̂ ,o) of f
in X = M × P1 at o = (P, f (P)).
Let L be an ample line bundle on X with an adelic metric.
Spaces of sections ED = Γ(X , L⊗D) with L2/sup norms.
Algebraicity of V̂ means non-injectivity of the restriction map
ED → Γ(V̂ , LD). Assume injectivity.
The filtration of Γ(V̂ , LD) by Γ(V̂ ,mi

oLD) induces a filtration of ED
by subspaces E i

D.
The ith jet is a morphism

ϕi
D : E i

D → Γ(o,mi
oLD) = Si(Ω1

oV̂ )⊗ L⊗D|o
with kernel E i+1

D .
Slope inequality :

d̂eg ED 6
∑
i
rkϕi

D
(
d̂eg(SiT ∗PM) + D d̂eg(L|o) + h(ϕi

D)
)
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Estimates
Slope inequality

d̂eg ED 6
∑
i
rkϕi

D
(
d̂eg(SiT ∗PM) + D d̂eg(L|o) + h(ϕi

D)
)

The contradiction is obtained by inserting in this inequality
general estimates in Arakelov Geometry :

(rough) arithmetic Hilbert-Samuel formula :

d̂eg ED > −c1D3

arithmetic degrees of symmetric powers :

d̂eg(SiT ∗PM) = i d̂eg T ∗PM

height of evaluation morphisms (Schwarz lemma) :

h(ϕi
D) + i d̂eg T ∗PM 6 i logcap((Kv);P)
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The Schwarz lemma

The height of the evaluation morphisms are estimated using
the Schwarz lemma, a central analytic tool in classical
diophantine approximation.
Here, it goes as follows : Assume Kv = {x , |f (x)|v 6 1}, f having
a pole of order d at P, Ωv = {Kv , t a local parameter at P.
Let ϕ be holomorphic and bounded on Ω, vanishing at order i
at P; write ϕ = ait i + . . . around P.
The function θ(x) = f (x)iϕ(x)d is regular on Ωv \ {P}, at P, and
bounded by ‖ϕ‖dΩ at the “boundary” of Ω.
By the maximum principle :

|θ(P)|v = c−diK |ai |d 6 ‖ϕ‖dΩ ,

hence |ai |v 6 ci
K ‖ϕ‖Ω.
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A general algebraization criterion
General result of algebraization of a formal smooth
curve (V̂ ,o) in a quasi-projective variety over a number field.

Theorem
If V̂ is A-analytic and d̂eg(ToV̂ , (‖·‖canv )) > 0, then V̂ is
algebraic.

Key concepts :
1 canonical v-adic semi-norms on ToV̂ defined using the

norms of the maps ϕi
D. Namely, for u ∈ ToV̂ , one sets

‖u‖canv = lim sup
i
D→∞

sup
s∈E i

D
‖s‖v61

∥∥ 〈ϕi
D(s),u⊗i〉︸ ︷︷ ︸
∈L⊗D

o

∥∥1/i

2 generalized Arakelov degree d̂eg(ToV̂ , (‖·‖canv ))
3 global notion of A-analyticity based on the v-adic sizes

of V̂
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The picture

We know that f is algebraic.
Let M′ be the normalization the Zariski closure of its graph
in M × P1. It is an algebraic curve with a morphism π : M′ → M
and sections defined on Ωv .
Under the assumption that the global
capacity cap((Kv);P) < 1, we need to prove that π is an
isomorphism.

The point P corresponds to a line bundle O(P), which one
endows with the metrics defined by the potentials gKv —
“v-adic Green functions”.
Its first arithmetic Chern class ĉ1(O(P), ‖·‖cap) can be defined
as an object of ĈH1(M), Bost’s Arakelov-Chow group with
L21-regularity on an adequate modelM of M.
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Positivity of an Arakelov divisor
Lemma
The Arakelov divisor class ĉ1(O(P), ‖·‖cap) is nef and big.

By the very construction of potential Green functions, this
class intersects nonnegatively :

vertical divisors inM (at finite or infinite places);
horizontal effective divisors inM whose trace on M is not
equal to P.

Consequently, this Arakelov divisor class is nef if and only if its
self intersection is nonnegative.
In fact, under the assumptions of the theorem, one has the
equality

ĉ1(O(P), ‖·‖cap)2 = d̂eg(TPM, ‖·‖cap) = − logcap((Kv);P) > 0,

so that this class is big.
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Construction of positive classes on M ′

Let P̂ = ĉ1(O(P), ‖·‖cap).
We decompose π∗O(P) as O(E1)⊗O(E2),
where E1 = f (P) and E2 is an effective divisor on M′ disjoint
from E2.
Similarly, we decompose π−1(Ωv) = Ω1,v t Ω2,v where
Ω1,v = fv(Ωv).
This induces a decomposition

π∗P̂ = Ê1 + Ê2,

in the Arakelov-Chow group ĈH1(M′) of an adequate model
ofM′.
This decomposition is orthogonal reflecting the fact that the
potential Green functions of E1 and E2 have disjoint supports.
Moreover, π∗P̂ is big and nef.

Rationality. p. 25



Application of the Hodge index theorem
Recall :

π∗P̂ = Ê1 + Ê2 is big and nef
ĉ1(Ê1)ĉ1(Ê2) = 0.

Since P̂ is nef and Ê1 is effective,

0 6 ĉ1(P̂) · π∗ĉ1(Ê1) = π∗ĉ1(P̂) · ĉ1(Ê1) = ĉ1(Ê1)2.

Similarly ĉ1(Ê2)2 > 0.
Consequently, the quadratic form

q(x , y) = (xĉ1(Ê1) + yĉ1(Ê2))2 = x2ĉ1(Ê1)2 + y2ĉ1(Ê2)2

is nonnegative and the Hodge index theorem in Arakelov
geometry implies that ĉ1(Ê1) and ĉ1(Ê2) are proportional.
Since they are orthogonal and their sum is big, one of them is
zero, hence Ê2 = 0.
This implies π∗P̂ = Ê1, hence deg(π) = 1.
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Modular forms and overcovergent modular forms
A modular form of level N, weight k is a rule

(E/S, αN) ↪→ f (E/S, αN) ∈ ω⊗kE/S

where S is a scheme, E/S is an elliptic curve, αN a level N
structure, which commutes with base change.

An overconvergent modular form of growth condition r is a
similar rule which is only defined on the p-adic subset of the
modular curve obtained by removing supersingular disks of
radius |r | around singular moduli.
Using the fact that the Eisenstein series Ep−1 lifts the Hasse
invariant if p > 3, N. Katz defines them in Anvers III as a rule

(E/S, αN ,Y ) ↪→ f (E/S, αN ,Y ) ∈ ω⊗kE/S

where E/S is an elliptic curve, αN a level N structure, and
Y ∈ ω1−p

E/S satisfies YEp−1(E/S) = r , which commutes with base
change.
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Application to modular forms
Theorem
Let F be a number field, oF its ring of integers.
Let f ∈ oF [[q]] and assume :

for any embedding σ : F ↪→ C, the radius of convergence
of fσ ∈ C[[q]] is at least 1;
at some finite place v, f extends to an overconvergent
modular form of level N, weight k.

Then f is algebraic.
If, moreover, the growth condition r of f satisfies
|r |p < e−2π[F :Q]/N , then f is a true modular form.

The proof is an application of our general criteria, together
with two computations :

injectivity radius of the uniformization map (mod.
parabolic elements) aroung the cusp at infinity;
capacity of the supersingular disks.
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