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The decimation problem

let A € Z(mod p) \ {0} and (d,p — 1) = 1, p an odd prime. Then
z — Az® induces a permutation 74 4 Of Z(mod p). Consider

Even :={0,2,4,...,p—1}C{0,1,2,3,...,p— 1} = Z (mod p).
Then the question is to determine all cases in which 7 4(Even) = Even.

We may assume that (d,A) = (1,1)and 1 < d < p/2.

The following conjecture is due to Goresky and Kappler.
Conjecture GK The only cases in which 7y 4(Even) = Even and 1 <
d < p/2 are

(p7 d7 A) — (57 37 3)7 (77 175)7 (117 97 3)7 (11737 7)7 (11757 9)7 (137 175)'
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The conjecture has been verified numerically for p < 2 x 10° and re-
cently (preprint 2008) proved for p > 2.26 x 10°> by Bourgain, Cochrane,
Paulhus, and Pinner,



A reformulation

The problem is equivalent to showing that the equation
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in Z(mod p) x Z(mod p) has a solution in the box

B:{L”wgii}x{L”wglgk
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If not, then

has no solutions.

This appears to be very unlikely because on average one expects

B 1
P2~ 4P

solutions.



The Fourier method

The study of the number of solutions of (az, bx%) € B for a general box B
Is easily reduced to the question of bounds for

S(u,v) = > ep(auazd + vx)

x€Z (mod p)
with ep(x) = e2™%/P and u,v € Z (mod p) not both O.

If

. p
S(u,v) = O((Iog p)2>

then one can prove the asymptotic formula

51

p

By Weil estimate, |S(u,v)| < (d—1),/p. Thus the real difficulties occur if
d > \/p/(log p)?.

‘(a:v,b:cd) S B‘ ~



The Sum-Product Method
A new combinatorial method for studying the general exponential sum

S = Z ep( 27“: aiazdi)

xeZ (mod p) 1=1
has been introduced by Bourgain uses the sum—product theorem: There
is an absolute constant § > 0 such thatif A C Z(mod p) then

max(|A + Al,|A - A]) > min (p,|A]*1?).
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A new combinatorial method for studying the general exponential sum

S = Z ep( 27“: aiazdi)

xeZ (mod p) 1=1
has been introduced by Bourgain uses the sum—product theorem: There
is an absolute constant § > 0 such thatif A C Z(mod p) then

max(|A + Al,|A - A]) > min (p,|A]*1?).

Proposition 1. Givenr € Nand e > 0O, thereare 6 > 0 and C, depending
only on » and &, with the following property. If p > C is a prime and
1<dy <---<dr <p—1 satisfy

(dip—1) <pt™® (1<i<r)
(di —dj,p—1)<p'™ (Q1<j<i<r)
then for (a1,...,ar) € (Z(mod p))" \ {0} it holds

Z ep (almdl + ..+ ara:dr> 1-0,

xeZ (mod p)

<p




Solution of the decimation problem for large P

This solves the decimation problem for large p provided

(d—1,p—1) <p'=

In order to deal with the remaining case, note thatif (d—1,p—1) > pl—¢
then z¢ and z are correlated in the sense that z¢ = zu(mod p) where
u' =1 (mod p) witht = (d—1)/(d—1,p—1) < p¢. Now write x = y'z
and get (z, Az%) = (ytz, Aytz®). When varying y and z (not 0), each z
occurs exactly p — 1 times, counting multiplicities.

Let B be a box (mod p) with sides of length Ny, N». For fixed z
and varying y, the Fourier method shows that the number of solutions of
(ytz, Aytz%) € Bis ~ N1No/p (as expected), provided uz 4+ vAz®% £ 0
for |u| < p°, |v] < p°, with (u,v) # (0, 0).

An elementary counting of the exceptional z now yields for some § =
d(e) > 0O the lower bound

2t \N1N _
‘(:U,Aaid)GB‘ > (1_p—1) lp 2—I—O(pl 5).




The main result

Theorem 1. Given r > 2 and € > O there are B = B(r,e) > 0,
¢c = c¢(r,e) > 0, § = 6(r,e) > 0, such that the following holds. Let
1 <dy <---<dr <p-—1 besuch that

(dip—1)<p'™® (1<i<r)
(di—djp—1)< o (L<j<i<r)
Thenforp > C(r,e),all a1,...,ar € [1,p — 1], and any rectangular box
B C (Z (mod p))”

It holds

‘(aiazdi, (1=1,... ,T)) € B‘ > CpLle + O<p1_5>.

(The result is meaningful only if [B] > p"—9.)



How hard is to define a subgroup of  [,?
Denote by X the reduction (mod p) of X.

Proposition 2. Letd > 2, H > 1, and g a prime number. Let G < [,
be a subgroup of order coprime with ¢q. Then at least one of the following
three statements holds.

(i) |G| divides A for some integer A with ¢(A) < d, where ¢(n) is
Euler’s function.

(i) p< 3@+Dd®glet+1)d,

(iiiy  Thereis v € G such that for every polynomial f(x) € Z[x] \ {0} of
degree at most d and height H(f) < H it holds f(v) # O.
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(iiiy  Thereis v € G such that for every polynomial f(x) € Z[x] \ {0} of
degree at most d and height H(f) < H it holds f(v) # O.

The lower bound (i) for |G| is sharp. Take p = 1 (mod m), d = ¢(m),
and G the subgroup of the mth roots of unity. The cyclotomic factors of
2™ — 1 have height not more than 2™ and degree not more than ¢(m).
Now (i) fails for large p, (iii) fails for every element of (G, and (i) holds with
equality.



The proof, |

The Mahler measure M (f) of f € C[x] with leading coefficient ag is

1 2m i0
M(f) = exp<£/0 log ‘f(e ) d@) = |ao|f(01:)[_omax(1, ).
Its main properties are:
(m1) Multiplicativity: M(fg) = M(f)M(g).
(m2) M(f(z"™)) = M(f(x)) for neN.
(m3) Comparison: If H(f) is the height of f of degree d, then

(@d+1)73M) <HE < (5, )M,

d
[d/2]

Let v be a generator of the cyclic group G. Then 4, s = 0,1,... are
all generators of GG, because ¢ does not divide |G|. Suppose now that
(i) fails and p > H. Then for every integer : > O there is a polynomial
f;(x) € Z[x], of degree at most d, height H(f;) < H, such that

fi(v¥) =0
and f; not identically O.



The proof, I

We may further assume that each f;(x) is irreducible. If not, it factors in
Z|z] (by Gauss Lemma). Then §(yqz) = 0 holds for some irreducible
factor g(x) of f;(x) of degree less than d, again in Z[x]. By (ml) its
Mahler measure does not exceed M (f;); by (m3) it cannot exceed 24
Thus ﬁ-(yqz) = 0 holds for certain irreducible polynomials with height

H(f;) < 2%H.

Consider now the two polynomials fo(x) and fi(x?). They have the com-
mon root -, hence their resultant R vanishes in [y:

R(fo(z), f1(z9)) = 0.
This simply means that the resultant of fo(x) and f1(x?) is divisible by p.

Equivalently, for « a root of fo(x) and ag the leading coefficient of fo(x),
it holds

N = a%deg(fl)NOl’mQ(a)/Q fl(ozq) =0 (mod p).



The proof, Il

Suppose first that N #= 0. Let ag be the leading coefficient of fy(x) and
let a1, ..., ar, Wwhere » = deg(fp), be a full set of conjugates of «.. Then

p < |N| = |ag|?9%9UD) T |f1(ad)]
1=1

< (deg(f1) + 1)TH(f1)T<|ao| H max(1, |a;|)

1=1
< (d+ 1)d(2dH)dM(a)qd < (d+ 1)(q+2)d/2(2dH)(q—|—1)d

>qdeg(f1)

because H(f) < 2¢H and M(a) < (d+ 1)ZH(fg).
This easily yields (ii) of the proposition.

If instead N = O the resultant vanishes, thus fo(xz) and fq(x2%) have a
common root. Since fj is irreducible, we infer that fo(x) divides f1(xz?).

Next, we make the same construction with f; and f, and again (ii) fol-
lows unless f1(x) divides f>(x9). By induction, we get either (ii) or f;(x)
divides f;41(x?) for every index .



The proof, IV

Moreover, if (i) does not hold the irreducible polynomials f;(x) are
uniguely determined. (Hint: Consider the resultant of f; and an irreducible
polynomial g with H(g) < 2¢H and with a same root (mod p).)
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zation of roots of unity, f;41/f; is a product of cyclotomic polynomials.



The proof, IV

Moreover, if (i) does not hold the irreducible polynomials f;(x) are
uniguely determined. (Hint: Consider the resultant of f; and an irreducible
polynomial g with H(g) < 2¢H and with a same root (mod p).)

Hence if ¢ does not divide |G| the sequence of polynomials f;(x) is peri-
odic and, by Euler's congruence, the period is a divisor of ¢(|G]).

Since f;(z) divides f;41(x?), the sequence (M (f;))i=12.... IS increas-
Ing; by periodicity, it must be a constant, say c. Thus the quotient
fi+1(z9)/ f;(x) has Mahler measure 1 and, by Kronecker’s characteri-
zation of roots of unity, f;41/f; is a product of cyclotomic polynomials.

By induction, fi(:cqi)/fo(:c) is a product of cyclotomic polynomials. Since
the degree of f;(z?) is unbounded, f; must eventually have a root which
IS a root of unity, whence it is a cyclotomic polynomial because it is irre-
ducible. Thus ¢ = 1, hence every f; is a cyclotomic polynomial. There-
fore, fo(x) divides 22 — 1 for some A with ¢(A) = deg(fp). Hence
the generator ~ satisfies v& = 1, |G| divides A, and (i) holds.



Refinements

Corollary. Letd > 2, H > 1, and let G < F,, be a subgroup. Then at
least one of the following three statements holds.

(i) |G| < AZ? for some integer A with ¢p(A) < d.

(i) p< 34

(iiiy  Thereis v € G such that for every polynomial f(x) € Z[x] \ {0} of

degree at most d and height H(f) < H it holds f(~v) # 0.

Proof. Apply Proposition 2 to the two subgroups of G of elements with
order coprime with 2 and 3.

Proposition 3. Letd >2,0<e< 1, H > 1. There are C1(d,e) > O,

C>(d,e) > 0, depending only on d and e, with the following property. Let

G < IF;; be a subgroup. Then at least one of the following three statements

holds.

(i) |G| < C1(d,e).

(i) p<Co(d,e)HBT/e,

(i)  Foratleast (1—¢)|G| elements v € G and every polynomial f(x) €
Z[x]\ {0} of degree bounded by d and with height H(f) < H it holds

f(v) #0.



|dea of proof for Proposition 3

Let £ be the exceptional set of v € G, namely

c— {fye G: f(y) =0 forsome f(x) GZ[:U]\{O}}
1 <deg(f)<d, H(f) < H

We want to show that £ has small cardinality. It will suffice to show that
there are many translates of £ disjoint from each other.



|dea of proof for Proposition 3

Let £ be the exceptional set of v € G, namely

c— 7€ G: f(v) =0 forsome f(x) € Z[zx] \ {0},
o 1 <deg(f) <d, H(f) < H
We want to show that £ has small cardinality. It will suffice to show that
there are many translates of £ disjoint from each other.

We choose translates by powers 7’5 of a suitable element of G. If two
polynomials A(x) and B(x) vanish on the intersection of two different
translates, it means that there exists v € G such that A(v) = 0 and
B(fy’yo) = 0. Then the resultant R(y) of A(x) and B(xy") with respect
to = will vanish for y = ~g.

The degree and height of R(x) will be controlled by quantities D , H;
(with approriate bounds), and k. Then if R(xz) is not identically O we will
obtain a contradiction with the corollary to Proposition 2 by choosing ~q
the element of G whose existence is provided by that corollary. This will
show that translates of £ by small powers of g are disjoint.



Intersections of Fermat varieties



Intersections of Fermat varieties

Proposition 4. Given r € N, thereis D = D(r) > 1 with the following
property. Let 0 < dp < di < --- < dp be integers and let Vdu be a
hypersurface defined by an equation

" d
Z a,;9;(x)z;" =0

1=0
where the factors g;(x) are homogeneous polynomials in x =
(xo,...,xr), Of the same degree and not identically O, and where for each

i the coefficients a,; are complex numbers, not all 0. Let W denote the
projective variety

D

W = ﬂ Vd,u'
p=0

Then every irreducible component Y of W satisfies at least one of:
(i) Y is contained in one of the hypersurfaces ¢;(x) = 0.
(i) Y is contained in some hyperplane z; — cx; = 0 with 7 < 4 and
c e C.
Remark. The proof shows that D(r) = r(r + 1) /2 is admissible.



Proof of Proposition 4, |

Let Y be an irreducible component of W. If Y is empty or a point this is
trivial, hence we may assume that dim(Y’) > 1.

If a coordinate x; vanishes identically on Y we simply take ¢ = 0. Hence
there is no loss of generality in assuming that z; is not identically O on Y.

We pass to inhomogeneous coordinates and work in the function field L
of Y. Let A, = x;/xg (i« = 0,...,r), hence Ag = 1, and write A =
(Ag, Aq,...,Ar) Wwhere now A; € L*. Let s = dim(Y); then L is a
finite extension L = C(¢&,t(9)) of C(t(9)) with t(O) = (¢1,...,ts) purely
transcendental over C and ¢ algebraic over C(£(0)), with £(¢,t(0)) = 0.

Let & be a generic derivation & of C(£(0)) defined by §C = 0 and §t(0) =
t(1) componentwise, where t(1) is purely transcendental over C(t(0)),
and extend & by means of 6t() = t(+1) (1 =0,1,...), where t(11) js
purely transcendental over C(t(9), ... t(1)). Then set

1 S
 fe(€,£0)) > fule 1O,
) 1=1

56 =



Proof of Proposition 4, I

Suppose the functions g;(A)A” (i = 0O,...,r) are linearly dependent
over C. Then their Wronskian with respect to § vanishes:

go(A) AT g1(A)AT ... gr(A)AT
w = det| 9(90(A)AG)  d(g1(A)AT) ... (gr(A)AT) | _ o

6"(go(A)AG") 0"(g1(A)AT) ... 6" (gr(A)AT)
The function (Ag - -- Ay) ~™W is the determinantofan (r + 1) x (r+ 1)
matrix with entries a;; (i,5 = 1,...,7 + 1), where a;; is a polynomial in
m of degree at most ¢ — 1, with coefficients in /A, hence it is a polynomial in
m of degree at most »(r+1) /2. Thus if the Wronskian W is not identically
O there are not more than r(r + 1)/2 possible values of m for which the
Wronskian vanishes.

On the other hand, by hypothesis the relation of linear dependence holds
for the r(r 4+ 1)/2 4+ 1 values m =d, (0 =0,1,...,7(r+1)/2) and
we conclude that W = O identically.



Proof of Proposition 4, IlI
(A powerful Vandermonde determinant)

A simple calculation shows that the highest power of m in the expansion
of (Ag---Ar) ™MW is

SAg A1 A,
A)---gr(A)Vand ) (1) /2
gO( ) gT‘( ) (AO y A]_ ’ ) Ar ) m

where Vand(xq, ..., zr) is the Vandermonde determinant.

Since Y isirreducible, the identical vanishing of this term implies that either

. §A; A L,
g;(A) = 0O for some ¢, or A= — for some i % j.

J

In the former case, statement (i) of the proposition holds.

In the latter case, it must be the case that §(A4;/A;) = 0, hence A;/A; =
x;/x; is in the field of constants for 6. Since ¢ is a generic derivation, the
field of constants for § is C and statement (ii) follows.



Controlling degrees and coefficients

Corollary. In particular, if D = r(r + 1)/2, g;(x) = 1, d, = p, there
are finitely many non-zero homogeneous polynomials p;;(z,y), 0 < j <
¢ < r, such that the polynomial
P(x) := ][ pij(xs, x;)
J<t
vanishes identically on W. Moreover, if ay; € Z and |ag| < A for all
coefficients ag4;, the polynomials p;;(x,y) can be chosen such that it holds

pij(z,y) € Z[z,y], degd(p;;) < C3, H(p;j), H(P) < C4ACS

for some constants C'3, Cy4, C5, depending only on r.



Controlling degrees and coefficients

Corollary. In particular, if D = r(r + 1)/2, g;(x) = 1, d, = p, there
are finitely many non-zero homogeneous polynomials p;;(z,y), 0 < j <
¢ < r, such that the polynomial

P(x) := ][ pij(xs, x;)
j<i
vanishes identically on W. Moreover, if ay; € Z and |ag| < A for all
coefficients ag4;, the polynomials p;;(x,y) can be chosen such that it holds

pij(z,y) € Z[z,y], degd(p;;) < C3, H(p;j), H(P) < C4ACS

for some constants C'3, Cy4, C5, depending only on r.

Comments for the proof. We may take for P(x,y) € Z[x,y] the product
of the norms NormK/@(mi — £z ;), for all components of W. Control of
degree and heights is best done by using an Arithmetic Bézout Theorem,
getting for example

h(P) < D"log(r + 2)(log A + 67).



Application of the Arithmetic Nullstellensatz

Arithmetic Hilbert Nullstellensatz. let x = (x1,...,zn). Let
f1,...,fs € Z[x] be polynomials of degree at most d and suppose that
g € Z[x] vanishes on the zero-set of the polynomials f;. Let A =
max(d,deg(g)) and supposethat H(g) < H, H(f1),...,H(fs) < H.
Then there are g; € Z[x] and non-zero integers a, [, such that:

N1)  gifi+ - +gsfs =ag"
(N2) |a| < CgHC7, where Cg and C7 depend only on n, s, and A.

Proposition 5. There are ¢1 > 0 and Cg, Cg, depending only on r,
with the following property. Let G' < (IF;;)" be a subgroup. Let G;; be the
image of G by the homomorphism ®;,(v) = v;/v;.
Then at least one of the following three statements holds:

(i) There are two indices j < i such |G;;| < Csg.

(i) »p<Co.

(iii) Thereis v = (v1,...,v) € G such that

aiy1+ -+ ary#0

whenever a1,...,ar € Z and 0 < Y |a;| < p°L.



Idea of proof, |

Fix v € G and assume that (ii) fails. Then it must fail for v¢, d = 1,2, ...
and we obtain a system of equations

fa(v) ==aqri + -+ agy =0, (1<d<r(r—1)/2)
for certain ay, € Z with 0 < 3, lag;| < p°l.
The polynomials f; define a variety W. The last part of Corollary of Propo-
sition 4 yields a polynomial P = []p;;(z;,z;), with 1 < j < i < r and
with controlled degree and height, such that P vanishes on W. By the

Arithmetic Nullstellensatz, there are polynomials g; with integer coefficients
such that

afi+aofo+--+9pfp=aP’

with a # 0 and |a| < Cgp©7e1, with Cg and C; depending only on r. We
reduce the Hilbert equation (mod p) and evaluate it at +, getting

aP(~y)! = o.



|dea of proof, Il

If p> Cg and 7 < 1/(2C7), then @ % 0 and we get P(v)! = 0. The
polynomial P(x) € Fp[x] is homogeneous and not identically 0, because
p is large and H(P) is small relative to p.

Therefore, P(v) = 0. Since P factors as a product of homogeneous
polynomials p;;, it follows that p;;(+;/~;, 1) = O for some choice of indices
j < 1, also depending on ~.

Since the number of pairs {i,j} with j < ¢is (r — 1)r/2, there is a pair
{7, 1} such that

2
H’Y € Gy : pij(v,1) = OH -2 |Gijl-
We have the bounds

H(pij), H(P) < C4aH®S.

Now we apply Proposition 2 to this situation, taking e = 2/r2. Thus if 1 is
small enough as a function of » alone and p is large enough as a function
of r alone then statements (ii) and (iii) of that proposition do not hold. The
only possibility left is that |G, ;| is bounded as a function of r.



Several variables

Let M C Z". Form = (mq,...,my) € M and x = (x1,...,2r) WE
denote by x™ the associated monomial z;'? - - - z7r. We also write |m| =

ma| + - 4 |mr|

Proposition 6. Let » and K > 1 be given. Then there are ¢5, €3, C10,
(C'11, depending only on K and r, with the following property. Let G <
(F3)" and 9t C Z", with max |m| < K. Let also nm € F;,, (m € 9). For
M C Z" let Gy denote the image of G by the homomorphism ®gy : G —
(F3)™ given by v — (Y™ meam-
Then at least one of the following three statements holds.

(i) There are m = m’ € M such that G im—mn| < Cio.

(i) p<Chr.
(iii) For atleast e5|G| elements v = (v1,...,7) € G it holds

Y Gmnmy™ # O

meMNn
whenever

0< ) |am| <p®3.
meIN



Comments about the proof, |

The proof is long and complicated and is done in several steps, proceeding
by contradiction.

Step 0: Choose M’ much larger than M = max|m| and d;, 1 =
1,..., M’ a very lacunary sequence of increasing integers. Take v € G
and assume that ~% fails in (iii)y fori = 1,..., M’.

Step I: This yields a homogeneous linear system of M’ equations in the
M unknowns np:
> @m My ™ = 0.
meN
Step Il: Since there are many equations, one can work with a reduced set

IM* of exponents for which ayy, = 0. Thus we may assume the validity of
this condition, which proves to be essential in what follows.



Comments about the proof, Il

Step Ill: We eliminate the coefficients ny by taking the determinant asso-
ciated to a subset of equations (Cramer’s Rule). Each determinant yields
a relation of the same type but relative to a new set of exponents. The
lacunarity of the d; ensures that no new exponent arises twice from the
determinant expansion.

Since there is a very large number of such relations, one obtains a large
set of relations in which the coefficients ny, are all 1 and in addition all
coefficients ayy are not 0. Thus it suffices to prove the proposition with
these additional assumptions.

Step IV: Prove the case »r = 1 by appealing to a quantitative version of
Proposition 5 where the conclusion holds for many v € G.

Step V: Proceed by induction on r by using the homomorphisms G —
G{m_m/} appropriately to show that (i) of Proposition 5 must hold for a
non-trivial pair (m, m’).

Step VI: Since now [ = ‘G{m_m/}
placing G by G!. This allows the induction step from r — 1 to r.

s small, one can kill Gyp,_ 1y Dy re-



The steps in the proof of Theorem 1

Step I: Apply the circle method in [, to compute a smoothed weighted
number of solutions of

(a1z™ —1q,... arz®™ —1,) € B

with B = [1, N1] x---x[1, N;]. For a given x the weighted counting (with
respect to a smooth weight function F' with supportin B) is

— Z ep< Z)\az >€p<z>‘z’li> F(\)
p' AeF?, i=1

where F'()) is the (mod p) Fourier transform.
For any n > O the Fourier transform is essentially supported in the box

L = {A PV <p1+77/Nz' (i = 1,---,7“)}
while outside of this box it is O(p—#), for any fixed K > O.

Step Il: We want to mimic what was done earlier for the case » = 2 when
we set x = y'z and use the Bourgain estimate to conclude with a lower
bound. The difficulty is to show that such a ¢ exists.



A finite covering theorem

The key to conclude the proof is a covering theorem for a finite set of points
in a metric space X with distance function é(u,v) and diameter function
A(Y)onsubsets Y C X.

Proposition 7. Let X be a metric space and let £ be a set of points of X
of cardinality |£| = r and let £ > O.
Then there is a partition

E=EU---UE&;
such that

1 :
mEXA(ga) < Q_T’fga gn;g 0(Eo,Er) > ke

for some constant

(5r2) " < Kk < 1.



Conclusion

We take £ = {1,...,r} and write (d; —d;,p— 1) = (p — 1)1%j. Then
6(i,7) = ;5 is a distance function on £.
For each o choose i, € £, and set

=TI 20

o=1j€&; _kj’p_l)

Then
(td;, —tdj,p—1)=p—1 if je€&,

(td;, — td;,p—1) <p'™"/2 if o £

The first equation shows that the substitution z = y‘z clumps together the
terms involving z% (i € £,) in the exponential sum as

S
Z (Z )\iaizd’i>ytd
c=1 \€&,

Proposition 6 is essential for proving that for a positive density of z it holds
> ik, M\;a;2% # 0. The second equation shows that the y‘%o are uncor-
related enough to apply the estimate for fixed z. The rest is as for r = 2.



THE END



