Roots of Polynomials in Subgroups of \mathbb{F}_{p}^{*} and Applications to Congruences

Enrico Bombieri, Jean Bourgain, Sergei Konyagin

IAS, Princeton, IAS Princeton, Moscow State University

The decimation problem

Let $A \in \mathbb{Z}(\bmod p) \backslash\{0\}$ and $(d, p-1)=1, p$ an odd prime. Then $x \mapsto A x^{d}$ induces a permutation $\pi_{d, A}$ of $\mathbb{Z}(\bmod p)$. Consider

$$
\text { Even }:=\{0,2,4, \ldots, p-1\} \subset\{0,1,2,3, \ldots, p-1\} \cong \mathbb{Z}(\bmod p)
$$

Then the question is to determine all cases in which $\pi_{d, A}($ Even $)=$ Even .
We may assume that $(d, A) \neq(1,1)$ and $1<d<p / 2$.
The following conjecture is due to Goresky and Kappler.
Conjecture GK The only cases in which $\pi_{d, A}($ Even $)=$ Even and $1<$ $d<p / 2$ are
$(p, d, A)=(5,3,3),(7,1,5),(11,9,3),(11,3,7),(11,5,9),(13,1,5)$.

The decimation problem

Let $A \in \mathbb{Z}(\bmod p) \backslash\{0\}$ and $(d, p-1)=1, p$ an odd prime. Then $x \mapsto A x^{d}$ induces a permutation $\pi_{d, A}$ of $\mathbb{Z}(\bmod p)$. Consider

$$
\text { Even }:=\{0,2,4, \ldots, p-1\} \subset\{0,1,2,3, \ldots, p-1\} \cong \mathbb{Z}(\bmod p)
$$

Then the question is to determine all cases in which $\pi_{d, A}($ Even $)=$ Even .
We may assume that $(d, A) \neq(1,1)$ and $1<d<p / 2$.
The following conjecture is due to Goresky and Kappler.
Conjecture GK The only cases in which $\pi_{d, A}($ Even $)=$ Even and $1<$ $d<p / 2$ are
$(p, d, A)=(5,3,3),(7,1,5),(11,9,3),(11,3,7),(11,5,9),(13,1,5)$.

The conjecture has been verified numerically for $p<2 \times 10^{6}$ and recently (preprint 2008) proved for $p>2.26 \times 10^{55}$ by Bourgain, Cochrane, Paulhus, and Pinner.

A reformulation

The problem is equivalent to showing that the equation

$$
A(2 x)^{d}=2 y-1
$$

in $\mathbb{Z}(\bmod p) \times \mathbb{Z}(\bmod p)$ has a solution in the box

$$
\mathcal{B}=\left\{1, \ldots, \frac{p-1}{2}\right\} \times\left\{1, \ldots, \frac{p-1}{2}\right\} .
$$

A reformulation

The problem is equivalent to showing that the equation

$$
A(2 x)^{d}=2 y-1
$$

in $\mathbb{Z}(\bmod p) \times \mathbb{Z}(\bmod p)$ has a solution in the box

$$
\mathcal{B}=\left\{1, \ldots, \frac{p-1}{2}\right\} \times\left\{1, \ldots, \frac{p-1}{2}\right\} .
$$

If not, then

$$
\left(x, A 2^{d-1} x^{d}\right)(\bmod p) \in \mathcal{B}+(0,-\overline{2})
$$

has no solutions.

A reformulation

The problem is equivalent to showing that the equation

$$
A(2 x)^{d}=2 y-1
$$

in $\mathbb{Z}(\bmod p) \times \mathbb{Z}(\bmod p)$ has a solution in the box

$$
\mathcal{B}=\left\{1, \ldots, \frac{p-1}{2}\right\} \times\left\{1, \ldots, \frac{p-1}{2}\right\} .
$$

If not, then

$$
\left(x, A 2^{d-1} x^{d}\right)(\bmod p) \in \mathcal{B}+(0,-\overline{2})
$$

has no solutions.
This appears to be very unlikely because on average one expects

$$
p \frac{|\mathcal{B}|}{p^{2}} \sim \frac{1}{4} p
$$

solutions.

The Fourier method

The study of the number of solutions of $\left(a x, b x^{d}\right) \in \mathcal{B}$ for a general box \mathcal{B} is easily reduced to the question of bounds for

$$
S(u, v)=\sum_{x \in \mathbb{Z}(\bmod p)} e_{p}\left(a u x^{d}+v x\right)
$$

with $e_{p}(x)=e^{2 \pi i x / p}$ and $u, v \in \mathbb{Z}(\bmod p)$ not both 0 .
If

$$
S(u, v)=O\left(\frac{p}{(\log p)^{2}}\right)
$$

then one can prove the asymptotic formula

$$
\left|\left(a x, b x^{d}\right) \in \mathcal{B}\right| \sim \frac{|\mathcal{B}|}{p} .
$$

By Weil estimate, $|S(u, v)| \leq(d-1) \sqrt{p}$. Thus the real difficulties occur if $d \gg \sqrt{p} /(\log p)^{2}$.

The Sum-Product Method

A new combinatorial method for studying the general exponential sum

$$
S=\sum_{x \in \mathbb{Z}(\bmod p)} e_{p}\left(\sum_{i=1}^{r} a_{i} x^{d_{i}}\right)
$$

has been introduced by Bourgain uses the sum-product theorem: There is an absolute constant $\delta>0$ such that if $A \subset \mathbb{Z}(\bmod p)$ then

$$
\max (|A+A|,|A \cdot A|) \geq \min \left(p,|A|^{1+\delta}\right)
$$

The Sum-Product Method

A new combinatorial method for studying the general exponential sum

$$
S=\sum_{x \in \mathbb{Z}(\bmod p)} e_{p}\left(\sum_{i=1}^{r} a_{i} x^{d_{i}}\right)
$$

has been introduced by Bourgain uses the sum-product theorem: There is an absolute constant $\delta>0$ such that if $A \subset \mathbb{Z}(\bmod p)$ then

$$
\max (|A+A|,|A \cdot A|) \geq \min \left(p,|A|^{1+\delta}\right) .
$$

Proposition 1. Given $r \in \mathbb{N}$ and $\varepsilon>0$, there are $\delta>0$ and C, depending only on r and ε, with the following property. If $p>C$ is a prime and $1 \leq d_{1}<\cdots<d_{r}<p-1$ satisfy

$$
\begin{aligned}
& \left(d_{i}, p-1\right)<p^{1-\varepsilon} \quad(1 \leq i \leq r) \\
& \left(d_{i}-d_{j}, p-1\right)<p^{1-\varepsilon} \quad(1 \leq j<i \leq r)
\end{aligned}
$$

then for $\left(a_{1}, \ldots, a_{r}\right) \in(\mathbb{Z}(\bmod p))^{r} \backslash\{0\}$ it holds

$$
\left|\sum_{x \in \mathbb{Z}(\bmod p)} e_{p}\left(a_{1} x^{d_{1}}+\cdots+a_{r} x^{d_{r}}\right)\right|<p^{1-\delta}
$$

Solution of the decimation problem for large p

This solves the decimation problem for large p provided

$$
(d-1, p-1)<p^{1-\varepsilon} .
$$

In order to deal with the remaining case, note that if $(d-1, p-1) \geq p^{1-\varepsilon}$ then x^{d} and x are correlated in the sense that $x^{d} \equiv x u(\bmod p)$ where $u^{t} \equiv 1(\bmod p)$ with $t=(d-1) /(d-1, p-1) \leq p^{\varepsilon}$. Now write $x=y^{t} z$ and get $\left(x, A x^{d}\right)=\left(y^{t} z, A y^{t} z^{d}\right)$. When varying y and z (not 0), each x occurs exactly $p-1$ times, counting multiplicities.

Let \mathcal{B} be a box $(\bmod p)$ with sides of length N_{1}, N_{2}. For fixed z and varying y, the Fourier method shows that the number of solutions of ($y^{t} z, A y^{t} z^{d}$) $\in \mathcal{B}$ is $\sim N_{1} N_{2} / p$ (as expected), provided $u z+v A z^{d} \neq 0$ for $|u|<p^{\delta},|v|<p^{\delta}$, with $(u, v) \neq(0,0)$.

An elementary counting of the exceptional z now yields for some $\delta=$ $\delta(\varepsilon)>0$ the lower bound

$$
\left|\left(x, A x^{d}\right) \in \mathcal{B}\right| \geq\left(1-\frac{2 t}{p-1}\right) \frac{N_{1} N_{2}}{p}+O\left(p^{1-\delta}\right)
$$

The main result

Theorem 1. Given $r \geq 2$ and $\varepsilon>0$ there are $B=B(r, \varepsilon)>0$, $c=c(r, \varepsilon)>0, \delta=\delta(r, \varepsilon)>0$, such that the following holds. Let $1 \leq d_{1}<\cdots<d_{r}<p-1$ be such that

$$
\begin{aligned}
& \left(d_{i}, p-1\right)<p^{1-\varepsilon} \quad(1 \leq i \leq r) \\
& \left(d_{i}-d_{j}, p-1\right)<\frac{p}{B} \quad(1 \leq j<i \leq r) .
\end{aligned}
$$

Then for $p \geq C(r, \varepsilon)$, all $a_{1}, \ldots, a_{r} \in[1, p-1]$, and any rectangular box

$$
\mathcal{B} \subset(\mathbb{Z}(\bmod p))^{r}
$$

it holds

$$
\left|\left(a_{i} x^{d_{i}},(i=1, \ldots, r)\right) \in \mathcal{B}\right| \geq c \frac{|\mathcal{B}|}{p^{r-1}}+O\left(p^{1-\delta}\right) .
$$

(The result is meaningful only if $|\mathcal{B}| \gg p^{r-\delta}$.)

How hard is to define a subgroup of \mathbb{F}_{p}^{*} ?

Denote by \bar{X} the reduction $(\bmod p)$ of X.
Proposition 2. Let $d \geq 2, H \geq 1$, and q a prime number. Let $G<\mathbb{F}_{p}^{*}$ be a subgroup of order coprime with q. Then at least one of the following three statements holds.
(i) $|G|$ divides Δ for some integer Δ with $\phi(\Delta) \leq d$, where $\phi(n)$ is Euler's function.
(ii) $\quad p \leq 3^{(q+1) d^{2}} H^{(q+1) d}$.
(iii) There is $\gamma \in G$ such that for every polynomial $f(x) \in \mathbb{Z}[x] \backslash\{0\}$ of degree at most d and height $H(f) \leq H$ it holds $\bar{f}(\gamma) \neq 0$.

How hard is to define a subgroup of \mathbb{F}_{p}^{*} ?

Denote by \bar{X} the reduction $(\bmod p)$ of X.
Proposition 2. Let $d \geq 2, H \geq 1$, and q a prime number. Let $G<\mathbb{F}_{p}^{*}$ be a subgroup of order coprime with q. Then at least one of the following three statements holds.
(i) $|G|$ divides Δ for some integer Δ with $\phi(\Delta) \leq d$, where $\phi(n)$ is Euler's function.
(ii) $\quad p \leq 3^{(q+1) d^{2}} H^{(q+1) d}$.
(iii) There is $\gamma \in G$ such that for every polynomial $f(x) \in \mathbb{Z}[x] \backslash\{0\}$ of degree at most d and height $H(f) \leq H$ it holds $\bar{f}(\gamma) \neq 0$.

The lower bound (i) for $|G|$ is sharp. Take $p \equiv 1(\bmod m), d=\phi(m)$, and G the subgroup of the m th roots of unity. The cyclotomic factors of $x^{m}-1$ have height not more than 2^{m} and degree not more than $\phi(m)$. Now (ii) fails for large p, (iii) fails for every element of G, and (i) holds with equality.

The proof, I

The Mahler measure $M(f)$ of $f \in \mathbb{C}[x]$ with leading coefficient a_{0} is

$$
M(f)=\exp \left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(e^{i \theta}\right)\right| \mathrm{d} \theta\right)=\left|a_{0}\right| \prod_{f(\alpha)=0} \max (1,|\alpha|) .
$$

Its main properties are:
(m1) Multiplicativity: $M(f g)=M(f) M(g)$.
(m2) $\quad M\left(f\left(x^{n}\right)\right)=M(f(x)) \quad$ for $n \in \mathbb{N}$.
(m3) Comparison: If $H(f)$ is the height of f of degree d, then

$$
(d+1)^{-\frac{1}{2}} M(f) \leq H(f) \leq\binom{ d}{\lfloor d / 2\rfloor} M(f) .
$$

Let γ be a generator of the cyclic group G. Then $\gamma^{q^{i}}, i=0,1, \ldots$ are all generators of G, because q does not divide $|G|$. Suppose now that (iii) fails and $p>H$. Then for every integer $i \geq 0$ there is a polynomial $f_{i}(x) \in \mathbb{Z}[x]$, of degree at most d, height $H\left(f_{i}\right) \leq H$, such that

$$
\bar{f}_{i}\left(\gamma^{q^{i}}\right)=0
$$

and \bar{f}_{i} not identically 0 .

The proof, II

We may further assume that each $f_{i}(x)$ is irreducible. If not, it factors in $\mathbb{Z}[x]$ (by Gauss Lemma). Then $\bar{g}\left(\gamma^{q^{i}}\right)=0$ holds for some irreducible factor $g(x)$ of $f_{i}(x)$ of degree less than d, again in $\mathbb{Z}[x]$. By (m 1) its Mahler measure does not exceed $M\left(f_{i}\right)$; by (m3) it cannot exceed $2^{d} H$. Thus $\bar{f}_{i}\left(\gamma^{q^{i}}\right)=0$ holds for certain irreducible polynomials with height

$$
H\left(f_{i}\right) \leq 2^{d} H .
$$

Consider now the two polynomials $\bar{f}_{0}(x)$ and $\bar{f}_{1}\left(x^{q}\right)$. They have the common root γ, hence their resultant R vanishes in \mathbb{F}_{p} :

$$
R\left(\bar{f}_{0}(x), \bar{f}_{1}\left(x^{q}\right)\right)=0 .
$$

This simply means that the resultant of $f_{0}(x)$ and $f_{1}\left(x^{q}\right)$ is divisible by p. Equivalently, for α a root of $f_{0}(x)$ and a_{0} the leading coefficient of $f_{0}(x)$, it holds

$$
N:=a_{0}^{q \operatorname{deg}\left(f_{1}\right)} \operatorname{Norm}_{\mathbb{Q}(\alpha) / \mathbb{Q}} f_{1}\left(\alpha^{q}\right) \equiv 0(\bmod p)
$$

The proof, III

Suppose first that $N \neq 0$. Let a_{0} be the leading coefficient of $f_{0}(x)$ and let $\alpha_{1}, \ldots, \alpha_{r}$, where $r=\operatorname{deg}\left(f_{0}\right)$, be a full set of conjugates of α. Then

$$
\begin{aligned}
p \leq|N| & =\left|a_{0}\right|^{q \operatorname{deg}\left(f_{1}\right)} \prod_{i=1}^{r}\left|f_{1}\left(\alpha_{i}^{q}\right)\right| \\
& \leq\left(\operatorname{deg}\left(f_{1}\right)+1\right)^{r} H\left(f_{1}\right)^{r}\left(\left|a_{0}\right| \prod_{i=1}^{r} \max \left(1,\left|\alpha_{i}\right|\right)\right)^{q \operatorname{deg}\left(f_{1}\right)} \\
& \leq(d+1)^{d}\left(2^{d} H\right)^{d} M(\alpha)^{q d} \leq(d+1)^{(q+2) d / 2}\left(2^{d} H\right)^{(q+1) d}
\end{aligned}
$$

because $H(f) \leq 2^{d} H$ and $M(\alpha) \leq(d+1)^{\frac{1}{2}} H\left(f_{0}\right)$.
This easily yields (ii) of the proposition.
If instead $N=0$ the resultant vanishes, thus $f_{0}(x)$ and $f_{1}\left(x^{q}\right)$ have a common root. Since f_{0} is irreducible, we infer that $f_{0}(x)$ divides $f_{1}\left(x^{q}\right)$.

Next, we make the same construction with f_{1} and f_{2} and again (ii) follows unless $f_{1}(x)$ divides $f_{2}\left(x^{q}\right)$. By induction, we get either (ii) or $f_{i}(x)$ divides $f_{i+1}\left(x^{q}\right)$ for every index i.

The proof, IV

Moreover, if (ii) does not hold the irreducible polynomials $f_{i}(x)$ are uniquely determined. (Hint: Consider the resultant of f_{i} and an irreducible polynomial g with $H(g) \leq 2^{d} H$ and with a same root $(\bmod p)$.)

The proof, IV

Moreover, if (ii) does not hold the irreducible polynomials $f_{i}(x)$ are uniquely determined. (Hint: Consider the resultant of f_{i} and an irreducible polynomial g with $H(g) \leq 2^{d} H$ and with a same root $(\bmod p)$.)

Hence if q does not divide $|G|$ the sequence of polynomials $f_{i}(x)$ is periodic and, by Euler's congruence, the period is a divisor of $\phi(|G|)$.

The proof, IV

Moreover, if (ii) does not hold the irreducible polynomials $f_{i}(x)$ are uniquely determined. (Hint: Consider the resultant of f_{i} and an irreducible polynomial g with $H(g) \leq 2^{d} H$ and with a same root $(\bmod p)$.)

Hence if q does not divide $|G|$ the sequence of polynomials $f_{i}(x)$ is periodic and, by Euler's congruence, the period is a divisor of $\phi(|G|)$.

Since $f_{i}(x)$ divides $f_{i+1}\left(x^{q}\right)$, the sequence $\left(M\left(f_{i}\right)\right)_{i=1,2, \ldots}$ is increasing; by periodicity, it must be a constant, say c. Thus the quotient $f_{i+1}\left(x^{q}\right) / f_{i}(x)$ has Mahler measure 1 and, by Kronecker's characterization of roots of unity, f_{i+1} / f_{i} is a product of cyclotomic polynomials.

The proof, IV

Moreover, if (ii) does not hold the irreducible polynomials $f_{i}(x)$ are uniquely determined. (Hint: Consider the resultant of f_{i} and an irreducible polynomial g with $H(g) \leq 2^{d} H$ and with a same root $(\bmod p)$.)

Hence if q does not divide $|G|$ the sequence of polynomials $f_{i}(x)$ is periodic and, by Euler's congruence, the period is a divisor of $\phi(|G|)$.

Since $f_{i}(x)$ divides $f_{i+1}\left(x^{q}\right)$, the sequence $\left(M\left(f_{i}\right)\right)_{i=1,2, \ldots}$ is increasing; by periodicity, it must be a constant, say c. Thus the quotient $f_{i+1}\left(x^{q}\right) / f_{i}(x)$ has Mahler measure 1 and, by Kronecker's characterization of roots of unity, f_{i+1} / f_{i} is a product of cyclotomic polynomials.

By induction, $f_{i}\left(x^{q^{i}}\right) / f_{0}(x)$ is a product of cyclotomic polynomials. Since the degree of $f_{i}\left(x^{q^{i}}\right)$ is unbounded, f_{i} must eventually have a root which is a root of unity, whence it is a cyclotomic polynomial because it is irreducible. Thus $c=1$, hence every f_{i} is a cyclotomic polynomial. Therefore, $f_{0}(x)$ divides $x^{\Delta}-1$ for some Δ with $\phi(\Delta)=\operatorname{deg}\left(f_{0}\right)$. Hence the generator γ satisfies $\gamma^{\Delta}=1,|G|$ divides Δ, and (i) holds.

Refinements

Corollary. Let $d \geq 2, H \geq 1$, and let $G<\mathbb{F}_{p}^{*}$ be a subgroup. Then at least one of the following three statements holds.
(i) $|G| \leq \Delta^{2}$ for some integer Δ with $\phi(\Delta) \leq d$.
(ii) $p \leq 3^{4 d^{2}} H^{4 d}$.
(iii) There is $\gamma \in G$ such that for every polynomial $f(x) \in \mathbb{Z}[x] \backslash\{0\}$ of degree at most d and height $H(f) \leq H$ it holds $\bar{f}(\gamma) \neq 0$.
Proof. Apply Proposition 2 to the two subgroups of G of elements with order coprime with 2 and 3.

Proposition 3. Let $d \geq 2,0<\varepsilon<1, H \geq 1$. There are $C_{1}(d, \varepsilon)>0$, $C_{2}(d, \varepsilon)>0$, depending only on d and ε, with the following property. Let $G<\mathbb{F}_{p}^{*}$ be a subgroup. Then at least one of the following three statements holds.
(i)

$$
\begin{aligned}
& |G| \leq C_{1}(d, \varepsilon) . \\
& p \leq C_{2}(d, \varepsilon) H^{8 d^{3}} / \varepsilon .
\end{aligned}
$$

(iii) For at least $(1-\varepsilon)|G|$ elements $\gamma \in G$ and every polynomial $f(x) \in$ $\mathbb{Z}[x] \backslash\{0\}$ of degree bounded by d and with height $H(f) \leq H$ it holds $\bar{f}(\gamma) \neq 0$.

Idea of proof for Proposition 3

Let \mathcal{E} be the exceptional set of $\gamma \in G$, namely

$$
\mathcal{E}=\left\{\begin{array}{cc}
\gamma \in G: & \bar{f}(\gamma)=0 \text { for some } f(x) \in \mathbb{Z}[x] \backslash\{0\} \\
1 \leq \operatorname{deg}(f) \leq d, H(f) \leq H
\end{array}\right\}
$$

We want to show that \mathcal{E} has small cardinality. It will suffice to show that there are many translates of \mathcal{E} disjoint from each other.

Idea of proof for Proposition 3

Let \mathcal{E} be the exceptional set of $\gamma \in G$, namely

$$
\mathcal{E}=\left\{\begin{array}{cc}
\gamma \in G: & \bar{f}(\gamma)=0 \text { for some } f(x) \in \mathbb{Z}[x] \backslash\{0\}, \\
1 \leq \operatorname{deg}(f) \leq d, H(f) \leq H
\end{array}\right\}
$$

We want to show that \mathcal{E} has small cardinality. It will suffice to show that there are many translates of \mathcal{E} disjoint from each other.

We choose translates by powers γ_{0}^{k} of a suitable element of G. If two polynomials $A(x)$ and $B(x)$ vanish on the intersection of two different translates, it means that there exists $\gamma \in G$ such that $A(\gamma)=0$ and $B\left(\gamma \gamma_{0}^{k}\right)=0$. Then the resultant $R(y)$ of $A(x)$ and $B\left(x y^{k}\right)$ with respect to x will vanish for $y=\gamma_{0}$.

The degree and height of $R(x)$ will be controlled by quantities D, H_{1} (with approriate bounds), and k. Then if $R(x)$ is not identically 0 we will obtain a contradiction with the corollary to Proposition 2 by choosing γ_{0} the element of G whose existence is provided by that corollary. This will show that translates of \mathcal{E} by small powers of γ_{0} are disjoint.

Intersections of Fermat varieties

Intersections of Fermat varieties

Proposition 4. Given $r \in \mathbb{N}$, there is $D=D(r) \geq 1$ with the following property. Let $0 \leq d_{0}<d_{1}<\cdots<d_{D}$ be integers and let $V_{d_{\mu}}$ be a hypersurface defined by an equation

$$
\sum_{i=0}^{r} a_{\mu i} g_{i}(\mathrm{x}) x_{i}^{d_{\mu}}=0
$$

where the factors $g_{i}(\mathrm{x})$ are homogeneous polynomials in $\mathrm{x}=$ (x_{0}, \ldots, x_{r}), of the same degree and not identically 0 , and where for each i the coefficients $a_{\mu i}$ are complex numbers, not all 0 . Let W denote the projective variety

$$
W:=\bigcap_{\mu=0}^{D} V_{d_{\mu}} .
$$

Then every irreducible component Y of W satisfies at least one of:
(i) Y is contained in one of the hypersurfaces $g_{i}(\mathbf{x})=0$.
(ii) Y is contained in some hyperplane $x_{i}-c x_{j}=0$ with $j<i$ and $c \in \mathbb{C}$.
Remark. The proof shows that $D(r)=r(r+1) / 2$ is admissible.

Proof of Proposition 4, I

Let Y be an irreducible component of W. If Y is empty or a point this is trivial, hence we may assume that $\operatorname{dim}(Y) \geq 1$.

If a coordinate x_{i} vanishes identically on Y we simply take $c=0$. Hence there is no loss of generality in assuming that x_{i} is not identically 0 on Y.

We pass to inhomogeneous coordinates and work in the function field L of Y. Let $A_{i}=x_{i} / x_{0}(i=0, \ldots, r)$, hence $A_{0}=1$, and write $\mathbf{A}=$ $\left(A_{0}, A_{1}, \ldots, A_{r}\right)$ where now $A_{i} \in L^{*}$. Let $s=\operatorname{dim}(Y)$; then L is a finite extension $L=\mathbb{C}\left(\xi, \mathbf{t}^{(0)}\right)$ of $\mathbb{C}\left(\mathbf{t}^{(0)}\right)$ with $\mathbf{t}^{(0)}=\left(t_{1}, \ldots, t_{s}\right)$ purely transcendental over \mathbb{C} and ξ algebraic over $\mathbb{C}\left(\mathbf{t}^{(0)}\right)$, with $f\left(\xi, \mathbf{t}^{(0)}\right)=0$.
Let δ be a generic derivation δ of $\mathbb{C}\left(\mathbf{t}^{(0)}\right)$ defined by $\delta \mathbb{C}=0$ and $\delta \mathbf{t}^{(0)}=$ $\mathbf{t}^{(1)}$ componentwise, where $\mathbf{t}^{(1)}$ is purely transcendental over $\mathbb{C}\left(\mathbf{t}^{(0)}\right)$, and extend δ by means of $\delta \mathbf{t}^{(l)}=\mathbf{t}^{(l+1)}(l=0,1, \ldots)$, where $\mathbf{t}^{(l+1)}$ is purely transcendental over $\mathbb{C}\left(\mathbf{t}^{(0)}, \ldots, \mathbf{t}^{(l)}\right)$. Then set

$$
\delta \xi=-\frac{1}{f_{\xi}\left(\xi, \mathbf{t}^{(0)}\right)} \sum_{i=1}^{s} f_{t_{i}}\left(\xi, \mathbf{t}^{(0)}\right) t_{i}^{(1)} .
$$

Proof of Proposition 4, II

Suppose the functions $g_{i}(\mathbf{A}) A_{i}^{m}(i=0, \ldots, r)$ are linearly dependent over \mathbb{C}. Then their Wronskian with respect to δ vanishes:

$$
\Psi:=\operatorname{det}\left(\begin{array}{cccc}
g_{0}(\mathbf{A}) A_{0}^{m} & g_{1}(\mathbf{A}) A_{1}^{m} & \ldots & g_{r}(\mathbf{A}) A_{r}^{m} \\
\delta\left(g_{0}(\mathbf{A}) A_{0}^{m}\right) & \delta\left(g_{1}(\mathbf{A}) A_{1}^{m}\right) & \ldots & \delta\left(g_{r}(\mathbf{A}) A_{r}^{m}\right) \\
\cdot & \cdot & \ldots & \cdot \\
\delta^{r}\left(g_{0}(\mathbf{A}) A_{0}^{m}\right) & \delta^{r}\left(g_{1}(\mathbf{A}) A_{1}^{m}\right) & \ldots & \delta^{r}\left(g_{r}(\mathbf{A}) A_{r}^{m}\right)
\end{array}\right)=0
$$

The function $\left(A_{0} \cdots A_{r}\right)^{-m} \Psi$ is the determinant of an $(r+1) \times(r+1)$ matrix with entries $a_{i j}(i, j=1, \ldots, r+1)$, where $a_{i j}$ is a polynomial in m of degree at most $i-1$, with coefficients in Λ, hence it is a polynomial in m of degree at most $r(r+1) / 2$. Thus if the Wronskian Ψ is not identically 0 there are not more than $r(r+1) / 2$ possible values of m for which the Wronskian vanishes.

On the other hand, by hypothesis the relation of linear dependence holds for the $r(r+1) / 2+1$ values $m=d_{\mu}(\mu=0,1, \ldots, r(r+1) / 2)$ and we conclude that $\psi=0$ identically.

Proof of Proposition 4, III

(A powerful Vandermonde determinant)
A simple calculation shows that the highest power of m in the expansion of $\left(A_{0} \cdots A_{r}\right)^{-m} \Psi$ is

$$
g_{0}(\mathbf{A}) \cdots g_{r}(\mathbf{A}) \text { Vand }\left(\frac{\delta A_{0}}{A_{0}}, \frac{\delta A_{1}}{A_{1}}, \ldots, \frac{\delta A_{r}}{A_{r}}\right) m^{r(r+1) / 2}
$$

where $\operatorname{Vand}\left(x_{0}, \ldots, x_{r}\right)$ is the Vandermonde determinant.
Since Y is irreducible, the identical vanishing of this term implies that either $g_{i}(\mathbf{A})=0$ for some i, or $\frac{\delta A_{i}}{A_{i}}=\frac{\delta A_{j}}{A_{j}}$ for some $i \neq j$.
In the former case, statement (i) of the proposition holds.
In the latter case, it must be the case that $\delta\left(A_{i} / A_{j}\right)=0$, hence $A_{i} / A_{j}=$ x_{i} / x_{j} is in the field of constants for δ. Since δ is a generic derivation, the field of constants for δ is \mathbb{C} and statement (ii) follows.

Controlling degrees and coefficients

Corollary. In particular, if $D=r(r+1) / 2, g_{i}(\mathrm{x})=1, d_{\mu}=\mu$, there are finitely many non-zero homogeneous polynomials $p_{i j}(x, y), 0 \leq j<$ $i \leq r$, such that the polynomial

$$
P(\mathrm{x}):=\prod_{j<i} p_{i j}\left(x_{i}, x_{j}\right)
$$

vanishes identically on W. Moreover, if $a_{d i} \in \mathbb{Z}$ and $\left|a_{d i}\right| \leq A$ for all coefficients $a_{d i}$, the polynomials $p_{i j}(x, y)$ can be chosen such that it holds

$$
p_{i j}(x, y) \in \mathbb{Z}[x, y], \quad \operatorname{deg}\left(p_{i j}\right) \leq C_{3}, \quad H\left(p_{i j}\right), H(P) \leq C_{4} A^{C_{5}}
$$

for some constants C_{3}, C_{4}, C_{5}, depending only on r.

Controlling degrees and coefficients

Corollary. In particular, if $D=r(r+1) / 2, g_{i}(\mathbf{x})=1, d_{\mu}=\mu$, there are finitely many non-zero homogeneous polynomials $p_{i j}(x, y), 0 \leq j<$ $i \leq r$, such that the polynomial

$$
P(\mathrm{x}):=\prod_{j<i} p_{i j}\left(x_{i}, x_{j}\right)
$$

vanishes identically on W. Moreover, if $a_{d i} \in \mathbb{Z}$ and $\left|a_{d i}\right| \leq A$ for all coefficients $a_{d i}$, the polynomials $p_{i j}(x, y)$ can be chosen such that it holds

$$
p_{i j}(x, y) \in \mathbb{Z}[x, y], \quad \operatorname{deg}\left(p_{i j}\right) \leq C_{3}, \quad H\left(p_{i j}\right), H(P) \leq C_{4} A^{C_{5}}
$$

for some constants C_{3}, C_{4}, C_{5}, depending only on r.
Comments for the proof. We may take for $P(x, y) \in Z[x, y]$ the product of the norms $\operatorname{Norm}_{K / \mathbb{Q}}\left(x_{i}-\xi x_{j}\right)$, for all components of W. Control of degree and heights is best done by using an Arithmetic Bézout Theorem, getting for example

$$
h(P) \leq D^{r} \log (r+2)(\log A+6 r) .
$$

Application of the Arithmetic Nullstellensatz

Arithmetic Hilbert Nullstellensatz. Let $\mathrm{x}=\left(x_{1}, \ldots, x_{n}\right)$. Let $f_{1}, \ldots, f_{s} \in \mathbb{Z}[\mathrm{x}]$ be polynomials of degree at most d and suppose that $g \in \mathbb{Z}[\mathrm{x}]$ vanishes on the zero-set of the polynomials f_{i}. Let $\Delta=$ $\max (d, \operatorname{deg}(g))$ and suppose that $H(g) \leq H, H\left(f_{1}\right), \ldots, H\left(f_{s}\right) \leq H$.
Then there are $g_{i} \in \mathbb{Z}[\mathrm{x}]$ and non-zero integers a, l, such that:
(N1) $g_{1} f_{1}+\cdots+g_{s} f_{s}=a g^{l}$.
(N2) $|a| \leq C_{6} H^{C_{7}}$, where C_{6} and C_{7} depend only on n, s, and \triangle.
Proposition 5. There are $\varepsilon_{1}>0$ and C_{8}, C_{9}, depending only on r, with the following property. Let $G<\left(\mathbb{F}_{p}^{*}\right)^{r}$ be a subgroup. Let $G_{i j}$ be the image of G by the homomorphism $\Phi_{i j}(\gamma)=\gamma_{i} / \gamma_{j}$.
Then at least one of the following three statements holds:
(i) There are two indices $j<i$ such $\left|G_{i j}\right| \leq C_{8}$.
(ii) $p \leq C_{9}$.
(iii) There is $\gamma=\left(\gamma_{1}, \ldots, \gamma_{r}\right) \in G$ such that

$$
\bar{a}_{1} \gamma_{1}+\cdots+\bar{a}_{r} \gamma_{r} \neq 0
$$

whenever $a_{1}, \ldots, a_{r} \in \mathbb{Z}$ and $0<\sum\left|a_{i}\right| \leq p^{\varepsilon_{1}}$.

Idea of proof, I

Fix $\gamma \in G$ and assume that (ii) fails. Then it must fail for $\gamma^{d}, d=1,2, \ldots$ and we obtain a system of equations

$$
f_{d}(\gamma):=\bar{a}_{d 1} \gamma_{1}^{d}+\cdots+\bar{a}_{d r} \gamma_{r}^{d}=0, \quad(1 \leq d \leq r(r-1) / 2)
$$

for certain $a_{d s} \in \mathbb{Z}$ with $0<\sum_{i}\left|a_{d i}\right| \leq p^{\varepsilon_{1}}$.
The polynomials f_{i} define a variety W. The last part of Corollary of Proposition 4 yields a polynomial $P=\prod p_{i j}\left(x_{i}, x_{j}\right)$, with $1 \leq j<i \leq r$ and with controlled degree and height, such that P vanishes on W. By the Arithmetic Nullstellensatz, there are polynomials g_{i} with integer coefficients such that

$$
g_{1} f_{1}+g_{2} f_{2}+\cdots+g_{D} f_{D}=a P^{l}
$$

with $a \neq 0$ and $|a|<C_{6} p^{C_{7} \varepsilon_{1}}$, with C_{6} and C_{7} depending only on r. We reduce the Hilbert equation $(\bmod p)$ and evaluate it at γ, getting

$$
\bar{a} \bar{P}(\gamma)^{l}=0 .
$$

Idea of proof, II

If $p>C_{9}$ and $\varepsilon_{1}<1 /\left(2 C_{7}\right)$, then $\bar{a} \neq 0$ and we get $\bar{P}(\gamma)^{l}=0$. The polynomial $\bar{P}(x) \in \mathbb{F}_{p}[\mathrm{x}]$ is homogeneous and not identically 0 , because p is large and $H(P)$ is small relative to p.

Therefore, $\bar{P}(\gamma)=0$. Since P factors as a product of homogeneous polynomials $p_{i j}$, it follows that $\bar{p}_{i j}\left(\gamma_{i} / \gamma_{j}, 1\right)=0$ for some choice of indices $j<i$, also depending on γ.
Since the number of pairs $\{i, j\}$ with $j<i$ is $(r-1) r / 2$, there is a pair $\{j, i\}$ such that

$$
\left|\left\{\gamma \in G_{i j}: \bar{p}_{i j}(\gamma, 1)=0\right\}\right|>\frac{2}{r^{2}}\left|G_{i j}\right| .
$$

We have the bounds

$$
H\left(p_{i j}\right), H(P) \leq C_{4} H^{C_{5}}
$$

Now we apply Proposition 2 to this situation, taking $\varepsilon=2 / r^{2}$. Thus if ε_{1} is small enough as a function of r alone and p is large enough as a function of r alone then statements (ii) and (iii) of that proposition do not hold. The only possibility left is that $\left|G_{i j}\right|$ is bounded as a function of r.

Several variables

Let $\mathfrak{M} \subset \mathbb{Z}^{r}$. For $\mathfrak{m}=\left(m_{1}, \ldots, m_{r}\right) \in \mathfrak{M}$ and $\mathrm{x}=\left(x_{1}, \ldots, x_{r}\right)$ we denote by $\mathrm{x}^{\mathfrak{m}}$ the associated monomial $x_{1}^{m_{1}} \cdots x_{r}^{m_{r}}$. We also write $|\mathfrak{m}|=$ $\left|m_{1}\right|+\cdots+\left|m_{r}\right|$

Proposition 6. Let r and $K \geq 1$ be given. Then there are $\varepsilon_{2}, \varepsilon_{3}, C_{10}$, C_{11}, depending only on K and r, with the following property. Let $G<$ $\left(\mathbb{F}_{p}^{*}\right)^{r}$ and $\mathfrak{M} \subset \mathbb{Z}^{r}$, with $\max |\mathfrak{m}| \leq K$. Let also $\eta_{\mathfrak{m}} \in \mathbb{F}_{p}^{*}$, $(\mathfrak{m} \in \mathfrak{M})$. For $\mathfrak{M} \subset \mathbb{Z}^{r}$ let $G_{\mathfrak{M}}$ denote the image of G by the homomorphism $\Phi_{\mathfrak{M}}: G \rightarrow$ $\left(\mathbb{F}_{p}^{*}\right)^{|\mathfrak{M}|}$ given by $\gamma \mapsto\left(\gamma^{\mathfrak{m}}\right)_{\mathfrak{m} \in \mathfrak{M}}$.
Then at least one of the following three statements holds.
(i) There are $\mathfrak{m} \neq \mathfrak{m}^{\prime} \in \mathfrak{M}$ such that $\left|G_{\left\{\mathfrak{m}-\mathfrak{m}^{\prime}\right\}}\right| \leq C_{10}$.
(ii) $p \leq C_{11}$.
(iii) For at least $\varepsilon_{2}|G|$ elements $\gamma=\left(\gamma_{1}, \ldots, \gamma_{r}\right) \in G$ it holds

$$
\sum_{\mathfrak{m} \in \mathfrak{M}} \bar{a}_{\mathfrak{m}} \eta_{\mathfrak{m}} \gamma^{\mathfrak{m}} \neq 0
$$

whenever

$$
0<\sum_{\mathfrak{m} \in \mathfrak{M}}\left|a_{\mathfrak{m}}\right| \leq p^{\varepsilon_{3}}
$$

Comments about the proof, I

The proof is long and complicated and is done in several steps, proceeding by contradiction.

Step 0: Choose M^{\prime} much larger than $M=\max |\mathfrak{m}|$ and $d_{i}, i=$ $1, \ldots, M^{\prime}$ a very lacunary sequence of increasing integers. Take $\gamma \in G$ and assume that $\gamma^{d_{i}}$ fails in (iii) for $i=1, \ldots, M^{\prime}$.

Step I: This yields a homogeneous linear system of M^{\prime} equations in the M unknowns η_{m} :

$$
\sum_{\mathfrak{m} \in \mathfrak{M}} \bar{a}_{\mathfrak{m}} \eta_{\mathfrak{m}} \gamma^{d_{i} \mathfrak{m}}=0
$$

Step II: Since there are many equations, one can work with a reduced set \mathfrak{M}^{*} of exponents for which $a_{\mathfrak{m}} \neq 0$. Thus we may assume the validity of this condition, which proves to be essential in what follows.

Comments about the proof, II

Step III: We eliminate the coefficients $\eta_{\mathfrak{m}}$ by taking the determinant associated to a subset of equations (Cramer's Rule). Each determinant yields a relation of the same type but relative to a new set of exponents. The lacunarity of the d_{i} ensures that no new exponent arises twice from the determinant expansion.
Since there is a very large number of such relations, one obtains a large set of relations in which the coefficients $\eta_{\mathfrak{m}}$ are all 1 and in addition all coefficients $a_{\mathfrak{m}}$ are not 0 . Thus it suffices to prove the proposition with these additional assumptions.

Step IV: Prove the case $r=1$ by appealing to a quantitative version of Proposition 5 where the conclusion holds for many $\gamma \in G$.

Step V: Proceed by induction on r by using the homomorphisms $G \rightarrow$ $G_{\left\{\mathfrak{m}-\mathfrak{m}^{\prime}\right\}}$ appropriately to show that (i) of Proposition 5 must hold for a non-trivial pair ($\mathfrak{m}, \mathfrak{m}^{\prime}$).

Step VI: Since now $l=\left|G_{\left\{\mathfrak{m}-\mathfrak{m}^{\prime}\right\}}\right|$ is small, one can kill $G_{\left\{\mathfrak{m}-\mathfrak{m}^{\prime}\right\}}$ by replacing G by G^{l}. This allows the induction step from $r-1$ to r.

The steps in the proof of Theorem 1

Step I: Apply the circle method in \mathbb{F}_{p} to compute a smoothed weighted number of solutions of

$$
\left(a_{1} x^{d_{1}}-l_{1}, \ldots, a_{r} x^{d_{r}}-l_{r}\right) \in \mathcal{B}
$$

with $\mathcal{B}=\left[1, N_{1}\right] \times \cdots \times\left[1, N_{r}\right]$. For a given x the weighted counting (with respect to a smooth weight function F with support in \mathcal{B}) is

$$
\frac{1}{p^{r}} \sum_{\lambda \in \mathbb{F}_{p}^{r}} e_{p}\left(-\sum_{i=1}^{r} \lambda_{i} a_{i} x^{k_{i}}\right) e_{p}\left(\sum_{i=1}^{r} \lambda_{i} l_{i}\right) \widehat{F}(\boldsymbol{\lambda})
$$

where $\widehat{F}(\boldsymbol{\lambda})$ is the $(\bmod p)$ Fourier transform.
For any $\eta>0$ the Fourier transform is essentially supported in the box

$$
\mathcal{L}=\left\{\boldsymbol{\lambda}:\left|\lambda_{i}\right|<p^{1+\eta} / N_{i} \quad(i=1, \ldots, r)\right\}
$$

while outside of this box it is $O\left(p^{-K}\right)$, for any fixed $K>0$.
Step II: We want to mimic what was done earlier for the case $r=2$ when we set $x=y^{t} z$ and use the Bourgain estimate to conclude with a lower bound. The difficulty is to show that such a t exists.

A finite covering theorem

The key to conclude the proof is a covering theorem for a finite set of points in a metric space X with distance function $\delta(u, v)$ and diameter function $\Delta(Y)$ on subsets $Y \subset X$.

Proposition 7. Let X be a metric space and let \mathcal{E} be a set of points of X of cardinality $|\mathcal{E}|=r$ and let $\varepsilon>0$.
Then there is a partition

$$
\mathcal{E}=\mathcal{E}_{1} \cup \cdots \cup \mathcal{E}_{s}
$$

such that

$$
\max _{\sigma} \Delta\left(\mathcal{E}_{\sigma}\right) \leq \frac{1}{2 r} \kappa \varepsilon, \quad \min _{\sigma \neq \tau} \delta\left(\mathcal{E}_{\sigma}, \mathcal{E}_{\tau}\right) \geq \kappa \varepsilon
$$

for some constant

$$
\left(5 r^{2}\right)^{-r} \leq \kappa \leq 1 .
$$

Conclusion

We take $\mathcal{E}=\{1, \ldots, r\}$ and write $\left(d_{i}-d_{j}, p-1\right)=(p-1)^{1-\varepsilon_{i j}}$. Then $\delta(i, j)=\varepsilon_{i j}$ is a distance function on \mathcal{E}.
For each σ choose $i_{\sigma} \in \mathcal{E}_{\sigma}$ and set

$$
t=\prod_{\sigma=1}^{s} \prod_{j \in \mathcal{E}_{\sigma}} \frac{p-1}{\left(k_{i_{\sigma}}-k_{j}, p-1\right)} .
$$

Then

$$
\begin{aligned}
\left(t d_{i_{\sigma}}-t d_{j}, p-1\right) & =p-1 \quad \text { if } j \in \mathcal{E}_{\sigma} \\
\left(t d_{i_{\sigma}}-t d_{i_{\tau}}, p-1\right) & \leq p^{1-\kappa \varepsilon / 2} \quad \text { if } \sigma \neq \tau
\end{aligned}
$$

The first equation shows that the substitution $x=y^{t} z$ clumps together the terms involving $x^{d_{i}}\left(i \in \mathcal{E}_{\sigma}\right)$ in the exponential sum as

$$
\sum_{\sigma=1}^{s}\left(\sum_{i \in \mathcal{E}_{\sigma}} \lambda_{i} a_{i} z^{d_{i}}\right) y^{t d_{i \sigma}} .
$$

Proposition 6 is essential for proving that for a positive density of z it holds $\sum_{i \in \mathcal{E}_{\sigma}} \lambda_{i} a_{i} z^{d_{i}} \neq 0$. The second equation shows that the $y^{t d_{i \sigma}}$ are uncorrelated enough to apply the estimate for fixed z. The rest is as for $r=2$.

THE END

