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The decimation problem

Let A ∈ Z(mod p) \ {0} and (d, p − 1) = 1, p an odd prime. Then
x 7→ Axd induces a permutation πd,A of Z(mod p). Consider

Even := {0,2,4, . . . , p− 1} ⊂ {0,1,2,3, . . . , p− 1} ∼= Z (mod p).

Then the question is to determine all cases in which πd,A(Even) = Even.
We may assume that (d, A) 6= (1,1) and 1 < d < p/2.

The following conjecture is due to Goresky and Kappler.
Conjecture GK The only cases in which πd,A(Even) = Even and 1 <

d < p/2 are

(p, d, A) = (5,3,3), (7,1,5), (11,9,3), (11,3,7), (11,5,9), (13,1,5).
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The following conjecture is due to Goresky and Kappler.
Conjecture GK The only cases in which πd,A(Even) = Even and 1 <

d < p/2 are

(p, d, A) = (5,3,3), (7,1,5), (11,9,3), (11,3,7), (11,5,9), (13,1,5).

The conjecture has been verified numerically for p < 2 × 106 and re-
cently (preprint 2008) proved for p > 2.26×1055 by Bourgain, Cochrane,
Paulhus, and Pinner.



A reformulation

The problem is equivalent to showing that the equation

A(2x)d = 2y − 1

in Z(mod p)× Z(mod p) has a solution in the box

B =
{
1, . . . ,

p− 1

2

}
×
{
1, . . . ,

p− 1

2

}
.
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If not, then

(x, A2d−1xd) (mod p) ∈ B+ (0,−2)

has no solutions.

This appears to be very unlikely because on average one expects

p
|B|
p2

∼
1

4
p

solutions.



The Fourier method

The study of the number of solutions of (ax, bxd) ∈ B for a general box B
is easily reduced to the question of bounds for

S(u, v) =
∑

x∈Z (mod p)

ep(auxd + vx)

with ep(x) = e2πix/p and u, v ∈ Z(mod p) not both 0.

If

S(u, v) = O

(
p

(log p)2

)
then one can prove the asymptotic formula∣∣∣(ax, bxd) ∈ B

∣∣∣ ∼ |B|
p

.

By Weil estimate, |S(u, v)| ≤ (d− 1)
√

p. Thus the real difficulties occur if
d � √

p/(log p)2.



The Sum–Product Method

A new combinatorial method for studying the general exponential sum

S =
∑

x∈Z (mod p)

ep

( r∑
i=1

aix
di
)

has been introduced by Bourgain uses the sum–product theorem: There
is an absolute constant δ > 0 such that if A ⊂ Z(mod p) then

max(|A + A|, |A ·A|) ≥ min
(
p, |A|1+δ

)
.
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p, |A|1+δ

)
.

Proposition 1. Given r ∈ N and ε > 0, there are δ > 0 and C , depending
only on r and ε, with the following property. If p > C is a prime and
1 ≤ d1 < · · · < dr < p− 1 satisfy

(di, p− 1) < p1−ε (1 ≤ i ≤ r)

(di − dj, p− 1) < p1−ε (1 ≤ j < i ≤ r)

then for (a1, . . . , ar) ∈ (Z(mod p))r \ {0} it holds∣∣∣∣∣ ∑
x∈Z (mod p)

ep

(
a1xd1 + · · ·+ arx

dr
) ∣∣∣∣∣ < p1−δ.



Solution of the decimation problem for large p

This solves the decimation problem for large p provided

(d− 1, p− 1) < p1−ε.

In order to deal with the remaining case, note that if (d− 1, p− 1) ≥ p1−ε

then xd and x are correlated in the sense that xd ≡ xu(mod p) where
ut ≡ 1(mod p) with t = (d−1)/(d−1, p−1) ≤ pε. Now write x = ytz

and get (x, Axd) = (ytz, Aytzd). When varying y and z (not 0), each x

occurs exactly p− 1 times, counting multiplicities.

Let B be a box (mod p) with sides of length N1, N2. For fixed z

and varying y , the Fourier method shows that the number of solutions of
(ytz, Aytzd) ∈ B is ∼ N1N2/p (as expected), provided uz + vAzd 6= 0

for |u| < pδ , |v| < pδ , with (u, v) 6= (0,0).

An elementary counting of the exceptional z now yields for some δ =

δ(ε) > 0 the lower bound∣∣∣(x, Axd) ∈ B
∣∣∣ ≥ (

1−
2t

p− 1

)N1N2

p
+ O

(
p1−δ

)
.



The main result

Theorem 1. Given r ≥ 2 and ε > 0 there are B = B(r, ε) > 0,
c = c(r, ε) > 0, δ = δ(r, ε) > 0, such that the following holds. Let
1 ≤ d1 < · · · < dr < p− 1 be such that

(di, p− 1) < p1−ε (1 ≤ i ≤ r)

(di − dj, p− 1) <
p

B
(1 ≤ j < i ≤ r).

Then for p ≥ C(r, ε), all a1, . . . , ar ∈ [1, p− 1], and any rectangular box

B ⊂ (Z (mod p))r

it holds ∣∣∣(aix
di, (i = 1, . . . , r)

)
∈ B

∣∣∣ ≥ c
|B|

pr−1
+ O

(
p1−δ

)
.

(The result is meaningful only if |B| � pr−δ .)



How hard is to define a subgroup of F∗p?

Denote by X the reduction (mod p) of X .

Proposition 2. Let d ≥ 2, H ≥ 1, and q a prime number. Let G < F∗p
be a subgroup of order coprime with q . Then at least one of the following
three statements holds.

(i) |G| divides ∆ for some integer ∆ with φ(∆) ≤ d, where φ(n) is
Euler’s function.

(ii) p ≤ 3(q+1)d2
H(q+1)d.

(iii) There is γ ∈ G such that for every polynomial f(x) ∈ Z[x] \ {0} of
degree at most d and height H(f) ≤ H it holds f̄(γ) 6= 0.
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(iii) There is γ ∈ G such that for every polynomial f(x) ∈ Z[x] \ {0} of
degree at most d and height H(f) ≤ H it holds f̄(γ) 6= 0.

The lower bound (i) for |G| is sharp. Take p ≡ 1(mod m), d = φ(m),
and G the subgroup of the mth roots of unity. The cyclotomic factors of
xm − 1 have height not more than 2m and degree not more than φ(m).
Now (ii) fails for large p, (iii) fails for every element of G, and (i) holds with
equality.



The proof, I

The Mahler measure M(f) of f ∈ C[x] with leading coefficient a0 is

M(f) = exp

(
1

2π

∫ 2π

0
log

∣∣∣f(eiθ)
∣∣∣dθ

)
= |a0|

∏
f(α)=0

max(1, |α|).

Its main properties are:
(m1) Multiplicativity: M(fg) = M(f)M(g).
(m2) M(f(xn)) = M(f(x)) for n ∈ N.
(m3) Comparison: If H(f) is the height of f of degree d, then

(d + 1)−
1
2 M(f) ≤ H(f) ≤

( d

bd/2c

)
M(f).

Let γ be a generator of the cyclic group G. Then γqi
, i = 0,1, . . . are

all generators of G, because q does not divide |G|. Suppose now that
(iii) fails and p > H . Then for every integer i ≥ 0 there is a polynomial
fi(x) ∈ Z[x], of degree at most d, height H(fi) ≤ H , such that

f̄i

(
γqi)

= 0

and f̄i not identically 0.



The proof, II

We may further assume that each fi(x) is irreducible. If not, it factors in
Z[x] (by Gauss Lemma). Then ḡ

(
γqi
)

= 0 holds for some irreducible
factor g(x) of fi(x) of degree less than d, again in Z[x]. By (m1) its
Mahler measure does not exceed M(fi); by (m3) it cannot exceed 2dH .
Thus f̄i

(
γqi
)
= 0 holds for certain irreducible polynomials with height

H(fi) ≤ 2dH.

Consider now the two polynomials f̄0(x) and f̄1(x
q). They have the com-

mon root γ , hence their resultant R vanishes in Fp:

R
(
f̄0(x), f̄1(x

q)
)
= 0.

This simply means that the resultant of f0(x) and f1(x
q) is divisible by p.

Equivalently, for α a root of f0(x) and a0 the leading coefficient of f0(x),
it holds

N := a
q deg(f1)
0 NormQ(α)/Q f1(α

q) ≡ 0 (mod p).



The proof, III

Suppose first that N 6= 0. Let a0 be the leading coefficient of f0(x) and
let α1, . . . , αr , where r = deg(f0), be a full set of conjugates of α. Then

p ≤ |N | = |a0|q deg(f1)
r∏

i=1

|f1(α
q
i )|

≤ (deg(f1) + 1)rH(f1)
r

(
|a0|

r∏
i=1

max(1, |αi|)
)q deg(f1)

≤ (d + 1)d(2dH)dM(α)qd ≤ (d + 1)(q+2)d/2(2dH)(q+1)d

because H(f) ≤ 2dH and M(α) ≤ (d + 1)
1
2H(f0).

This easily yields (ii) of the proposition.

If instead N = 0 the resultant vanishes, thus f0(x) and f1(x
q) have a

common root. Since f0 is irreducible, we infer that f0(x) divides f1(x
q).

Next, we make the same construction with f1 and f2 and again (ii) fol-
lows unless f1(x) divides f2(x

q). By induction, we get either (ii) or fi(x)

divides fi+1(x
q) for every index i.



The proof, IV

Moreover, if (ii) does not hold the irreducible polynomials fi(x) are
uniquely determined. (Hint: Consider the resultant of fi and an irreducible
polynomial g with H(g) ≤ 2dH and with a same root (mod p).)



The proof, IV

Moreover, if (ii) does not hold the irreducible polynomials fi(x) are
uniquely determined. (Hint: Consider the resultant of fi and an irreducible
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Hence if q does not divide |G| the sequence of polynomials fi(x) is peri-
odic and, by Euler’s congruence, the period is a divisor of φ(|G|).
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zation of roots of unity, fi+1/fi is a product of cyclotomic polynomials.
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Moreover, if (ii) does not hold the irreducible polynomials fi(x) are
uniquely determined. (Hint: Consider the resultant of fi and an irreducible
polynomial g with H(g) ≤ 2dH and with a same root (mod p).)

Hence if q does not divide |G| the sequence of polynomials fi(x) is peri-
odic and, by Euler’s congruence, the period is a divisor of φ(|G|).

Since fi(x) divides fi+1(x
q), the sequence (M(fi))i=1,2,... is increas-

ing; by periodicity, it must be a constant, say c. Thus the quotient
fi+1(x

q)/fi(x) has Mahler measure 1 and, by Kronecker’s characteri-
zation of roots of unity, fi+1/fi is a product of cyclotomic polynomials.

By induction, fi(x
qi
)/f0(x) is a product of cyclotomic polynomials. Since

the degree of fi(x
qi
) is unbounded, fi must eventually have a root which

is a root of unity, whence it is a cyclotomic polynomial because it is irre-
ducible. Thus c = 1, hence every fi is a cyclotomic polynomial. There-
fore, f0(x) divides x∆ − 1 for some ∆ with φ(∆) = deg(f0). Hence
the generator γ satisfies γ∆ = 1, |G| divides ∆, and (i) holds.



Refinements

Corollary. Let d ≥ 2, H ≥ 1, and let G < F∗p be a subgroup. Then at
least one of the following three statements holds.
(i) |G| ≤ ∆2 for some integer ∆ with φ(∆) ≤ d.
(ii) p ≤ 34d2

H4d.
(iii) There is γ ∈ G such that for every polynomial f(x) ∈ Z[x] \ {0} of

degree at most d and height H(f) ≤ H it holds f̄(γ) 6= 0.
Proof. Apply Proposition 2 to the two subgroups of G of elements with
order coprime with 2 and 3.

Proposition 3. Let d ≥ 2, 0 < ε < 1, H ≥ 1. There are C1(d, ε) > 0,
C2(d, ε) > 0, depending only on d and ε, with the following property. Let
G < F∗p be a subgroup. Then at least one of the following three statements
holds.
(i) |G| ≤ C1(d, ε).
(ii) p ≤ C2(d, ε)H8d3/ε.
(iii) For at least (1−ε)|G| elements γ ∈ G and every polynomial f(x) ∈

Z[x]\{0} of degree bounded by d and with height H(f) ≤ H it holds
f̄(γ) 6= 0.



Idea of proof for Proposition 3

Let E be the exceptional set of γ ∈ G, namely

E =

{
γ ∈ G : f̄(γ) = 0 for some f(x) ∈ Z[x] \ {0},

1 ≤ deg(f) ≤ d, H(f) ≤ H

}
.

We want to show that E has small cardinality. It will suffice to show that
there are many translates of E disjoint from each other.



Idea of proof for Proposition 3

Let E be the exceptional set of γ ∈ G, namely

E =

{
γ ∈ G : f̄(γ) = 0 for some f(x) ∈ Z[x] \ {0},

1 ≤ deg(f) ≤ d, H(f) ≤ H

}
.

We want to show that E has small cardinality. It will suffice to show that
there are many translates of E disjoint from each other.

We choose translates by powers γk
0 of a suitable element of G. If two

polynomials A(x) and B(x) vanish on the intersection of two different
translates, it means that there exists γ ∈ G such that A(γ) = 0 and
B(γγk

0) = 0. Then the resultant R(y) of A(x) and B(xyk) with respect
to x will vanish for y = γ0.

The degree and height of R(x) will be controlled by quantities D , H1

(with approriate bounds), and k. Then if R(x) is not identically 0 we will
obtain a contradiction with the corollary to Proposition 2 by choosing γ0

the element of G whose existence is provided by that corollary. This will
show that translates of E by small powers of γ0 are disjoint.



Intersections of Fermat varieties



Intersections of Fermat varieties

Proposition 4. Given r ∈ N, there is D = D(r) ≥ 1 with the following
property. Let 0 ≤ d0 < d1 < · · · < dD be integers and let Vdµ be a
hypersurface defined by an equation

r∑
i=0

aµigi(x)x
dµ
i = 0

where the factors gi(x) are homogeneous polynomials in x =

(x0, . . . , xr), of the same degree and not identically 0, and where for each
i the coefficients aµi are complex numbers, not all 0. Let W denote the
projective variety

W :=
D⋂

µ=0

Vdµ.

Then every irreducible component Y of W satisfies at least one of:
(i) Y is contained in one of the hypersurfaces gi(x) = 0.
(ii) Y is contained in some hyperplane xi − cxj = 0 with j < i and

c ∈ C.
Remark. The proof shows that D(r) = r(r + 1)/2 is admissible.



Proof of Proposition 4, I

Let Y be an irreducible component of W . If Y is empty or a point this is
trivial, hence we may assume that dim(Y ) ≥ 1.

If a coordinate xi vanishes identically on Y we simply take c = 0. Hence
there is no loss of generality in assuming that xi is not identically 0 on Y .

We pass to inhomogeneous coordinates and work in the function field L

of Y . Let Ai = xi/x0 (i = 0, . . . , r), hence A0 = 1, and write A =

(A0, A1, . . . , Ar) where now Ai ∈ L∗. Let s = dim(Y ); then L is a
finite extension L = C(ξ, t(0)) of C(t(0)) with t(0) = (t1, . . . , ts) purely
transcendental over C and ξ algebraic over C(t(0)), with f(ξ, t(0)) = 0.

Let δ be a generic derivation δ of C(t(0)) defined by δC = 0 and δt(0) =

t(1) componentwise, where t(1) is purely transcendental over C(t(0)),
and extend δ by means of δt(l) = t(l+1) (l = 0,1, . . . ), where t(l+1) is
purely transcendental over C(t(0), . . . , t(l)). Then set

δξ = −
1

fξ(ξ, t(0))

s∑
i=1

fti(ξ, t(0))t(1)
i .



Proof of Proposition 4, II

Suppose the functions gi(A)Am
i (i = 0, . . . , r) are linearly dependent

over C. Then their Wronskian with respect to δ vanishes:

Ψ := det


g0(A)Am

0 g1(A)Am
1 . . . gr(A)Am

r
δ(g0(A)Am

0 ) δ(g1(A)Am
1 ) . . . δ(gr(A)Am

r )
· · . . . ·

δr(g0(A)Am
0 ) δr(g1(A)Am

1 ) . . . δr(gr(A)Am
r )

 = 0.

The function (A0 · · ·Ar)−mΨ is the determinant of an (r +1)× (r +1)

matrix with entries aij (i, j = 1, . . . , r + 1), where aij is a polynomial in
m of degree at most i−1, with coefficients in Λ, hence it is a polynomial in
m of degree at most r(r+1)/2. Thus if the Wronskian Ψ is not identically
0 there are not more than r(r + 1)/2 possible values of m for which the
Wronskian vanishes.

On the other hand, by hypothesis the relation of linear dependence holds
for the r(r + 1)/2 + 1 values m = dµ (µ = 0,1, . . . , r(r + 1)/2) and
we conclude that Ψ = 0 identically.



Proof of Proposition 4, III
(A powerful Vandermonde determinant)

A simple calculation shows that the highest power of m in the expansion
of (A0 · · ·Ar)−mΨ is

g0(A) · · · gr(A)Vand

(
δA0

A0
,
δA1

A1
, . . . ,

δAr

Ar

)
mr(r+1)/2

where Vand(x0, . . . , xr) is the Vandermonde determinant.

Since Y is irreducible, the identical vanishing of this term implies that either

gi(A) = 0 for some i, or δAi
Ai

=
δAj
Aj

for some i 6= j .

In the former case, statement (i) of the proposition holds.

In the latter case, it must be the case that δ(Ai/Aj) = 0, hence Ai/Aj =

xi/xj is in the field of constants for δ . Since δ is a generic derivation, the
field of constants for δ is C and statement (ii) follows.



Controlling degrees and coefficients

Corollary. In particular, if D = r(r + 1)/2, gi(x) = 1, dµ = µ, there
are finitely many non-zero homogeneous polynomials pij(x, y), 0 ≤ j <

i ≤ r, such that the polynomial

P (x) :=
∏
j<i

pij(xi, xj)

vanishes identically on W . Moreover, if adi ∈ Z and |adi| ≤ A for all
coefficients adi, the polynomials pij(x, y) can be chosen such that it holds

pij(x, y) ∈ Z[x, y], deg(pij) ≤ C3, H(pij), H(P ) ≤ C4AC5

for some constants C3, C4, C5, depending only on r.



Controlling degrees and coefficients

Corollary. In particular, if D = r(r + 1)/2, gi(x) = 1, dµ = µ, there
are finitely many non-zero homogeneous polynomials pij(x, y), 0 ≤ j <

i ≤ r, such that the polynomial

P (x) :=
∏
j<i

pij(xi, xj)

vanishes identically on W . Moreover, if adi ∈ Z and |adi| ≤ A for all
coefficients adi, the polynomials pij(x, y) can be chosen such that it holds

pij(x, y) ∈ Z[x, y], deg(pij) ≤ C3, H(pij), H(P ) ≤ C4AC5

for some constants C3, C4, C5, depending only on r.

Comments for the proof. We may take for P (x, y) ∈ Z[x, y] the product
of the norms NormK/Q(xi − ξxj), for all components of W . Control of
degree and heights is best done by using an Arithmetic Bézout Theorem,
getting for example

h(P ) ≤ Dr log(r + 2)(logA + 6r).



Application of the Arithmetic Nullstellensatz

Arithmetic Hilbert Nullstellensatz. Let x = (x1, . . . , xn). Let
f1, . . . , fs ∈ Z[x] be polynomials of degree at most d and suppose that
g ∈ Z[x] vanishes on the zero-set of the polynomials fi. Let ∆ =

max(d,deg(g)) and suppose that H(g) ≤ H , H(f1), . . . , H(fs) ≤ H .
Then there are gi ∈ Z[x] and non-zero integers a, l, such that:

(N1) g1f1 + · · ·+ gsfs = a gl .
(N2) |a| ≤ C6HC7 , where C6 and C7 depend only on n, s, and ∆.

Proposition 5. There are ε1 > 0 and C8, C9, depending only on r,
with the following property. Let G < (F∗p)r be a subgroup. Let Gij be the
image of G by the homomorphism Φij(γ) = γi/γj .
Then at least one of the following three statements holds:
(i) There are two indices j < i such |Gij| ≤ C8.
(ii) p ≤ C9.
(iii) There is γ = (γ1, . . . , γr) ∈ G such that

a1γ1 + · · ·+ arγr 6= 0

whenever a1, . . . , ar ∈ Z and 0 <
∑
|ai| ≤ pε1 .



Idea of proof, I

Fix γ ∈ G and assume that (ii) fails. Then it must fail for γd, d = 1,2, . . .

and we obtain a system of equations

fd(γ) := ad1γd
1 + · · ·+ adrγ

d
r = 0, (1 ≤ d ≤ r(r − 1)/2)

for certain ads ∈ Z with 0 <
∑

i |adi| ≤ pε1 .

The polynomials fi define a variety W . The last part of Corollary of Propo-
sition 4 yields a polynomial P =

∏
pij(xi, xj), with 1 ≤ j < i ≤ r and

with controlled degree and height, such that P vanishes on W . By the
Arithmetic Nullstellensatz, there are polynomials gi with integer coefficients
such that

g1f1 + g2f2 + · · ·+ gDfD = aP l

with a 6= 0 and |a| < C6pC7ε1 , with C6 and C7 depending only on r. We
reduce the Hilbert equation (mod p) and evaluate it at γ , getting

aP̄ (γ)l = 0.



Idea of proof, II

If p > C9 and ε1 < 1/(2C7), then a 6= 0 and we get P̄ (γ)l = 0. The
polynomial P̄ (x) ∈ Fp[x] is homogeneous and not identically 0, because
p is large and H(P ) is small relative to p.

Therefore, P̄ (γ) = 0. Since P factors as a product of homogeneous
polynomials pij , it follows that pij(γi/γj,1) = 0 for some choice of indices
j < i, also depending on γ .
Since the number of pairs {i, j} with j < i is (r − 1)r/2, there is a pair
{j, i} such that ∣∣∣{γ ∈ Gij : pij(γ,1) = 0

}∣∣∣ > 2

r2
|Gij|.

We have the bounds

H(pij), H(P ) ≤ C4HC5.

Now we apply Proposition 2 to this situation, taking ε = 2/r2. Thus if ε1 is
small enough as a function of r alone and p is large enough as a function
of r alone then statements (ii) and (iii) of that proposition do not hold. The
only possibility left is that |Gij| is bounded as a function of r.



Several variables

Let M ⊂ Zr . For m = (m1, . . . , mr) ∈ M and x = (x1, . . . , xr) we
denote by xm the associated monomial x

m1
1 · · ·xmr

r . We also write |m| =
|m1|+ · · ·+ |mr|

Proposition 6. Let r and K ≥ 1 be given. Then there are ε2, ε3, C10,
C11, depending only on K and r, with the following property. Let G <

(F∗p)r and M ⊂ Zr , with max |m| ≤ K . Let also ηm ∈ F∗p, (m ∈ M). For
M ⊂ Zr let GM denote the image of G by the homomorphism ΦM : G →
(F∗p)|M| given by γ 7→ (γm)m∈M.
Then at least one of the following three statements holds.
(i) There are m 6= m′ ∈ M such that |G{m−m′}| ≤ C10.
(ii) p ≤ C11.
(iii) For at least ε2|G| elements γ = (γ1, . . . , γr) ∈ G it holds∑

m∈M

am ηmγm 6= 0

whenever

0 <
∑

m∈M

|am| ≤ pε3.



Comments about the proof, I

The proof is long and complicated and is done in several steps, proceeding
by contradiction.

Step 0: Choose M ′ much larger than M = max |m| and di, i =

1, . . . , M ′ a very lacunary sequence of increasing integers. Take γ ∈ G

and assume that γdi fails in (iii) for i = 1, . . . , M ′.

Step I: This yields a homogeneous linear system of M ′ equations in the
M unknowns ηm: ∑

m∈M

am ηmγdim = 0.

Step II: Since there are many equations, one can work with a reduced set
M∗ of exponents for which am 6= 0. Thus we may assume the validity of
this condition, which proves to be essential in what follows.



Comments about the proof, II

Step III: We eliminate the coefficients ηm by taking the determinant asso-
ciated to a subset of equations (Cramer’s Rule). Each determinant yields
a relation of the same type but relative to a new set of exponents. The
lacunarity of the di ensures that no new exponent arises twice from the
determinant expansion.
Since there is a very large number of such relations, one obtains a large
set of relations in which the coefficients ηm are all 1 and in addition all
coefficients am are not 0. Thus it suffices to prove the proposition with
these additional assumptions.

Step IV: Prove the case r = 1 by appealing to a quantitative version of
Proposition 5 where the conclusion holds for many γ ∈ G.

Step V: Proceed by induction on r by using the homomorphisms G →
G{m−m′} appropriately to show that (i) of Proposition 5 must hold for a
non-trivial pair (m, m′).

Step VI: Since now l =
∣∣∣G{m−m′}

∣∣∣ is small, one can kill G{m−m′} by re-

placing G by Gl . This allows the induction step from r − 1 to r.



The steps in the proof of Theorem 1

Step I: Apply the circle method in Fp to compute a smoothed weighted
number of solutions of

(a1xd1 − l1, . . . , arx
dr − lr) ∈ B

with B = [1, N1]×· · ·× [1, Nr]. For a given x the weighted counting (with
respect to a smooth weight function F with support in B) is

1

pr

∑
λ∈Fr

p

ep

(
−

r∑
i=1

λiaix
ki

)
ep

( r∑
i=1

λili

)
F̂ (λ)

where F̂ (λ) is the (mod p) Fourier transform.
For any η > 0 the Fourier transform is essentially supported in the box

L =
{
λ : |λi| < p1+η/Ni (i = 1, . . . , r)

}
while outside of this box it is O(p−K), for any fixed K > 0.

Step II: We want to mimic what was done earlier for the case r = 2 when
we set x = ytz and use the Bourgain estimate to conclude with a lower
bound. The difficulty is to show that such a t exists.



A finite covering theorem

The key to conclude the proof is a covering theorem for a finite set of points
in a metric space X with distance function δ(u, v) and diameter function
∆(Y ) on subsets Y ⊂ X .

Proposition 7. Let X be a metric space and let E be a set of points of X

of cardinality |E| = r and let ε > 0.
Then there is a partition

E = E1 ∪ · · · ∪ Es

such that

max
σ

∆(Eσ) ≤
1

2r
κε, min

σ 6=τ
δ(Eσ, Eτ) ≥ κε

for some constant

(5r2)−r ≤ κ ≤ 1.



Conclusion

We take E = {1, . . . , r} and write (di − dj, p− 1) = (p− 1)1−εij . Then
δ(i, j) = εij is a distance function on E .
For each σ choose iσ ∈ Eσ and set

t =
s∏

σ=1

∏
j∈Eσ

p− 1

(kiσ − kj, p− 1)
.

Then

(tdiσ − tdj, p− 1) = p− 1 if j ∈ Eσ,

(tdiσ − tdiτ , p− 1) ≤ p1−κε/2 if σ 6= τ.

The first equation shows that the substitution x = ytz clumps together the
terms involving xdi (i ∈ Eσ) in the exponential sum as

s∑
σ=1

( ∑
i∈Eσ

λiaiz
di

)
ytdiσ .

Proposition 6 is essential for proving that for a positive density of z it holds∑
i∈Eσ λiaiz

di 6= 0. The second equation shows that the ytdiσ are uncor-
related enough to apply the estimate for fixed z . The rest is as for r = 2.



THE END


