# p-adic "hermitian" line bundles 

Amnon Besser

## Motivation and setup

$X / K$ smooth
$\iota / X$ a line bundle

## Motivation and setup

$X / K$ smooth
$\mathcal{L} / X$ a line bundle
When $K=\mathbb{C}$, a metric on $\llcorner$ plays an important role in
Arakelov Geometry

## Motivation and setup

$X / K$ smooth
$\mathcal{L} X$ a line bundle
When $K=\mathbb{C}$, a metric on $\llcorner$ plays an important role in
Arakelov Geometry
$\left[K: \mathbb{Q}_{p}\right]<\infty$,
log - choice of a $p$-adic log,

## Motivation and setup

$X / K$ smooth
$\iota / X$ a line bundle
When $K=\mathbb{C}$, a metric on $\llcorner$ plays an important role in
Arakelov Geometry
$\left[K: \mathbb{Q}_{p}\right]<\infty$,
log - choice of a $p$-adic log,
Q: What is the analogue of a metric in this case
Motivation: The theory of $p$-adic height pairings

## Coleman integration

This theory originally developed by Robert Coleman in the 80's
Current version: Combination of B. with Vologodski.

## Coleman integration

This theory originally developed by Robert Coleman in the 80's
Current version: Combination of B. with Vologodski. Idea: "Solve" a system of equations on $X$.

$$
\begin{aligned}
d y_{0} & =0 \\
d y_{1} & =\omega_{1} y_{0} \\
d y_{2} & =\omega_{2} y_{1}
\end{aligned}
$$

This can be done locally if the system is integrable

## Coleman integration

This theory originally developed by Robert Coleman in the 80's
Current version: Combination of B. with Vologodski. Idea: "Solve" a system of equations on $X$.

$$
\begin{aligned}
d y_{0} & =0 \\
d y_{1} & =\omega_{1} y_{0} \\
d y_{2} & =\omega_{2} y_{1}
\end{aligned}
$$

$$
\ldots
$$

This can be done locally if the system is integrable
Q: How to match local solutions?

## Frobenius invariant path

A: Use Frobenius $\phi$ and impose
Condition: $\phi^{*}\left(y_{0}, y_{2}, \cdots\right)$ is a solution of the equation above with $\omega_{i}$ replaced by $\phi^{*} \omega_{i}$.
Technically:

- An equation above is a vector bundle with a unipotent connection. These form a Tannakian category.


## Frobenius invariant path

A: Use Frobenius $\phi$ and impose
Condition: $\phi^{*}\left(y_{0}, y_{2}, \cdots\right)$ is a solution of the equation above with $\omega_{i}$ replaced by $\phi^{*} \omega_{i}$.
Technically:

- An equation above is a vector bundle with a unipotent connection. These form a Tannakian category.
- Local solutions form fiber functors. Automorphisms of a fiber functor are loops. Isomorphisms between two fiber functors are paths between points.


## Frobenius invariant path

A: Use Frobenius $\phi$ and impose
Condition: $\phi^{*}\left(y_{0}, y_{2}, \cdots\right)$ is a solution of the equation above with $\omega_{i}$ replaced by $\phi^{*} \omega_{i}$.
Technically:

- An equation above is a vector bundle with a unipotent connection. These form a Tannakian category.
- Local solutions form fiber functors. Automorphisms of a fiber functor are loops. Isomorphisms between two fiber functors are paths between points.
- Frobenius acts on paths and loops. Coleman integration corresponds to extending local solutions along (unique) Frobenius invariant paths.


## Coleman functions

Above gives
( $M, \nabla$ ) - an integrable connection on $X . \Rightarrow$ Canonical paralel translation $v_{x, y}: M_{x} \rightarrow M_{y}$ for $x, y \in X(K)$, commuting with everything you can think of.

## Coleman functions

Above gives
( $M, \nabla$ ) - an integrable connection on $X . \Rightarrow$ Canonical paralel translation $v_{x, y}: M_{x} \rightarrow M_{y}$ for $x, y \in X(K)$, commuting with everything you can think of.
Definition: An abstract Coleman function on $X$ with values in $\mathcal{F}$ (coherent $O_{X}$-module) is a fourtuple $\left(M, \nabla,\left(m_{x} \in M_{x}\right)_{x \in X(\bar{K})}, s\right)$ s.t.

- $(M, \nabla)$ as before
- $v_{x, y}\left(m_{x}\right)=m_{y}$
- $s \in \operatorname{Hom}(M, \mathcal{F})$.

Coleman functions are connected components of the category of abstract Coleman functions. They give rise to actual locally analytic functions.
Notations: $o_{\text {Col }}(X, \mathcal{F}), o_{\mathrm{Col}}(X):=o_{\mathrm{Col}}\left(X, o_{X}\right)$,
$\Omega_{\text {Col }}^{i}(X):=o_{\mathrm{Col}}\left(X, \Omega_{X}^{i}\right)$.

## Basic properties

Key property: The sequence

$$
0 \rightarrow K \rightarrow O_{\mathrm{Col}}(X) \xrightarrow{d} \Omega_{\mathrm{Col}}^{1}(X) \xrightarrow{d} \Omega_{\mathrm{Col}}^{2}(X)
$$

is exact.

## Basic properties

Key property: The sequence

$$
0 \rightarrow K \rightarrow O_{\mathrm{Col}}(X) \xrightarrow{d} \Omega_{\mathrm{Col}}^{1}(X) \xrightarrow{d} \Omega_{\mathrm{Col}}^{2}(X)
$$

is exact.
Consequence: $o_{\text {Col }}(X)$ contains iterated integrals, e.g,

$$
\int\left(\eta \cdot \int \omega\right)
$$

Locally every Coleman function looks like this.
Base change: we can work over $\overline{\mathbb{Q}_{p}}$.

## The $p$-adic $\bar{\partial}$ operator

Definition: $O_{\text {Col, } 1}(X, \mathcal{F}) \subset O_{\text {Col }}(X, \mathcal{F})$, subset of functions with $E_{1} \subset M, E_{2}=M / E_{1}, E_{i}$ trivial.

## The $p$-adic $\bar{\partial}$ operator

Definition: $O_{\mathrm{Col}, 1}(X, \mathcal{F}) \subset O_{\mathrm{Col}}(X, \mathcal{F})$, subset of functions with $E_{1} \subset M, E_{2}=M / E_{1}, E_{i}$ trivial. $p$-adic $\bar{\partial}-\bar{\partial}: O_{\mathrm{Col}, 1}(X, \mathcal{F}) \rightarrow H_{\mathcal{F}}^{\otimes}(X):=H_{\mathrm{dR}}^{1}(X) \otimes \mathcal{F}(X)$.

## The $p$-adic $\bar{\partial}$ operator

Definition: $O_{\mathrm{Col}, 1}(X, \mathcal{F}) \subset O_{\mathrm{Col}}(X, \mathcal{F})$, subset of functions with $E_{1} \subset M, E_{2}=M / E_{1}, E_{i}$ trivial. $p$-adic $\bar{\partial}-\bar{\partial}: O_{\mathrm{Col}, 1}(X, \mathcal{F}) \rightarrow H_{\mathcal{F}}^{\otimes}(X):=H_{\mathrm{dR}}^{1}(X) \otimes \mathcal{F}(X)$. Local definition: $\bar{\partial}\left(f \times \int \omega\right)=[\omega] \otimes f$.

- This is well defined
- The definition globalizes.


## The $p$-adic $\bar{\partial}$ operator

Definition: $O_{\mathrm{Col}, 1}(X, \mathcal{F}) \subset O_{\mathrm{Col}}(X, \mathcal{F})$, subset of functions with $E_{1} \subset M, E_{2}=M / E_{1}, E_{i}$ trivial. $p$-adic $\bar{\partial}-\bar{\partial}: O_{\mathrm{Col}, 1}(X, \mathcal{F}) \rightarrow H_{\mathcal{F}}^{\otimes}(X):=H_{\mathrm{dR}}^{1}(X) \otimes \mathcal{F}(X)$. Local definition: $\bar{\partial}\left(f \times \int \omega\right)=[\omega] \otimes f$.

- This is well defined
- The definition globalizes.


## The $p$-adic $\bar{\partial}$ operator

Definition: $O_{\mathrm{Col}, 1}(X, \mathcal{F}) \subset O_{\mathrm{Col}}(X, \mathcal{F})$, subset of functions with $E_{1} \subset M, E_{2}=M / E_{1}, E_{i}$ trivial.
$p$-adic $\bar{\partial}-\bar{\partial}: O_{\mathrm{Col}, 1}(X, \mathcal{F}) \rightarrow H_{\mathcal{F}}^{\otimes}(X):=H_{\mathrm{dR}}^{1}(X) \otimes \mathcal{F}(X)$.
Local definition: $\bar{\partial}\left(f \times \int \omega\right)=[\omega] \otimes f$.

- This is well defined
- The definition globalizes.

Theorem: There is a short exact sequence,

$$
0 \rightarrow \mathcal{F}(X) \rightarrow o_{\mathrm{Col}, 1}(X, \mathcal{F}) \xrightarrow{\bar{J}} H_{\mathcal{F}}^{\otimes}(X) .
$$

If $X$ is affine, then this sequence is exact on the right.

## Gluing on $H_{\mathscr{F}}^{\otimes}$

$\left\{U_{i}\right\}$ - affine covering of $X$

## Gluing on $H_{\mathcal{F}}^{\otimes}$

$\left\{U_{i}\right\}$ - affine covering of $X$
$\Psi: H^{0}\left(\left(U_{i}\right), H_{\mathcal{F}}^{\otimes}\right) \rightarrow H^{1}(X, \mathcal{F})$ - Boundary map in Cech cohomology:

## Gluing on $H_{\mathcal{F}}^{\otimes}$

$\left\{U_{i}\right\}$ - affine covering of $X$
$\Psi: H^{0}\left(\left(U_{i}\right), H_{\mathcal{F}}^{\otimes}\right) \rightarrow H^{1}(X, \mathcal{F})$ - Boundary map in Cech cohomology:
$\alpha_{i} \in H_{\mathcal{F}}^{\otimes}\left(U_{i}\right)$ compatible on intersections
$\xrightarrow{\Psi}$ cocycle $\bar{\partial}^{-1} \alpha_{i}-\bar{\partial}^{-1} \alpha_{j}$

## Gluing on $H_{\mathcal{F}}^{\otimes}$

$\left\{U_{i}\right\}$ - affine covering of $X$
$\Psi: H^{0}\left(\left(U_{i}\right), H_{\mathcal{F}}^{\otimes}\right) \rightarrow H^{1}(X, \mathcal{F})$ - Boundary map in Cech cohomology:
$\alpha_{i} \in H_{\mathcal{F}}^{\otimes}\left(U_{i}\right)$ compatible on intersections
$\xrightarrow{\Psi}$ cocycle $\bar{\partial}^{-1} \alpha_{i}-\bar{\partial}^{-1} \alpha_{j}$
If $\left(\alpha_{i}\right)$ comes from $\alpha \in H_{F}^{\otimes}(X)$ then $\Psi\left(\left(\alpha_{i}\right)\right)=\cup \alpha$

## Gluing on $H_{\mathcal{F}}^{\otimes}$

$\left\{U_{i}\right\}$ - affine covering of $X$
$\Psi: H^{0}\left(\left(U_{i}\right), H_{\mathcal{F}}^{\otimes}\right) \rightarrow H^{1}(X, \mathcal{F})$ - Boundary map in Cech cohomology:
$\alpha_{i} \in H_{\mathcal{F}}^{\otimes}\left(U_{i}\right)$ compatible on intersections
$\xrightarrow{\Psi}$ cocycle $\bar{\partial}^{-1} \alpha_{i}-\bar{\partial}^{-1} \alpha_{j}$
If $\left(\alpha_{i}\right)$ comes from $\alpha \in H_{\mathcal{F}}^{\otimes}(X)$ then $\Psi\left(\left(\alpha_{i}\right)\right)=\cup \alpha$
Conversly, the $\left(\alpha_{i}\right)$ come from $H_{\mathcal{F}}^{\otimes}(X)$ if and only if $\Psi\left(\left(\alpha_{i}\right)\right)$ is in the image of $\cup$.

## Log functions on line bundles

Moto: Over $\mathbb{C}$ easy to exponentiate, hard to take log. Over $\mathbb{Q}_{p}$ impossible to exponentiate, easy to take log.

## Log functions on line bundles

Moto: Over $\mathbb{C}$ easy to exponentiate, hard to take log. Over $\mathbb{Q}_{p}$ impossible to exponentiate, easy to take log. Over $\mathbb{C}$ - Often the norm enters only via its log.

## Log functions on line bundles

Moto: Over $\mathbb{C}$ easy to exponentiate, hard to take log. Over $\mathbb{Q}_{p}$ impossible to exponentiate, easy to take log. Over $\mathbb{C}$ - Often the norm enters only via its log.
$X / \overline{\mathbb{Q}_{p}}$ smooth
$\mathcal{L}$ a line bundle over $X$
$L^{*}=(\operatorname{Tot}(L)-0) \xrightarrow{\pi} X$

## Log functions on line bundles

Moto: Over $\mathbb{C}$ easy to exponentiate, hard to take log.
Over $\mathbb{Q}_{p}$ impossible to exponentiate, easy to take log. Over $\mathbb{C}$ - Often the norm enters only via its log.
$X / \overline{\mathbb{Q}_{p}}$ smooth
$\mathcal{L}$ a line bundle over $X$
$L^{*}=(\operatorname{Tot}(L)-0) \xrightarrow{\pi} X$
Definition: A log function on $\mathcal{L}$ is $\log _{\mathcal{L}} \in O_{\text {Col }}\left(L^{*}\right)$ such that:

- On a fiber $L_{x}$ we have $\log _{\perp}(\alpha \ell)=\log (\alpha)+\log _{\mathcal{L}}(\ell)$
- $\mathrm{d} \log _{L} \in O_{\mathrm{Col}, 1}\left(L^{*}, \Omega^{1}\right)$.


## Curvature

Set $H^{\otimes}(X):=H_{\mathcal{F}}^{\otimes}\left(X, \Omega^{1}\right)=H_{\mathrm{dR}}^{1}(X) \otimes \Omega^{1}(X)$.

## Curvature

Set $H^{\otimes}(X):=H_{\mathcal{F}}^{\otimes}\left(X, \Omega^{1}\right)=H_{\mathrm{dR}}^{1}(X) \otimes \Omega^{1}(X)$.
Definition: The curvature of $\log _{\mathcal{L}}$ is Curve $\left(\log _{\mathcal{L}}\right) \in H^{\otimes}(X)$
such that $\pi^{*} \operatorname{Curve}\left(\log _{\mathcal{L}}\right)=\bar{\partial} d \log _{\iota}$

## Curvature

Set $H^{\otimes}(X):=H_{\mathcal{F}}^{\otimes}\left(X, \Omega^{1}\right)=H_{\mathrm{dR}}^{1}(X) \otimes \Omega^{1}(X)$.
Definition: The curvature of $\log _{\mathcal{L}}$ is Curve $\left(\log _{L}\right) \in H^{\otimes}(X)$
such that $\pi^{*} \operatorname{Curve}\left(\log _{\mathcal{L}}\right)=\bar{\partial} d \log _{\mathcal{L}}$
Theorem: (X complete)

1. If $c h_{1}(\mathcal{L}) \in \operatorname{Im}\left(\cup: H_{\mathrm{dR}}^{1}(X) \otimes \Omega^{1}(X) \rightarrow H_{\mathrm{dR}}^{2}(X)\right)$, then Curve $\left(\log _{L}\right)$ exists and $\cup$ Curve $\left(\log _{L}\right)=c h_{1}(L)$.
2. If $\cup(\alpha)=c_{1}(\llcorner )$, then there is a log function on $L$ with curvature $\alpha$.

## Curvature

Set $H^{\otimes}(X):=H_{\mathcal{F}}^{\otimes}\left(X, \Omega^{1}\right)=H_{\mathrm{dR}}^{1}(X) \otimes \Omega^{1}(X)$.
Definition: The curvature of $\log _{\mathcal{L}}$ is Curve $\left(\log _{\mathcal{L}}\right) \in H^{\otimes}(X)$
such that $\pi^{*} \operatorname{Curve}\left(\log _{\mathcal{L}}\right)=\bar{\partial} d \log _{\mathcal{L}}$
Theorem: (X complete)

1. If $c h_{1}(L) \in \operatorname{Im}\left(\cup: H_{\mathrm{dR}}^{1}(X) \otimes \Omega^{1}(X) \rightarrow H_{\mathrm{dR}}^{2}(X)\right)$, then Curve $\left(\log _{L}\right)$ exists and $\cup$ Curve $\left(\log _{L}\right)=c h_{1}(L)$.
2. If $\cup(\alpha)=c_{1}(L)$, then there is a log function on $L$ with curvature $\alpha$.
Proof of 1: Choose an affine covering $\left(U_{i}\right)$.
Local curvatures pull back from $\alpha_{i} \in H^{\otimes}\left(U_{i}\right)$
Computation: $\Psi\left(\left(\alpha_{i}\right)\right)=c_{1}(L)$, hence the condition for Glueing the $\alpha_{i}$.

## Example: Green functions

$X / \overline{\mathbb{Q}_{p}}$ smooth complete curve.
We define a canonical log function on $O(\Delta) / X \times X$.
We fix splitting $H_{\mathrm{dR}}^{1}(X)=W \oplus \Omega^{1}(X)$.
$\pi_{1}, \pi_{2}: X \times X \rightarrow X$
$\left\{\omega_{1}, \ldots, \omega_{g}\right\}$ a basis of $\Omega^{1}(X)$
$\left\{\bar{\omega}_{1}, \ldots, \bar{\omega}_{g}\right\} \subset W, \operatorname{tr}\left(\bar{\omega}_{i} \cup \omega_{j}\right)=\delta_{i j}$

$$
\begin{aligned}
& \mu=\frac{1}{g} \sum_{i=1}^{g} \bar{\omega}_{i} \otimes \omega_{i} \in H^{\otimes}(X), \\
& \Phi \in H^{\otimes}(X \times X) \\
& \Phi=\pi_{1}^{*} \mu+\pi_{2}^{*} \mu-\sum_{i=1}^{g}\left(\pi_{1}^{*} \bar{\omega}_{i} \otimes \pi_{2}^{*} \omega_{i}+\pi_{2}^{*} \bar{\omega}_{i} \otimes \pi_{1}^{*} \omega_{i}\right)
\end{aligned}
$$

$\cup \Phi=c_{1}(O(\Delta)) \Rightarrow O(\Delta)$ has a log function with curvature $\Phi$ (not canonical yet)
Set $G=\log _{o(\Delta)}(1)$.
$G$ can be made canonical (up to const) by imposing:

- $G(x, y)=G(y, x)$
- Residue condition.


## metrized line bundles over $\mathbb{P}^{1}$

For $\mathbb{P}^{1}$ no $H^{1} \Rightarrow$ curvature for $\mathcal{L}$ is not defined if $\operatorname{deg} \mathcal{L} \neq 0$

## metrized line bundles over $\mathbb{P}^{1}$

For $\mathbb{P}^{1}$ no $H^{1} \Rightarrow$ curvature for $\mathcal{L}$ is not defined if $\operatorname{deg} \mathcal{L} \neq 0$ Solution: More Coleman functions
E.g. : $E \xrightarrow{\pi} \mathbb{P}^{1}$ elliptic

## metrized line bundles over $\mathbb{P}^{1}$

For $\mathbb{P}^{1}$ no $H^{1} \Rightarrow$ curvature for $\mathcal{L}$ is not defined if $\operatorname{deg} \mathcal{L} \neq 0$ Solution: More Coleman functions
E.g. : $E \xrightarrow{\pi} \mathbb{P}^{1}$ elliptic
$\omega \in \Omega^{1}(E), F_{\omega}(z)=\int_{0}^{z} \omega$

## metrized line bundles over $\mathbb{P}^{1}$

For $\mathbb{P}^{1}$ no $H^{1} \Rightarrow$ curvature for $\mathcal{L}$ is not defined if $\operatorname{deg} \mathcal{L} \neq 0$ Solution: More Coleman functions
E.g. : $E \xrightarrow{\pi} \mathbb{P}^{1}$ elliptic
$\omega \in \Omega^{1}(E), F_{\omega}(z)=\int_{0}^{z} \omega$
Then $F(-z)=-F(z) \Rightarrow F^{2}(-z)=F^{2}(z) \Rightarrow F^{2}$ descends to
$\mathbb{P}^{1}$ but is not a Coleman function there.
I have no general theory for this kind of functions yet
Idea: Should consider connections which are extensions of torsion line bundles with connection.

## Example

Consider $\phi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ s.t. $2(x, y)=(\phi(x), ?) . \operatorname{deg} \phi=4$ $\mathcal{L}$ ample line bundle on $\mathbb{P}^{1}$.

## Example

Consider $\phi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ s.t. $2(x, y)=(\phi(x), ?) . \operatorname{deg} \phi=4$
$\mathcal{L}$ ample line bundle on $\mathbb{P}^{1}$.
In algebraic dynamics: look for a metric on $\mathcal{L}$ such that $\phi^{*} L \cong \mathscr{L}^{4}$ is an isometry.

## Example

Consider $\phi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ s.t. $2(x, y)=(\phi(x), ?) . \operatorname{deg} \phi=4$
$\mathcal{L}$ ample line bundle on $\mathbb{P}^{1}$.
In algebraic dynamics: look for a metric on $\mathcal{L}$ such that $\phi^{*} L \cong L^{4}$ is an isometry.
Let $L^{\prime}=\pi^{*} L^{\prime}$
Easy: $\alpha=\omega \otimes[\eta]$ for any $\omega \in \Omega^{1}(E)$ and $[\eta]$ with
$\omega \cup[\eta]=\operatorname{deg} L^{\prime}$ is a curvature form for $L^{\prime}$ such that
$[2]^{*} \alpha=4 \alpha$

## Example

Consider $\phi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ s.t. $2(x, y)=(\phi(x), ?) . \operatorname{deg} \phi=4$
$\mathcal{L}$ ample line bundle on $\mathbb{P}^{1}$.
In algebraic dynamics: look for a metric on $\mathcal{L}$ such that $\phi^{*} L \cong \mathcal{L}^{4}$ is an isometry.
Let $L^{\prime}=\pi^{*} L$
Easy: $\alpha=\omega \otimes[\eta]$ for any $\omega \in \Omega^{1}(E)$ and $[\eta]$ with
$\omega \cup[\eta]=\operatorname{deg} L^{\prime}$ is a curvature form for $L^{\prime}$ such that
$[2]^{*} \alpha=4 \alpha$
[2]* acts by 2 on $\Omega^{1}(E) \Rightarrow \alpha$ lifts uniquly to a metric on $L^{\prime}$
such that $[2]^{*} L^{\prime} \cong\left(L^{\prime}\right)^{4}$ is an isometry
The metric descends to $\mathbb{P}^{1}$
Hope: get analogues of the real theory, including equidistribution results

## Higher rank bundles?

$\mathcal{V}$ - vector bundle on $X$.
Q: What should be a $p$-adic hermitian structure on $\mathcal{V}$ ?
First idea: $L^{*}$ is just the principal bundle associated with $\mathcal{L}$.
$d \log$ is a connection form on $\mathcal{L}$.
$\mathcal{P}$ - Frame bundle associated with $\mathcal{V}$
Over $\mathbb{R}-F\left(v_{1}, \cdots, v_{n}\right):=\left(\left\langle v_{i}, v_{j}\right\rangle\right)$.
$F$ is positive definite $\Rightarrow \log (F)$ exists.
Q: If there a $p$-adic analogue?
Problem: $\log (F)$ does not seem to satisfy any reasonable differential equation.

More concretely: Can we recover the equation for the metric from the associated connection over $\mathbb{R}$ ?
For $L$
$t$ - A section of $L, f=\langle t, t\rangle, \nabla t=\omega t$

$$
d f=2\langle\nabla t, t\rangle=2 \omega f
$$

So $d \log (f)=2 \omega$ and the equation for $f$ factors via $\log (f)$. For $\mathcal{V}$
$t_{i}$ - local basis
$\nabla t_{i}=\sum \omega_{i j} t_{j}$
$F_{i j}=\left\langle t_{i}, t_{j}\right\rangle$

$$
d F=F \Omega+\Omega^{t} F
$$

Which no longer factors via $\log F$.

## Secondary characteristic classes

$X / \mathbb{C}$
Real Deligne cohomology

$$
H_{\mathcal{D}}^{i}(X, \mathbb{R}(n))=H^{i}\left(X, M F\left(\Omega_{\bar{X}}^{\geq n} \xrightarrow{z \rightarrow z \pm \bar{z}} C^{\infty}(X) \otimes \mathbb{R}(n-1)\right)\right)
$$

Hermitian metric on $\mathcal{V}$ is $\mathcal{v} \cong \overline{\mathcal{V}^{*}}$ (does not incoporate positivity).
$\nabla$ a connection on $\mathcal{V} \Rightarrow \overline{\nabla^{*}}$ on $\mathcal{V}$
$\left.\operatorname{tr}\left(\text { Curve } \overline{\nabla^{*}}\right)^{n}\right)= \pm \overline{\left.\operatorname{tr}(\text { Curve } \bar{\nabla})^{n}\right)} \Rightarrow$ can use transgression to obtain $c_{n}(\mathcal{V}) \in H_{\mathcal{D}}^{2 n}(X, \mathbb{R}(n))$.
Conclusion: a Hermitian metric is a tool to compute characteristic classes in Deligne cohomology. Hope: p-adic Hermitian metric is a tool to compute characteristic classes in syntomic cohomology.

## Syntomic cohomology

$X / O_{K}$
$\phi: X \rightarrow X$ a lift of Frobenius of degree $q$.
$D R^{\bullet}$ - a complex computing de Rham cohomology for $X_{K} / K$ $H_{\mathrm{syn}}^{i}(X, n):=H^{i}\left(M F\left(\left(\phi^{*}-q^{n}\right): F^{n} D R^{\bullet} \rightarrow D R^{\bullet}\right)\right)$
Characteristic classes $c_{n}: K_{0}(X) \rightarrow H_{\mathrm{syn}}^{2 n}(X, n)$.

## $c_{1}$ for line bundles

$\left\{U_{i}\right\}$ - covering of $X$
$\left\llcorner/ X\right.$ associated with a cocycle $\left(g_{i j}\right)$
$D R^{\bullet}$ - Cech complex for $\left\{U_{i}\right\}$
$\phi: X \rightarrow X$ fixes $\left\{U_{i}\right\}$
Then $c_{1}(L)$ is represented by

$$
\left[\left(d \log \left(g_{i j}\right),\left(\log \left(\phi^{*} g_{i j} / g_{i j}^{q}\right)\right)\right]\right.
$$

Key observation: $\phi^{*} g_{i j} / g_{i j}^{q} \equiv 1(\bmod p)$

## Syntomic transgression

We try to mimic previous considerations in Deligne cohomology
$\phi^{*}$ on cohomology comes from $\phi^{*}$ on $\mathcal{V}$
$q^{n}$ on $H^{i}(\bullet, n)$ comes from $\phi_{q}$ - the $q$ 's Adams operation.
Can't expect $\phi^{*}=\psi_{q}$
But this is true in characteristic $p$
Idea: a metric on $\mathcal{V}$ is a deformation of $\phi^{*} \mathcal{V}$ to $\psi_{q} \mathcal{V}$ Having that we can deform the connection and obtain the required transgression

## A toy example: line bundles again

In previous setup Chose $s_{i} \in \mathcal{L}\left(U_{i}\right)$ s.t. $s_{i} / s_{j}=g_{i j}$
$\psi_{q} \mathcal{L}=\mathcal{L}^{q}$
$\phi^{*} L / L^{q}$ given by cocycle ( $\left.h_{i j}:=\phi^{*} g_{i j} / g_{i j}^{q}\right)$
Deform $\phi^{*} L / L^{q}$ to trivial bundle via family $L_{t}$ with cocycles $\left(h_{i j}^{t}\right)$ where $t$ goes from 1 to 0 .
Note: by the congruence on $h_{i j}$ this is well defined.

## Deformation of connection

$\nabla=\left(\nabla_{i}\right)-\nabla_{i}$ a connection on $\mathcal{L} / U_{i}$
"Curvature" - $\left[\left(\nabla_{i}^{2}\right),\left(\nabla_{i}-\nabla_{j}\right)\right]$.
E.g. Define $\nabla_{i}$ by $\nabla_{i}\left(s_{i}\right)=0$

Curvature is $\left[(0),\left(d \log \left(s_{i} / s_{j}\right)\right)\right]$ - represents de Rham $c_{1}$.
Deformation - Take the same definition for each $\nabla_{t}$ on $\mathcal{L}_{t}$.
Transgression

$$
d / d t \text { Curve } \nabla_{t}=d / d t\left(d \log h_{i j}^{t}\right)=d\left(\log \left(h_{i j}\right)\right)
$$

So transgression gives the right class.

