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Motivation and setup
X/K smooth
L/X a line bundle

When K = C, a metric on L plays an important role in
Arakelov Geometry
[K : Qp] < ∞,
log - choice of a p-adic log,
Q: What is the analogue of a metric in this case

Motivation: The theory of p-adic height pairings

p-adic “hermitian” line bundles – p.2/23



Motivation and setup
X/K smooth
L/X a line bundle
When K = C, a metric on L plays an important role in
Arakelov Geometry

[K : Qp] < ∞,
log - choice of a p-adic log,
Q: What is the analogue of a metric in this case

Motivation: The theory of p-adic height pairings

p-adic “hermitian” line bundles – p.2/23



Motivation and setup
X/K smooth
L/X a line bundle
When K = C, a metric on L plays an important role in
Arakelov Geometry
[K : Qp] < ∞,
log - choice of a p-adic log,

Q: What is the analogue of a metric in this case

Motivation: The theory of p-adic height pairings

p-adic “hermitian” line bundles – p.2/23



Motivation and setup
X/K smooth
L/X a line bundle
When K = C, a metric on L plays an important role in
Arakelov Geometry
[K : Qp] < ∞,
log - choice of a p-adic log,
Q: What is the analogue of a metric in this case

Motivation: The theory of p-adic height pairings

p-adic “hermitian” line bundles – p.2/23



Coleman integration
This theory originally developed by Robert Coleman in the
80’s
Current version: Combination of B. with Vologodski.

Idea: “Solve” a system of equations on X .

dy0 = 0

dy1 = ω1y0

dy2 = ω2y1

· · ·

This can be done locally if the system is integrable

Q: How to match local solutions?
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Frobenius invariant path
A: Use Frobenius φ and impose
Condition: φ∗(y0,y2, · · ·) is a solution of the equation above
with ωi replaced by φ∗ωi.
Technically:

An equation above is a vector bundle with a unipotent
connection. These form a Tannakian category.

Local solutions form fiber functors. Automorphisms of
a fiber functor are loops. Isomorphisms between two
fiber functors are paths between points.

Frobenius acts on paths and loops. Coleman
integration corresponds to extending local solutions
along (unique) Frobenius invariant paths.
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Coleman functions
Above gives
(M,∇) - an integrable connection on X . ⇒ Canonical paralel
translation vx,y : Mx → My for x,y ∈ X(K), commuting with
everything you can think of.

Definition: An abstract Coleman function on X with values
in F (coherent OX -module) is a fourtuple
(M,∇,(mx ∈ Mx)x∈X(K̄),s) s.t.

(M,∇) as before

vx,y(mx) = my

s ∈ Hom(M,F ).
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Coleman functions are connected components of the
category of abstract Coleman functions.
They give rise to actual locally analytic functions.

Notations: OCol(X ,F ), OCol(X) := OCol(X ,OX),

Ωi
Col(X) := OCol(X ,Ωi

X).
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Basic properties
Key property: The sequence

0 → K → OCol(X)
d
−→ Ω1

Col(X)
d
−→ Ω2

Col(X)

is exact.

Consequence: OCol(X) contains iterated integrals, e.g,
Z

(η ·

Z

ω)

Locally every Coleman function looks like this.

Base change: we can work over Qp.
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The p-adic ∂̄ operator
Definition: OCol,1(X ,F ) ⊂ OCol(X ,F ), subset of functions
with E1 ⊂ M, E2 = M/E1, Ei trivial.

p-adic ∂̄ - ∂̄ : OCol,1(X ,F ) → H⊗
F (X) := H1

dR(X)⊗F (X).

Local definition: ∂̄( f ×
R

ω) = [ω]⊗ f .

This is well defined

The definition globalizes.

Theorem: There is a short exact sequence,

0 → F (X) → OCol,1(X ,F )
∂̄
−→ H⊗

F (X) .

If X is affine, then this sequence is exact on the right.
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Gluing on H⊗
F

{Ui} - affine covering of X

Ψ : H0((Ui),H
⊗
F ) → H1(X ,F ) - Boundary map in Cech

cohomology:
αi ∈ H⊗

F (Ui) compatible on intersections
Ψ
−→ cocycle ∂̄−1αi − ∂̄−1α j

If (αi) comes from α ∈ H⊗
F (X) then Ψ((αi)) = ∪α

Conversly, the (αi) come from H⊗
F (X) if and only if Ψ((αi)) is

in the image of ∪.
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Log functions on line bundles
Moto: Over C easy to exponentiate, hard to take log.
Over Qp impossible to exponentiate, easy to take log.

Over C - Often the norm enters only via its log.

X/Qp smooth
L a line bundle over X
L∗ = (Tot(L)−0)

π
−→ X

Definition: A log function on L is logL ∈ OCol(L∗) such that:

On a fiber Lx we have logL(α`) = log(α)+ logL(`)

d logL ∈ OCol,1(L∗,Ω1).
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Curvature
Set H⊗(X) := H⊗

F (X ,Ω1) = H1
dR(X)⊗Ω1(X).

Definition: The curvature of logL is Curve(logL) ∈ H⊗(X)

such that π∗ Curve(logL) = ∂̄d logL
Theorem: (X complete)

1. If ch1(L) ∈ Im(∪ : H1
dR(X)⊗Ω1(X) → H2

dR(X)),
then Curve(logL) exists and ∪Curve(logL) = ch1(L).

2. If ∪(α) = c1(L), then there is a log function on L with
curvature α.

Proof of 1: Choose an affine covering (Ui).
Local curvatures pull back from αi ∈ H⊗(Ui)
Computation: Ψ((αi)) = c1(L), hence the condition for
Glueing the αi.
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Example: Green functions

X/Qp smooth complete curve.
We define a canonical log function on O(∆)/X ×X .
We fix splitting H1

dR(X) = W ⊕Ω1(X).
π1, π2 : X ×X → X
{ω1, . . . ,ωg} a basis of Ω1(X)
{ω̄1, . . . , ω̄g} ⊂W , tr(ω̄i ∪ω j) = δi j

µ =
1
g

g

∑
i=1

ω̄i ⊗ωi ∈ H⊗(X) ,

Φ ∈ H⊗(X ×X)

Φ = π∗
1µ+π∗

2µ−
g

∑
i=1

(π∗
1ω̄i ⊗π∗

2ωi +π∗
2ω̄i ⊗π∗

1ωi)
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∪Φ = c1(O(∆)) ⇒ O(∆) has a log function with curvature Φ
(not canonical yet)
Set G = logO(∆)(1).
G can be made canonical (up to const) by imposing:

G(x,y) = G(y,x)

Residue condition.
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metrized line bundles over P1

For P1 no H1 ⇒ curvature for L is not defined if degL 6= 0

Solution: More Coleman functions
E.g. : E

π
−→ P1 elliptic

ω ∈ Ω1(E), Fω(z) =
R z

0 ω
Then F(−z) = −F(z) ⇒ F2(−z) = F2(z) ⇒ F2 descends to
P1 but is not a Coleman function there.
I have no general theory for this kind of functions yet

Idea: Should consider connections which are extensions of

torsion line bundles with connection.
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Example
Consider φ : P1 → P1 s.t. 2(x,y) = (φ(x),?). degφ = 4
L ample line bundle on P1.

In algebraic dynamics: look for a metric on L such that
φ∗L ∼= L4 is an isometry.
Let L ′ = π∗L
Easy: α = ω⊗ [η] for any ω ∈ Ω1(E) and [η] with
ω∪ [η] = degL ′ is a curvature form for L ′ such that
[2]∗α = 4α
[2]∗ acts by 2 on Ω1(E) ⇒ α lifts uniquly to a metric on L ′

such that [2]∗L ′ ∼= (L ′)4 is an isometry
The metric descends to P1

Hope: get analogues of the real theory, including equidistri-

bution results
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Higher rank bundles?
V - vector bundle on X .
Q: What should be a p-adic hermitian structure on V ?
First idea: L∗ is just the principal bundle associated with L .
d log is a connection form on L .
P - Frame bundle associated with V
Over R - F(v1, · · · ,vn) := (〈vi,v j〉).
F is positive definite ⇒ log(F) exists.
Q: If there a p-adic analogue?

Problem: log(F) does not seem to satisfy any reasonable

differential equation.
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More concretely: Can we recover the equation for the
metric from the associated connection over R?
For L
t - A section of L , f = 〈t, t〉, ∇t = ωt

d f = 2〈∇t, t〉 = 2ω f

So d log( f ) = 2ω and the equation for f factors via log( f ).
For V
ti - local basis
∇ti = ∑ωi jt j

Fi j = 〈ti, t j〉

dF = FΩ+ΩtF

Which no longer factors via logF .
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Secondary characteristic classes
X/C

Real Deligne cohomology

Hi
D(X ,R(n)) = Hi(X ,MF(Ω≥n

X
z→z±z̄
−−−→C∞(X)⊗R(n−1)))

Hermitian metric on V is V ∼= V ∗ (does not incoporate
positivity).
∇ a connection on V ⇒ ∇∗ on V
tr(Curve∇∗)n) = ±tr(Curve∇)n) ⇒ can use transgression to
obtain cn(V ) ∈ H2n

D (X ,R(n)).
Conclusion: a Hermitian metric is a tool to compute
characteristic classes in Deligne cohomology.
Hope: p-adic Hermitian metric is a tool to compute
characteristic classes in syntomic cohomology.
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Syntomic cohomology
X/OK

φ : X → X a lift of Frobenius of degree q.
DR• - a complex computing de Rham cohomology for XK/K
Hi

syn(X ,n) := Hi(MF((φ∗−qn) : FnDR• → DR•))

Characteristic classes cn : K0(X) → H2n
syn(X ,n).
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c1 for line bundles
{Ui} - covering of X
L/X associated with a cocycle (gi j)
DR• - Cech complex for {Ui}
φ : X → X fixes {Ui}
Then c1(L) is represented by

[

(d log(gi j),(log(φ∗gi j/gq
i j))

]

Key observation: φ∗gi j/gq
i j ≡ 1 (mod p)
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Syntomic transgression
We try to mimic previous considerations in Deligne
cohomology
φ∗ on cohomology comes from φ∗ on V
qn on Hi(•,n) comes from φq - the q’s Adams operation.
Can’t expect φ∗ = ψq

But this is true in characteristic p
Idea: a metric on V is a deformation of φ∗V to ψqV
Having that we can deform the connection and obtain the
required transgression
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A toy example: line bundles again
In previous setup Chose si ∈ L(Ui) s.t. si/s j = gi j

ψqL = Lq

φ∗L/Lq given by cocycle (hi j := φ∗gi j/gq
i j)

Deform φ∗L/Lq to trivial bundle via family Lt with cocycles
(ht

i j) where t goes from 1 to 0.

Note: by the congruence on hi j this is well defined.
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Deformation of connection
∇ = (∇i) - ∇i a connection on L/Ui

“Curvature” - [(∇2
i ),(∇i −∇ j)].

E.g. Define ∇i by ∇i(si) = 0
Curvature is [(0),(d log(si/s j))] - represents de Rham c1.
Deformation - Take the same definition for each ∇t on Lt .
Transgression

d/dt Curve∇t = d/dt(d loght
i j) = d(log(hi j))

So transgression gives the right class.
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