p-adic "hermitian" line bundles

Amnon Besser

X/K smooth \mathcal{L}/X a line bundle

X/K smooth \mathcal{L}/X a line bundle When $K = \mathbb{C}$, a metric on \mathcal{L} plays an important role in Arakelov Geometry

X/K smooth \mathcal{L}/X a line bundle When $K = \mathbb{C}$, a metric on \mathcal{L} plays an important role in Arakelov Geometry $[K : \mathbb{Q}_p] < \infty$, log - choice of a *p*-adic log,

X/K smooth \mathcal{L}/X a line bundle When $K = \mathbb{C}$, a metric on \mathcal{L} plays an important role in Arakelov Geometry $[K : \mathbb{Q}_p] < \infty$, \log - choice of a *p*-adic log, Q: What is the analogue of a metric in this case

Motivation: The theory of *p*-adic height pairings

Coleman integration

This theory originally developed by Robert Coleman in the 80's Current version: Combination of B. with Vologodski.

Coleman integration

This theory originally developed by Robert Coleman in the 80's

Current version: Combination of B. with Vologodski. Idea: "Solve" a system of equations on *X*.

$$dy_0 = 0$$
$$dy_1 = \omega_1 y_0$$
$$dy_2 = \omega_2 y_1$$

This can be done locally if the system is integrable

Coleman integration

This theory originally developed by Robert Coleman in the 80's

Current version: Combination of B. with Vologodski. Idea: "Solve" a system of equations on *X*.

$$dy_0 = 0$$
$$dy_1 = \omega_1 y_0$$
$$dy_2 = \omega_2 y_1$$

This can be done locally if the system is integrable Q: How to match local solutions?

Frobenius invariant path

A: Use Frobenius ϕ and impose Condition: $\phi^*(y_0, y_2, \dots)$ is a solution of the equation above with ω_i replaced by $\phi^* \omega_i$. Technically:

An equation above is a vector bundle with a unipotent connection. These form a Tannakian category.

Frobenius invariant path

A: Use Frobenius ϕ and impose Condition: $\phi^*(y_0, y_2, \dots)$ is a solution of the equation above with ω_i replaced by $\phi^* \omega_i$. Technically:

- An equation above is a vector bundle with a unipotent connection. These form a Tannakian category.
- Local solutions form fiber functors. Automorphisms of a fiber functor are loops. Isomorphisms between two fiber functors are paths between points.

Frobenius invariant path

A: Use Frobenius ϕ and impose Condition: $\phi^*(y_0, y_2, \dots)$ is a solution of the equation above with ω_i replaced by $\phi^* \omega_i$. Technically:

- An equation above is a vector bundle with a unipotent connection. These form a Tannakian category.
- Local solutions form fiber functors. Automorphisms of a fiber functor are loops. Isomorphisms between two fiber functors are paths between points.
- Frobenius acts on paths and loops. Coleman integration corresponds to extending local solutions along (unique) Frobenius invariant paths.

Coleman functions

Above gives (M, ∇) - an integrable connection on X. \Rightarrow Canonical paralel translation $v_{x,y} : M_x \to M_y$ for $x, y \in X(K)$, commuting with everything you can think of.

Coleman functions

Above gives

 (M, ∇) - an integrable connection on X. \Rightarrow Canonical paralel translation $v_{x,y} : M_x \to M_y$ for $x, y \in X(K)$, commuting with everything you can think of.

Definition: An abstract Coleman function on *X* with values in \mathcal{F} (coherent \mathcal{O}_X -module) is a fourtuple $(M, \nabla, (m_x \in M_x)_{x \in X(\bar{K})}, s)$ s.t.

• (M, ∇) as before

$$v_{x,y}(m_x) = m_y$$

● $s \in \operatorname{Hom}(M, \mathcal{F})$.

Coleman functions are connected components of the category of abstract Coleman functions. They give rise to actual locally analytic functions.

Notations: $\mathcal{O}_{Col}(X, \mathcal{F})$, $\mathcal{O}_{Col}(X) := \mathcal{O}_{Col}(X, \mathcal{O}_X)$,

 $\Omega^i_{\operatorname{Col}}(X) := \mathcal{O}_{\operatorname{Col}}(X, \Omega^i_X).$

Basic properties

Key property: The sequence

$$0 \to K \to \mathcal{O}_{\mathsf{Col}}(X) \xrightarrow{\mathsf{d}} \Omega^1_{\mathsf{Col}}(X) \xrightarrow{\mathsf{d}} \Omega^2_{\mathsf{Col}}(X)$$

is exact.

Basic properties

Key property: The sequence

$$0 \to K \to \mathcal{O}_{\mathsf{Col}}(X) \xrightarrow{\mathsf{d}} \Omega^1_{\mathsf{Col}}(X) \xrightarrow{\mathsf{d}} \Omega^2_{\mathsf{Col}}(X)$$

is exact.

Consequence: $O_{Col}(X)$ contains iterated integrals, e.g,

$$\int (\eta \cdot \int \omega)$$

Locally every Coleman function looks like this. Base change: we can work over $\overline{\mathbb{Q}_p}$.

Definition: $\mathcal{O}_{\text{Col},1}(X, \mathcal{F}) \subset \mathcal{O}_{\text{Col}}(X, \mathcal{F})$, subset of functions with $E_1 \subset M$, $E_2 = M/E_1$, E_i trivial.

Definition: $\mathcal{O}_{\text{Col},1}(X, \mathcal{F}) \subset \mathcal{O}_{\text{Col}}(X, \mathcal{F})$, subset of functions with $E_1 \subset M$, $E_2 = M/E_1$, E_i trivial.

 $p\text{-adic }\bar{\partial} \, \text{-} \, \bar{\partial} : \mathcal{O}_{\text{Col},1}(X, \mathcal{F}) \to H^{\otimes}_{\mathcal{F}}(X) := H^{1}_{d\mathsf{R}}(X) \otimes \mathcal{F}(X).$

Definition: $\mathcal{O}_{\text{Col},1}(X, \mathcal{F}) \subset \mathcal{O}_{\text{Col}}(X, \mathcal{F})$, subset of functions with $E_1 \subset M$, $E_2 = M/E_1$, E_i trivial.

p-adic $\overline{\partial} - \overline{\partial} : \mathcal{O}_{\text{Col},1}(X, \mathcal{F}) \to H^{\otimes}_{\mathcal{F}}(X) := H^{1}_{dR}(X) \otimes \mathcal{F}(X).$ Local definition: $\overline{\partial}(f \times \int \omega) = [\omega] \otimes f.$

- This is well defined
- The definition globalizes.

Definition: $\mathcal{O}_{\text{Col},1}(X, \mathcal{F}) \subset \mathcal{O}_{\text{Col}}(X, \mathcal{F})$, subset of functions with $E_1 \subset M$, $E_2 = M/E_1$, E_i trivial.

p-adic $\overline{\partial} - \overline{\partial} : \mathcal{O}_{\text{Col},1}(X, \mathcal{F}) \to H^{\otimes}_{\mathcal{F}}(X) := H^{1}_{dR}(X) \otimes \mathcal{F}(X).$ Local definition: $\overline{\partial}(f \times \int \omega) = [\omega] \otimes f.$

- This is well defined
- The definition globalizes.

Definition: $\mathcal{O}_{\text{Col},1}(X, \mathcal{F}) \subset \mathcal{O}_{\text{Col}}(X, \mathcal{F})$, subset of functions with $E_1 \subset M$, $E_2 = M/E_1$, E_i trivial.

p-adic $\overline{\partial}$ - $\overline{\partial}$: $\mathcal{O}_{\text{Col},1}(X, \mathcal{F}) \to H^{\otimes}_{\mathcal{F}}(X) := H^{1}_{dR}(X) \otimes \mathcal{F}(X)$. Local definition: $\overline{\partial}(f \times \int \omega) = [\omega] \otimes f$.

- This is well defined
- The definition globalizes.

Theorem: There is a short exact sequence,

$$0 \to \mathcal{F}(X) \to \mathcal{O}_{\mathsf{Col},1}(X,\mathcal{F}) \xrightarrow{\bar{\partial}} H^{\otimes}_{\mathcal{F}}(X) \ .$$

If *X* is affine, then this sequence is exact on the right.

 $\{U_i\}$ - affine covering of X

Gluing on H^{\otimes}_{φ}

 $\{U_i\}$ - affine covering of X $\Psi: H^0((U_i), H_{\mathcal{F}}^{\otimes}) \to H^1(X, \mathcal{F})$ - Boundary map in Cech cohomology:

 $\{U_i\}$ - affine covering of X $\Psi: H^0((U_i), H_{\mathcal{F}}^{\otimes}) \to H^1(X, \mathcal{F})$ - Boundary map in Cech cohomology:

 $\alpha_i \in H^{\otimes}_{\mathcal{F}}(U_i)$ compatible on intersections

 $\xrightarrow{\Psi}$ cocycle $\bar{\partial}^{-1}\alpha_i - \bar{\partial}^{-1}\alpha_j$

 $\{U_i\}$ - affine covering of X $\Psi: H^0((U_i), H_{\mathcal{F}}^{\otimes}) \to H^1(X, \mathcal{F})$ - Boundary map in Cech cohomology:

 $\alpha_i \in H^{\otimes}_{\varphi}(U_i)$ compatible on intersections

$$\xrightarrow{\Psi}$$
 cocycle $\bar{\partial}^{-1} \alpha_i - \bar{\partial}^{-1} \alpha_j$

If (α_i) comes from $\alpha \in H_{\mathcal{F}}^{\otimes}(X)$ then $\Psi((\alpha_i)) = \cup \alpha$

 $\{U_i\}$ - affine covering of X $\Psi: H^0((U_i), H^{\otimes}_{\tau}) \to H^1(X, \mathcal{F})$ - Boundary map in Cech cohomology: $\alpha_i \in H^{\otimes}_{\tau}(U_i)$ compatible on intersections $\xrightarrow{\Psi}$ cocycle $\bar{\partial}^{-1}\alpha_i - \bar{\partial}^{-1}\alpha_j$ If (α_i) comes from $\alpha \in H^{\otimes}_{\tau}(X)$ then $\Psi((\alpha_i)) = \cup \alpha$ Conversity, the (α_i) come from $H^{\otimes}_{\varphi}(X)$ if and only if $\Psi((\alpha_i))$ is in the image of \cup .

Moto: Over \mathbb{C} easy to exponentiate, hard to take log. Over \mathbb{Q}_p impossible to exponentiate, easy to take log.

Moto: Over \mathbb{C} easy to exponentiate, hard to take log. Over \mathbb{Q}_p impossible to exponentiate, easy to take log. Over \mathbb{C} - Often the norm enters only via its log.

Moto: Over \mathbb{C} easy to exponentiate, hard to take log. Over \mathbb{Q}_p impossible to exponentiate, easy to take log. Over \mathbb{C} - Often the norm enters only via its log.

 $X/\overline{\mathbb{Q}_p} \text{ smooth}$ $\mathcal{L} \text{ a line bundle over } X$ $\mathcal{L}^* = (\text{Tot}(\mathcal{L}) - 0) \xrightarrow{\pi} X$

Moto: Over \mathbb{C} easy to exponentiate, hard to take log. Over \mathbb{Q}_p impossible to exponentiate, easy to take log. Over \mathbb{C} - Often the norm enters only via its log.

 $X/\overline{\mathbb{Q}_p}$ smooth \mathcal{L} a line bundle over X $\mathcal{L}^* = (\operatorname{Tot}(\mathcal{L}) - 0) \xrightarrow{\pi} X$ Definition: A log function on \mathcal{L} is $\log_{\mathcal{L}} \in \mathcal{O}_{\operatorname{Col}}(\mathcal{L}^*)$ such that:

• On a fiber \mathcal{L}_x we have $\log_{\mathcal{L}}(\alpha \ell) = \log(\alpha) + \log_{\mathcal{L}}(\ell)$

•
$$\mathsf{dlog}_{\mathcal{L}} \in \mathcal{O}_{\mathsf{Col},1}(\mathcal{L}^*, \Omega^1).$$

Set $H^{\otimes}(X) := H^{\otimes}_{\mathcal{F}}(X, \Omega^1) = H^1_{d\mathsf{R}}(X) \otimes \Omega^1(X).$

Set $H^{\otimes}(X) := H_{\mathcal{F}}^{\otimes}(X, \Omega^1) = H_{\mathsf{dR}}^1(X) \otimes \Omega^1(X)$. Definition: The curvature of $\log_{\mathcal{L}}$ is $\operatorname{Curve}(\log_{\mathcal{L}}) \in H^{\otimes}(X)$ such that $\pi^* \operatorname{Curve}(\log_{\mathcal{L}}) = \overline{\partial}d \log_{\mathcal{L}}$

Set $H^{\otimes}(X) := H_{\mathcal{F}}^{\otimes}(X, \Omega^{1}) = H_{dR}^{1}(X) \otimes \Omega^{1}(X)$. Definition: The curvature of $\log_{\mathcal{L}}$ is $Curve(\log_{\mathcal{L}}) \in H^{\otimes}(X)$ such that $\pi^{*}Curve(\log_{\mathcal{L}}) = \overline{\partial}d \log_{\mathcal{L}}$ Theorem: (X complete)

- 1. If $ch_1(\mathcal{L}) \in \operatorname{Im}(\cup : H^1_{dR}(X) \otimes \Omega^1(X) \to H^2_{dR}(X))$, then $\operatorname{Curve}(\log_{\mathcal{L}})$ exists and $\cup \operatorname{Curve}(\log_{\mathcal{L}}) = ch_1(\mathcal{L})$.
- 2. If $\cup(\alpha) = c_1(\mathcal{L})$, then there is a log function on \mathcal{L} with curvature α .

Set $H^{\otimes}(X) := H_{\mathcal{F}}^{\otimes}(X, \Omega^{1}) = H_{dR}^{1}(X) \otimes \Omega^{1}(X)$. Definition: The curvature of $\log_{\mathcal{L}}$ is $Curve(\log_{\mathcal{L}}) \in H^{\otimes}(X)$ such that $\pi^{*}Curve(\log_{\mathcal{L}}) = \overline{\partial}d \log_{\mathcal{L}}$ Theorem: (X complete)

- 1. If $ch_1(\mathcal{L}) \in \operatorname{Im}(\cup : H^1_{dR}(X) \otimes \Omega^1(X) \to H^2_{dR}(X))$, then $\operatorname{Curve}(\log_{\mathcal{L}})$ exists and $\cup \operatorname{Curve}(\log_{\mathcal{L}}) = ch_1(\mathcal{L})$.
- 2. If $\cup(\alpha) = c_1(\mathcal{L})$, then there is a log function on \mathcal{L} with curvature α .

Proof of 1: Choose an affine covering (U_i) . Local curvatures pull back from $\alpha_i \in H^{\otimes}(U_i)$ Computation: $\Psi((\alpha_i)) = c_1(\mathcal{L})$, hence the condition for Glueing the α_i .

Example: Green functions

 $\begin{array}{l} X/\overline{\mathbb{Q}_p} \text{ smooth complete curve.} \\ \text{We define a canonical log function on } \mathcal{O}(\Delta)/X \times X. \\ \text{We fix splitting } H^1_{\mathsf{dR}}(X) = W \oplus \Omega^1(X). \\ \pi_1, \pi_2 : X \times X \to X \\ \{\omega_1, \dots, \omega_g\} \text{ a basis of } \Omega^1(X) \\ \{\bar{\omega}_1, \dots, \bar{\omega}_g\} \subset W, \, \mathrm{tr}(\bar{\omega}_i \cup \omega_j) = \delta_{ij} \end{array}$

$$\begin{split} \mu &= \frac{1}{g} \sum_{i=1}^{g} \bar{\omega}_{i} \otimes \omega_{i} \in H^{\otimes}(X) , \\ \Phi &\in H^{\otimes}(X \times X) \\ \Phi &= \pi_{1}^{*} \mu + \pi_{2}^{*} \mu - \sum_{i=1}^{g} \left(\pi_{1}^{*} \bar{\omega}_{i} \otimes \pi_{2}^{*} \omega_{i} + \pi_{2}^{*} \bar{\omega}_{i} \otimes \pi_{1}^{*} \omega_{i} \right) \end{split}$$

 $\cup \Phi = c_1(\mathcal{O}(\Delta)) \Rightarrow \mathcal{O}(\Delta)$ has a log function with curvature Φ (not canonical yet) Set $G = \log_{\mathcal{O}(\Delta)}(1)$.

G can be made canonical (up to const) by imposing:

$$G(x,y) = G(y,x)$$

Residue condition.

For \mathbb{P}^1 no $H^1 \Rightarrow$ curvature for \mathcal{L} is not defined if deg $\mathcal{L} \neq 0$

For \mathbb{P}^1 no $H^1 \Rightarrow$ curvature for \mathcal{L} is not defined if $\deg \mathcal{L} \neq 0$ Solution: More Coleman functions E.g. : $E \xrightarrow{\pi} \mathbb{P}^1$ elliptic

For \mathbb{P}^1 no $H^1 \Rightarrow$ curvature for \mathcal{L} is not defined if deg $\mathcal{L} \neq 0$ Solution: More Coleman functions E.g. : $E \xrightarrow{\pi} \mathbb{P}^1$ elliptic $\omega \in \Omega^1(E), F_{\omega}(z) = \int_0^z \omega$

For \mathbb{P}^1 no $H^1 \Rightarrow$ curvature for \mathcal{L} is not defined if deg $\mathcal{L} \neq 0$ Solution: More Coleman functions E.g. : $E \xrightarrow{\pi} \mathbb{P}^1$ elliptic $\omega \in \Omega^1(E), F_{\omega}(z) = \int_0^z \omega$ Then $F(-z) = -F(z) \Rightarrow F^2(-z) = F^2(z) \Rightarrow F^2$ descends to \mathbb{P}^1 but is not a Coleman function there. I have no general theory for this kind of functions yet Idea: Should consider connections which are extensions of

torsion line bundles with connection.

Consider $\phi : \mathbb{P}^1 \to \mathbb{P}^1$ s.t. $2(x, y) = (\phi(x), ?)$. deg $\phi = 4$ \mathcal{L} ample line bundle on \mathbb{P}^1 .

Consider $\phi : \mathbb{P}^1 \to \mathbb{P}^1$ s.t. $2(x, y) = (\phi(x), ?)$. deg $\phi = 4$ \mathcal{L} ample line bundle on \mathbb{P}^1 . In algebraic dynamics: look for a metric on \mathcal{L} such that $\phi^* \mathcal{L} \cong \mathcal{L}^4$ is an isometry.

Consider $\phi : \mathbb{P}^1 \to \mathbb{P}^1$ s.t. $2(x, y) = (\phi(x), ?)$. deg $\phi = 4$ \mathcal{L} ample line bundle on \mathbb{P}^1 . In algebraic dynamics: look for a metric on \mathcal{L} such that $\phi^* \mathcal{L} \cong \mathcal{L}^4$ is an isometry. Let $\mathcal{L}' = \pi^* \mathcal{L}$ Easy: $\alpha = \omega \otimes [\eta]$ for any $\omega \in \Omega^1(E)$ and $[\eta]$ with $\omega \cup [\eta] = \deg \mathcal{L}'$ is a curvature form for \mathcal{L}' such that $[2]^* \alpha = 4\alpha$

Consider $\phi : \mathbb{P}^1 \to \mathbb{P}^1$ s.t. $2(x, y) = (\phi(x), ?)$. deg $\phi = 4$ \mathcal{L} ample line bundle on \mathbb{P}^1 . In algebraic dynamics: look for a metric on \mathcal{L} such that $\phi^* \mathcal{L} \cong \mathcal{L}^4$ is an isometry. Let $\mathcal{L}' = \pi^* \mathcal{L}$ Easy: $\alpha = \omega \otimes [\eta]$ for any $\omega \in \Omega^1(E)$ and $[\eta]$ with $\omega \cup [\eta] = \deg \mathcal{L}'$ is a curvature form for \mathcal{L}' such that $[2]^*\alpha = 4\alpha$ $[2]^*$ acts by 2 on $\Omega^1(E) \Rightarrow \alpha$ lifts uniquly to a metric on \mathcal{L}' such that $[2]^* \mathcal{L}' \cong (\mathcal{L}')^4$ is an isometry The metric descends to \mathbb{P}^1

Hope: get analogues of the real theory, including equidistribution results

Higher rank bundles?

 \mathcal{V} - vector bundle on X.

Q: What should be a *p*-adic hermitian structure on \mathcal{V} ? First idea: \mathcal{L}^* is just the principal bundle associated with \mathcal{L} . $d \log$ is a connection form on \mathcal{L} .

 $\ensuremath{\mathcal{P}}$ - Frame bundle associated with $\ensuremath{\mathcal{V}}$

Over \mathbb{R} - $F(v_1, \cdots, v_n) := (\langle v_i, v_j \rangle)$.

F is positive definite $\Rightarrow \log(F)$ exists.

Q: If there a *p*-adic analogue?

Problem: log(F) does not seem to satisfy any reasonable differential equation.

More concretely: Can we recover the equation for the metric from the associated connection over $\mathbb{R}?$ For \mathcal{L}

t - A section of \mathcal{L} , $f = \langle t, t \rangle$, $\nabla t = \omega t$

$$df = 2\langle \nabla t, t \rangle = 2\omega f$$

So $d\log(f) = 2\omega$ and the equation for f factors via $\log(f)$. For \mathcal{V}

 t_i - local basis $\nabla t_i = \sum \omega_{ij} t_j$ $F_{ij} = \langle t_i, t_j \rangle$

$$dF = F\Omega + \Omega^t F$$

Which no longer factors via $\log F$.

Secondary characteristic classes

 X/\mathbb{C} Real Deligne cohomology

$$H^{i}_{\mathcal{D}}(X,\mathbb{R}(n)) = H^{i}(X,MF(\Omega_{X}^{\geq n} \xrightarrow{z \to z \pm \bar{z}} C^{\infty}(X) \otimes \mathbb{R}(n-1)))$$

Hermitian metric on \mathcal{V} is $\mathcal{V} \cong \overline{\mathcal{V}^*}$ (does not incoporate positivity).

 ∇ a connection on $\mathcal{V} \Rightarrow \overline{\nabla^*}$ on \mathcal{V} tr(Curve $\overline{\nabla^*})^n$) = $\pm \operatorname{tr}(\operatorname{Curve} \nabla)^n$) \Rightarrow can use transgression to obtain $c_n(\mathcal{V}) \in H^{2n}_{\mathcal{D}}(X, \mathbb{R}(n))$.

Conclusion: a Hermitian metric is a tool to compute characteristic classes in Deligne cohomology. Hope: *p*-adic Hermitian metric is a tool to compute characteristic classes in syntomic cohomology.

Syntomic cohomology

 X/\mathcal{O}_K $\phi: X \to X$ a lift of Frobenius of degree q. DR^{\bullet} - a complex computing de Rham cohomology for X_K/K $H^i_{syn}(X,n) := H^i(MF((\phi^* - q^n) : F^n DR^{\bullet} \to DR^{\bullet}))$ Characteristic classes $c_n : K_0(X) \to H^{2n}_{syn}(X,n)$.

c_1 for line bundles

 $\{U_i\}$ - covering of X \mathcal{L}/X associated with a cocycle (g_{ij}) DR^{\bullet} - Cech complex for $\{U_i\}$ $\phi: X \to X$ fixes $\{U_i\}$ Then $c_1(\mathcal{L})$ is represented by

 $\left[(d \log(g_{ij}), (\log(\phi^* g_{ij}/g_{ij}^q)) \right]$

Key observation: $\phi^* g_{ij} / g_{ij}^q \equiv 1 \pmod{p}$

Syntomic transgression

We try to mimic previous considerations in Deligne cohomology

 ϕ^* on cohomology comes from ϕ^* on \mathcal{V}

 q^n on $H^i(\bullet, n)$ comes from ϕ_q - the q's Adams operation. Can't expect $\phi^* = \psi_q$

But this is true in characteristic *p*

Idea: a metric on \mathcal{V} is a deformation of $\phi^* \mathcal{V}$ to $\psi_q \mathcal{V}$

Having that we can deform the connection and obtain the required transgression

A toy example: line bundles again

In previous setup Chose $s_i \in \mathcal{L}(U_i)$ s.t. $s_i/s_j = g_{ij}$ $\psi_q \mathcal{L} = \mathcal{L}^q$ $\phi^* \mathcal{L} / \mathcal{L}^q$ given by cocycle $(h_{ij} := \phi^* g_{ij} / g_{ij}^q)$ Deform $\phi^* \mathcal{L} / \mathcal{L}^q$ to trivial bundle via family \mathcal{L}_t with cocycles (h_{ij}^t) where *t* goes from 1 to 0.

Note: by the congruence on h_{ij} this is well defined.

Deformation of connection

 $abla = (\nabla_i) - \nabla_i \text{ a connection on } \mathcal{L} / U_i$ "Curvature" - $[(\nabla_i^2), (\nabla_i - \nabla_j)]$. E.g. Define ∇_i by $\nabla_i(s_i) = 0$ Curvature is $[(0), (d \log(s_i/s_j))]$ - represents de Rham c_1 . Deformation - Take the same definition for each ∇_t on \mathcal{L}_t . Transgression

$$d/dt \operatorname{Curve} \nabla_t = d/dt (d \log h_{ij}^t) = d(\log(h_{ij}))$$

So transgression gives the right class.