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Why normal distributions N (µ, σ2) are so widely used?

People use everywhere in finance normal distributions. If
someone faces a random variable X of which the distribution is
difficult to get, he will first try normal distribution N (µ, σ2).
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Explanation for these phenomenons is the well-known central
limit theorem:

Theorem (Central Limit Theorem (CLT))

{Xi}∞i=1 is assumed to be i.i.d. with µ = E[X1] and
σ2 = E[(X1 − µ)2]. Then for each bounded and continuous
function ϕ ∈ C(R), we have

lim
i→∞

E[ϕ(
1√
n

n∑
i=1

(Xi − µ))] = E[ϕ(X)], X ∼ N (0, σ2).

The beauty and power of this result come from: the above
sum tends to N (0, σ2) regardless the original distribution of Xi,
provided that Xi ∼ X1, for all i = 2, 3, · · · and that X1, X2,· · ·
are mutually independent.
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History of CLM

Abraham de Moivre 1733,

Pierre-Simon Laplace, 1812: Théorie Analytique des
Probabilité

Aleksandr Lyapunov, 1901

Cauchy’s, Bessel’s and Poisson’s contributions, von Mises,
Polya, Lindeberg, Lévy, Cramer
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‘dirty work’ through “dirty data”?

But in, real world in finance, or in any other human science
situation, it is not so often to see and to check that the above
{Xi}∞i=1 is really i.i.d. Many academic people think that people in
finance just widely and deeply abuse this beautiful mathematical
result to do ‘dirty work’ through “dirty data”
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Explanation and via a new CLT under Distribution
Uncertainty

We will largely weaken the above i.i.d. assumption: not only
we do not know the distribution of Xi, in fact we don’t assume
Xi ∼ Xj , they may have difference unknown distributions. We
only assume that the distribution of Xi, i = 1, 2, · · · are within
some subset of distribution functions

L(Xi) ∈ {Fθ(x) : θ ∈ Θ}.

This assumption evidently more realistic.
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In the situation of distributional uncertainty and/or probability
uncertainty (or model uncertainty) the problem of decision become
more complicated. A well-accepted method is the following robust
calculation:

sup
θ∈Θ

Eθ[ϕ(ξ)], inf
θ∈Θ

Eθ[ϕ(η)]

and then to compare their values, where Eθ represent the
expectation of a possible probability in our uncertainty model.
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Our basic mathematical tool:

Ê[X] = sup
θ∈Θ

Eθ[X], it is easy to check Ê[X] : H → R

has the properties a)-d):
a) X ≥ Y then Ê[X] ≥ Ê[Y ]
b) Ê[c] = c
c) Ê[X + Y ] ≤ Ê[X] + Ê[Y ]
d) Ê[λX] = λÊ[X], λ ≥ 0.
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This implies that, conversely, for each sublinear expectation
also corresponds a uncertainty subset of probabilities.

The language of uncertainty subset of probability is
equivalently to the language of the corresponding sublinear
expectation.

Shige Peng On Risk Measures via Gaussian Distributions under Model Uncertainty



For the distribution uncertainty of two random variables X
and Y , if for each real function we always have

Ê[ϕ(X)] = Ê[ϕ(Y )],

Then the distribution uncertainties of X and Y is the same. If

Ê[ϕ(X)] ≥ Ê[ϕ(Y )]

Then the distribution uncertainty of X is stronger than that of Y .

Ê[ϕ(X)] = sup
θ∈Θ

∫ ∞

−∞
ϕ(x)dFθ(x)

Fθ(x), θ ∈ Θ: the distribution uncertainty subset of X.
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Our new central limit theorem under distribution uncertainty
by using the language of sublinear expectation.

We are given a sequence {Xi}∞i=1 under a sublinear
expectation space (Ω,H, Ê) (meaning that we are in a random
world where we have a uncertainty subset of probabilities). We
assume that {Xi}∞i=1 are identically distributed under Ê:

Ê[ϕ(Xi)] = Ê[ϕ(X1)], ∀ϕ, i = 2, 3, · · ·

meaning that Xi are within a subset of distributions (uncertainty
distribution subset).
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Space of random variables

(Ω,F): a measurable space;

H a linear space of random variables (F-meas. functions on
Ω) s.t.

X1, · · · , Xn ∈ H ⇒ ϕ(X) ∈ H, ∀ϕ ∈ Cb(Rn)
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Sublinear Expectation

Definition

A nonlinear expectation: a functional Ê : H 7→ R

(a) Monotonicity: if X ≥ Y then Ê[X] ≥ Ê[Y ].

(b) Constant preserving: Ê[c] = c.

A sublinear expectation:

(c) Sub-additivity (or self–dominated property):

Ê[X]− Ê[Y ] ≤ Ê[X − Y ].

(d) Positive homogeneity: Ê[λX] = λÊ[X], ∀λ ≥ 0.

Shige Peng On Risk Measures via Gaussian Distributions under Model Uncertainty



Sublinear Expectation

Definition

A nonlinear expectation: a functional Ê : H 7→ R
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Coherent Risk Measures and Sunlinear Expectations

H is the set of bounded and measurable random variables on
(Ω,F).

ρ(X) := Ê[−X]

Definition–Coherent risk measure

ρ(X) : H 7→ R is a coherent risk measure if it satisfies:

(a) Monotonicity: if X ≥ Y then ρ[X] ≤ ρ[Y ].

(b) Constant translatability: ρ[X + c] = ρ[X]− c.

(c) Convexity: (or self–dominated property):

ρ[αX + (1− α)Y ] ≤ αρ[X] + (1− α)ρ[Y ].

(d) Positive homogeneity: ρ[λX] = λρ[X], ∀λ ≥ 0.
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Robust representation of sublinear expectations

Huber Robust Statistics (1981).

Artzner, Delbean, Eber & Heath (1999)

Föllmer & Schied (2004)

Theorem

Ê[·] is a sublinear expectation on H if and only if there exists a
subset P ∈M1,f (the collection of all finitely additive probability
measures) such that

Ê[X] = sup
P∈P

EP [X], ∀X ∈ H.

(For interest rate uncertainty, see Barrieu & El Karoui (2005)).
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Meaning of the robust representation:
Statistic model uncertainty

Ê[X] = sup
P∈P

EP [X], ∀X ∈ H.

The size of the subset P represents the degree of
model uncertainty: The stronger the Ê the more the uncertainty

Ê1[X] ≥ Ê2[X], ∀X ∈ H ⇐⇒ P1 ⊃ P2
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The distribution of a random vector in (Ω,H, Ê)

Definition (Distribution of X)

Given X = (X1, · · · , Xn) ∈ Hn. We define:

F̂X [ϕ] := Ê[ϕ(X)] : ϕ ∈ Cb(Rn) 7−→ R.

We call F̂X [·] the distribution of X under Ê.

Fact

FX [·] forms a sublinear expectation on Cb(Rn), thus

FX [ϕ] = sup
θ∈Θ

∫
Rn

ϕ(x)Fθ(dy).
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Definition

The distribution of X is said to be stronger than Y if

Ê[ϕ(X)] ≥ Ê[ϕ(Y )], ∀ϕ ∈ Cb(Rn).

Definition

X,Y are said to be identically distributed, (X ∼ Y , or X is a copy
of Y ), if they have same distributions:

Ê[ϕ(X)] = Ê[ϕ(Y )], ∀ϕ ∈ Cb(Rn).
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Remark.

X is stronger than Y in distribution means that the uncertainty of
X is bigger that Y . X ∼ Y means they have the same degree of
uncertainty.

Remark.

Whether X is stronger than Y can be subjective. In many cases,
for the sake of simplification in risk management, one can raise the
degree of uncertainty of Y in order to make X ∼ Y .
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Independence under (Ω,H, Ê)

Definition

A m-dim. random vector Y is said to be independent a n-dim.
vector X = (X1, · · · , Xn) if for each ϕ ∈ Cb(Rn × Rm) such that
ϕ(X,Y ) ∈ H1, we have:

Ê[ϕ(X,Y )] = Ê[Ê[ϕ(x, Y )]x=Y ].

Fact

Meaning: the realization of X does not change (improve) the
distribution uncertainty of Y .
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Lemma

Given the distributions X,Y , we can make copies X̄ and Ȳ of X
and Y such that Ȳ is independent to X̄. The distribution of and
(X̄, Ȳ ) is uniquely determined.

Fact

The computational complexity of Ê[ϕ(X1, · · · , Xk)] will
enormously reduced if Xi+1 is independent to Xi for each i:

From order mk to k ×m.
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Independence under (Ω,H, Ê) can be subjective

Example

X,Z: two r.v. in (Ω,F , P ),
Y = h(η(X), Z), Z is independent to X under P .
About the function η(x): we only know η(x) ∈ Θ.
The robust expectation of ϕ(X,Y ) is:

Ê[ϕ(X,Y )] := EP

[{
sup
θ∈Θ

EP [ϕ(x, h(θ, Z))]

}
x=X

]
.

Y is not independent to X w.r.t. P
but is independent under Ê.
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The notion of independence

Example (An extreme example)

In reality, Y = X
but we are in the very beginning
and we know noting about the relation of X and Y ,
the only information we know is X,Y ∈ Θ.
The robust expectation of ϕ(X,Y ) is:

Ê[ϕ(X,Y )] = sup
x,y∈Θ

ϕ(x, y).

Y is independent to X, X is also independent to Y .
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The notion of independence

Fact

Y is independent to X DOES NOT IMPLIES
X is independent to Y

Example

σ2 := Ê[Y 2] > σ2 := −Ê[−Y 2] > 0, Ê[X] = Ê[−X] = 0.
Then

If Y is independent to X:

Ê[XY 2] = Ê[Ê[xY 2]x=X ] = Ê[X+σ2 −X−σ2]

= Ê[X+](σ2 − σ2) > 0.

But if X is independent to Y :

Ê[XY 2] = Ê[Ê[X]Y 2] = 0.
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Ê[XY 2] = Ê[Ê[X]Y 2] = 0.

Shige Peng On Risk Measures via Gaussian Distributions under Model Uncertainty



The notion of independence

Fact

Y is independent to X DOES NOT IMPLIES
X is independent to Y

Example
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We also assume that Xi+1 is independent to {X1, · · · , Xi}
under Ê. The notion of independence is defined as follows:

Definition

Given to random vectors X,Y . Y is said to be independent of X if

Ê[ϕ(X,Y )] = Ê[Ê[ϕ(x, Y )]x=X ]
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The meaning of this independence: the realization of value of
X does not change the distribution uncertainty of Y .

The conditional distribution of ϕ(X,Y ) knowing X is:

Ê[ϕ(X,Y )|X] = Ê[ϕ(x, Y )]x=X .

From our new central limit theorem
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Proposition. (CLT) Let {Xi}∞i=1 be a i.i.d. in a sublinear
expectation space (Ω,H, Ê) in the following sense:
(i) identically distributed:

Ê[ϕ(Xi)] = Ê[ϕ(X1)], ∀i = 1, 2, · · ·

(ii) independent: for each i, Xi+1 is independent to
(X1, X2, · · · , Xi) under Ê.
We also assume that Ê[X1] = −Ê[−X1], then we denote

σ2 = Ê[X2
1 ], σ2 = −Ê[−X2

1 ]

Then for each convex function ϕ we have

Ê[ϕ(
Sn√
n

)] → 1√
2πσ2

∫ ∞

−∞
ϕ(x) exp(

−x2

2σ2
)dx

and for each concave function ψ we have

Ê[ψ(
Sn√
n

)] → 1√
2πσ2

∫ ∞

−∞
ψ(x) exp(

−x2

2σ2
)dx.
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Normal distribution under Sublinear expectation

An fundamentally important sublinear distribution

Definition

A random variable X in (Ω,H, Ê) is called normally distributed if

aX + bX̄ ∼
√
a2 + b2X, ∀a, b ≥ 0.

where X̄ is an independent copy of X.

We have Ê[X] = Ê[−X] = 0.

We also denote X ∼ N (0, [σ2, σ2]), where

σ2 := Ê[X2], σ2 := −Ê[−X2].
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G-normal distribution: a under sublinear expectation E[·]

(1) For each convex ϕ, we have

Ê[ϕ(X)] =
1√

2πσ2

∫ ∞

−∞
ϕ(y) exp(− y2

2σ2
)dy

(2) For each concave ϕ, we have,

Ê[ϕ(X)] =
1√
2πσ2

∫ ∞

−∞
ϕ(y) exp(− y2

2σ2
)dy
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Ê[ϕ(X)] =
1√
2πσ2

∫ ∞

−∞
ϕ(y) exp(− y2

2σ2
)dy

Shige Peng On Risk Measures via Gaussian Distributions under Model Uncertainty



Fact

If σ2 = σ2, then N (0; [σ2, σ2]) = N (0, σ2).

Fact

The larger to [σ2, σ2] the stronger the uncertainty.

Fact

But the uncertainty subset of N (0; [σ2, σ2]) is not just consisting
of

N (0;σ), σ ∈ [σ2, σ2]!!
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Theorem

X ∼ N (0, [σ2, σ2]) in (Ω,H, Ê) iff for each ϕ ∈ Cb(R) the
function

u(t, x) := Ê[ϕ(x+
√
tX)], x ∈ R, t ≥ 0

is the solution of the PDE

ut = G(uxx), t > 0, x ∈ R
u|t=0 = ϕ,

where G(a) = 1
2(σ2a+−σ2a−)(= Ê[a

2X
2]). G-normal distribution.

Shige Peng On Risk Measures via Gaussian Distributions under Model Uncertainty



Shige Peng On Risk Measures via Gaussian Distributions under Model Uncertainty



Law of Large Numbers (LLN), Central Limit Theorem
(CLT)

Striking consequence of LLN & CLT

Accumulated independent and identically distributed random
variables tends to a normal distributed random variable, whatever
the original distribution.

LLN under Choquet capacities:

Marinacci, M. Limit laws for non-additive probabilities and their
frequentist interpretation, Journal of Economic Theory 84, 145-195
1999. Nothing found for nonlinear CLT.
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Definition

A sequence of random variables {ηi}∞i=1 in H is said to converge in
law under Ê if the limit

lim
i→∞

Ê[ϕ(ηi)], for each ϕ ∈ Cb(R).
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Central Limit Theorem under Sublinear Expectation

Theorem

Let {Xi}∞i=1 in (Ω,H, Ê) be identically distributed: Xi ∼ X1, and
each Xi+1 is independent to (X1, · · · , Xi). We assume
furthermore that

Ê[|X1|2+α] <∞ and Ê[X1] = Ê[−X1] = 0.

Sn := X1 + · · ·+Xn. Then Sn/
√
n converges in law to

N (0; [σ2, σ2]):

lim
n→∞

Ê[ϕ(
Sn√
n

)] = Ê[ϕ(X)], ∀ϕ ∈ Cb(R),

where

where X ∼ N (0, [σ2, σ2]), σ2 = Ê[X2
1 ], σ2 = −Ê[−X2

1 ].
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Sketch of Proof: A new method

For a function ϕ ∈ CLip(R) and a small but fixed h > 0, let V
be the solution of the PDE on (t, x) ∈ [0, 1]× R,

∂tV +G(∂2
xxV ) = 0,

V |t=1 = ϕ.

We have, since X ∼ N (0, [σ2, σ2]),

V (t, x) = Ê[ϕ(x+
√

1− tX)].

Particularly,

V (0, 0) = Ê[ϕ(X)], V (1, x) = ϕ(x).
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· · ·Sketch of Proof δ = 1/n. Thus Ê[ϕ(
√
δSn)]− Ê[ϕ(X)]

equals

Ê[V (1,
√
δSn)− V (0, 0)] = Ê

n−1∑
i=0

{V ((i+ 1)δ,
√
δSi+1)− V (iδ,

√
δSi)}

by Taylor’s expansion = Ê
n−1∑
i=0

(Ii
δ + J i

δ), Ê[|J i
δ|] ≤ Cδ1+α

Ii
δ = ∂tV (iδ,

√
δSi)δ + 1

2∂
2
xxV (iδ,

√
δSi)X

2
i+1δ

+∂xV (iδ,
√
δSi)Xi+1

√
δ.

We have

Ê[Ii
δ] = Ê[∂tV (iδ,

√
δSi) +

1

2
∂2

xxV (iδ,
√
δSi)X

2
i+1]δ

= Ê[{∂tV +G(∂2
xxV )}(iδ,

√
δSi)]δ = 0
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Cases with mean-uncertainty

What happens if Ê[X1] > −Ê[−X1]?

Definition

A random variable Y in (Ω,H, Ê) is U([µ, µ])-distributed
(Y ∼ U([µ, µ])) if

aY + bȲ ∼ (a+ b)Y, ∀a, b ≥ 0.

where Ȳ is an independent copy of Y , where
µ := Ê[Y ] > µ := −Ê[−Y ]

We can prove that

Ê[ϕ(Y )] = sup
y∈[µ,µ]

ϕ(y).
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We can prove that
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Case with mean-uncertainty E[·]

Definition

A pair of random variables (X,Y ) in (Ω,H, Ê) is
N ([µ, µ], [σ2, σ2])-distributed ((X,Y ) ∼ N ([µ, µ], [σ2, σ2])) if

(aX + bX̄, a2Y + b2Ȳ ) ∼ (
√
a2 + b2X, (a2 + b2)Y ), ∀a, b ≥ 0.

where (X̄, Ȳ ) is an independent copy of (X,Y ),

µ := Ê[Y ], µ := −Ê[−Y ]

σ2 := Ê[X2], σ2 := −Ê[−X], (Ê[X] = Ê[−X] = 0).
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Theorem

(X,Y ) ∼ N ([µ, µ], [σ2, σ2]) in (Ω,H, Ê) iff for each ϕ ∈ Cb(R)
the function

u(t, x, y) := Ê[ϕ(x+
√
tX, y + tY )], x ∈ R, t ≥ 0

is the solution of the PDE

ut = G(uy, uxx), t > 0, x ∈ R
u|t=0 = ϕ,

where
G(p, a) := Ê[

a

2
X2 + pY ].
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Central Limit Theorem under Sublinear Expectation

Theorem

Let {Xi + Yi}∞i=1 be an independent and identically distributed
sequence. We assume furthermore that

Ê[|X1|2+α] + Ê[|Y1|1+α] <∞ and Ê[X1] = Ê[−X1] = 0.

SX
n := X1 + · · ·+Xn, SY

n := Y1 + · · ·+ Yn. Then Sn/
√
n

converges in law to N (0; [σ2, σ2]):

lim
n→∞

Ê[ϕ(
SX

n√
n

+
SY

n

n
)] = Ê[ϕ(X + Y )], ∀ϕ ∈ Cb(R),

where (X,Y ) is N ([µ, µ], [σ2, σ2])-distributed.

Shige Peng On Risk Measures via Gaussian Distributions under Model Uncertainty



G–Brownian

Definition

Under (Ω,F , Ê), a process Bt(ω) = ωt, t ≥ 0, is called a
G–Brownian motion if:

(i) Bt+s −Bs is N (0, [σ2t, σ2t]) distributed ∀ s, t ≥ 0

(ii) For each t1 ≤ · · · ≤ tn, Btn −Btn−1 is independent to
(Bt1 , · · · , Btn−1).

For simplification, we set σ2 = 1.
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Theorem

If, under some (Ω,F , Ê), a stochastic process Bt(ω), t ≥ 0 satisfies

For each t1 ≤ · · · ≤ tn, Btn −Btn−1 is independent to
(Bt1 , · · · , Btn−1).

Bt is identically distributed as Bs+t −Bs, for all s, t ≥ 0

Ê[|Bt|3] = o(t).

Then B is a G-Brownian motion.
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G–Brownian

Fact

Like N (0, [σ2, σ2])-distribution, the G-Brownian motion
Bt(ω) = ωt, t ≥ 0, can strongly correlated under the unknown
‘objective probability’, it can even be have very long memory. But
it is i.i.d under the robust expectation Ê. By which we can have
many advantages in analysis, calculus and computation, compare
with, e.g. fractal B.M.
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Itô’s integral of G–Brownian motion

For each process (ηt)t≥0 ∈ L2,0
F (0, T ) of the form

ηt(ω) =
N−1∑
j=0

ξj(ω)I[tj ,tj+1)(t), ξj ∈L2(Ftj ) (Ftj -meas. & Ê[|ξj |2] <∞)

we define

I(η) =

∫ T

0
η(s)dBs :=

N−1∑
j=0

ξj(Btj+1 −Btj ).

Lemma

We have

Ê[

∫ T

0
η(s)dBs] = 0

and

Ê[(

∫ T

0
η(s)dBs)

2] ≤
∫ T

0
Ê[(η(t))2]dt.
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Definition

Under the Banach norm ‖η‖2 :=
∫ T
0 Ê[(η(t))2]dt,

I(η) : L2,0(0, T ) 7→ L2(FT ) is a contract mapping

We then extend I(η) to L2(0, T ) and define, the stochastic integral∫ T

0
η(s)dBs := I(η), η ∈ L2(0, T ).
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Lemma

We have
(i)

∫ t
s ηudBu =

∫ r
s ηudBu +

∫ t
r ηudBu.

(ii)
∫ t
s (αηu + θu)dBu = α

∫ t
s ηudBu +

∫ t
s θudBu, α ∈ L1(Fs)

(iii) Ê[X +
∫ T
r ηudBu|Hs] = Ê[X], ∀X ∈ L1(Fs).
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Quadratic variation process of G–BM

We denote:

〈B〉t = B2
t − 2

∫ t

0
BsdBs = lim

max(tk+1−tk)→0

N−1∑
k=0

(BtNk+1
−Btk)2

〈B〉 is an increasing process called quadratic variation process of
B.

Ê[ 〈B〉t] = σ2t but Ê[−〈B〉t] = −σ2t

Lemma

Bs
t := Bt+s −Bs, t ≥ 0 is still a G-Brownian motion. We also

have
〈B〉t+s − 〈B〉s ≡ 〈B

s〉t ∼ U([σ2t, σ2t]).
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We have the following isometry

Ê[(

∫ T

0
η(s)dBs)

2] = Ê[

∫ T

0
η2(s)d 〈B〉s],

η ∈M2
G(0, T )
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Itô’s formula for G–Brownian motion

Xt = X0 +

∫ t

0
αsds+

∫ t

0
ηsd 〈B〉s +

∫ t

0
βsdBs

Theorem.

Let α, β and η be process in L2
G(0, T ). Then for each t ≥ 0 and in

L2
G(Ht) we have

Φ(Xt) = Φ(X0) +

∫ t

0
Φx(Xu)βudBu +

∫ t

0
Φx(Xu)αudu

+

∫ t

0
[Φx(Xu)ηu +

1

2
Φxx(Xu)β2

u]d 〈B〉u
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Stochastic differential equations

Problem

We consider the following SDE:

Xt = X0 +

∫ t

0
b(Xs)ds+

∫ t

0
h(Xs)d 〈B〉s +

∫ t

0
σ(Xs)dBs, t > 0.

where X0 ∈ Rn is given

b, h, σ : Rn 7→ Rn are given Lip. functions.

The solution: a process X ∈M2
G(0, T ; Rn) satisfying the above

SDE.

Theorem

There exists a unique solution X ∈M2
G(0, T ; Rn) of the stochastic

differential equation.

Shige Peng On Risk Measures via Gaussian Distributions under Model Uncertainty



Stochastic differential equations

Problem

We consider the following SDE:

Xt = X0 +

∫ t

0
b(Xs)ds+

∫ t

0
h(Xs)d 〈B〉s +

∫ t

0
σ(Xs)dBs, t > 0.

where X0 ∈ Rn is given

b, h, σ : Rn 7→ Rn are given Lip. functions.

The solution: a process X ∈M2
G(0, T ; Rn) satisfying the above

SDE.

Theorem

There exists a unique solution X ∈M2
G(0, T ; Rn) of the stochastic

differential equation.

Shige Peng On Risk Measures via Gaussian Distributions under Model Uncertainty



Prospectives

Risk measures and pricing under dynamic volatility
uncertainties ([A-L-P1995], [Lyons1995]) —for path
dependent options;

Stochastic (trajectory) analysis of sublinear and/or nonlinear
Markov process.

New Feynman-Kac formula for fully nonlinear PDE:
path-interpretation.

u(t, x) = Êx[ϕ(Bt) exp(

∫ t

0
c(Bs)ds)]

∂tu = G(D2u) + c(x)u, u|t=0 = ϕ(x).

Fully nonlinear Monte-Carlo simulation.

BSDE driven by G-Brownian motion: a challenge.
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Thank you,
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In the classic period of Newton’s mechanics, including A.
Einstein, people believe that everything can be deterministically
calculated. The last century’s research affirmatively claimed the
probabilistic behavior of our universe: God does plays dice!

Nowadays people believe that everything has its own
probability distribution. But a deep research of human behaviors
shows that for everything involved human or life such, as finance,
this may not be true: a person or a community may prepare many
different p.d. for your selection. She change them, also purposely
or randomly, time by time.
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