DEVELOPING A STOCHASTIC MORTALITY MODEL FOR INTERNAL ASSESSMENTS *

ANNAMARIA OLIVIERI

University of Parma (Italy)

annamaria.olivieri@unipr.it

IFID/MITACS Conference on Financial Engineering for Actuarial Mathematics

Fields Institute, Toronto

November 9, 2008

^{*} joint work with Ermanno Pitacco, University of Trieste (Italy)

Intro

- Internal assessments
 - portfolio valuation
 - capital allocation (solvency investigation)
 - **•** ...
 - → appraisal of risks
- Focus here is on
 - a life annuity portfolio. Annuities are immediate, in arrears and with fixed benefits
 - mortality risks only

Other risks are disregarded

ao

Intro (cont)

Background assumptions

- ► the insurer holds the market life table, which represents the best estimate assumption about future mortality
- the insurer does not have access to data sets and methodologies underlying the construction of the life table
- possibly some alternative tables, e.g. provided by the institution constructing the best estimate table, are available, without any specific recommendation about their use

Our tasks

- 1. We describe a mortality model allowing for both random fluctuations and systematic deviations, extending some classical results about the modelling of the number of deaths joint to the modelling of parameter uncertainty
- 2. We then test the setting within an internal solvency model. A comparison with the relevant requirement proposed within Solvency 2 is performed

Basic assumptions

- Time of issue (of the portfolio): t_0 ; entry age: x_0
- Annual outflows

outflows:
$$B_1^{(\Pi)}$$
 $B_2^{(\Pi)}$... $B_t^{(\Pi)}$... time (since issue): 1 2 ... t ...

- If we assume the same annual amount to each annuitant: $B_t^{(\Pi)} = b\,N_t$

 - ▶ $N_{t-1} N_t = D_t$: number of deaths in year (t-1, t)
- Given $N_0 = n_0$, we then address

# deaths:	D_1	D_2	 D_t	
time (since issue):	1	2	 t	

• In detail

• Let refer to one cohort only

time (since issue)						
		1	2		t	
В	x_0	$D_{x_0,1}$				
t ag	$x_0 + 1$		$D_{x_0+1,2}$			
current age	:					
[]	x				$D_{x,t}$	
	:					
	ω					
	total # deaths	$D_1 = D_{x_0,1}$	$D_2 = D_{x_0 + 1, 2}$		$D_t = D_{x,t}$	

• Similarly, $N_t = N_{x,t}$ when just one cohort is referred to

- The random number of deaths is affected by
 - random fluctuations
 - systematic deviations
- Random fluctuations
 - If the size of the portfolio is large enough, then with high probability $\frac{D_{x,t}}{n_{x,t-1}} \approx q_{x,t}^*$

best estimate (BE) mortality rate

- ▶ Due to the actual size of the portfolio, $\frac{D_{x,t}}{n_{x,t-1}} \gtrsim q_{x,t}^*$
- Representation
 - ▷ For a cohort: $[D_{x,t}|\ q_{x,t}^*; n_{x,t-1}] \sim \text{Bin}(n_{x,t-1}, q_{x,t}^*)$
 - Possibly approximated as:

$$[D_{x,t}|q_{x,t}^*;n_{x,t-1}] \sim {\sf Poi}(n_{x,t-1}\,q_{x,t}^*)$$

 via generalization, this can be applied also in the case of more than one cohort or various benefit amounts

- Systematic deviations
 - ▶ High probability that $\frac{D_{x,t}}{n_{x,t-1}}$ is not close to $q_{x,t}^*$ also in very large portfolios
 - ⇒ deviation in aggregate mortality
 - ▶ Representation: random mortality rate, $Q_{x,t}$
 - The deviation in aggregate mortality can be temporary or permanent
 - ▶ Temporary deviation
 - typically an upward shock, reasonably independent of previous ones
 - the impact could be age-dependent
 - Permanent deviation
 - hd the underlying trend, for the whole population or for some cohorts, is other than what described by $q_{x,t}^*$
 - reasonably, deviations are (positively) correlated in time

The mortality rate

We assume the multiplicative model

$$Q_{x,t} = q_{x,t}^* \, Z_{x,t}$$

- ► clearly: $Z_{x,t} > 0$ and in particular: $Z_{x,t} \geq 1$, but such that $0 \leq Q_{x,t} \leq 1$
- ► The coefficient $Z_{x,t}$ should account for both temporary and permanent deviations
- ▶ Possible assumptions about the coefficients $Z_{x,t}$'s
 - Independent or correlated in time/age
 - Shape of the probability distribution (pdf)
 - · age- and time-dependent
 - fixed in time (but only when independence in time is accepted)

The mortality rate (cont)

Referring to one cohort

time (since issue)							
		1	2		t		
lω	x_0	$Z_{x_0,1}$					
ag	$x_0 \\ x_0 + 1$		$Z_{x_0+1,2}$				
current age	:						
	x				$Z_{x,t}$		
	:						
	ω						

- ▶ We test two assumptions
 - ightharpoonup Independence among the $Z_{x,t}$'s, which are further assumed to be identically distributed
 - Correlation assumption:

$$Z_{x_0,1} \Rightarrow Z_{x_0+1,2} \Rightarrow \ldots \Rightarrow Z_{x,t} \Rightarrow \ldots$$

Probability distribution of systematic deviations

We assume

$$Z_{x,t} \sim \mathsf{Gamma}(lpha_{x,t},eta_{x,t})$$

It follows

$$Q_{x,t} \sim \operatorname{Gamma}\left(lpha_{x,t}, rac{eta_{x,t}}{q_{x,t}^*}
ight)$$

• For the number of deaths, setting $Q_{x,t} = q$ we let

$$[D_{x,t}|\ q;n_{x,t-1}] \sim {\sf Poi}(n_{x,t-1}\ q)$$

Then we can show that

$$[D_{x,t}|\ n_{x,t-1}] \sim \text{NBin}\left(\alpha_{x,t}, \frac{\theta_{x,t}}{\theta_{x,t}+1}\right)$$

$$\theta_{x,t} = \frac{\beta_{x,t}}{n_{x,t-1}\,q_{x,t}^*}$$

Probability distribution of systematic deviations (cont)

We note that

$$\mathbb{E}[D_{x,t}|q_{x,t}^*;n_{x,t-1}] = n_{x,t-1} q_{x,t}^*$$

whilst

$$\mathbb{E}[D_{x,t}|n_{x,t-1}] = \underbrace{\frac{\alpha_{x,t}}{\beta_{x,t}}} n_{x,t-1} q_{x,t}^*$$

magnitude of the systematic deviation

Assuming independence in time of systematic deviations

- Assumption: the $Z_{x,t}$'s are independent in time, and identically distributed
- Rationale
 - the mortality dynamics is mainly affected by temporary deviations
 - the insurer's mortality experience is not reliable for detecting the underlying trend
- For the solvency investigation, we take: $Z_{xt} \sim \text{Gamma}(0.75\beta, \beta)$. It follows
 - $\mathbb{E}[Q_{xt}] = 0.75 \, q_{xt}^*$
 - $ightharpoonup \mathbb{E}[D_t | n_{t-1}] = 0.75 n_{t-1} q_{xt}^*$

consistently with the relevant assumption in Solvency 2

Assuming correlation in time of systematic deviations. Updating parameters to experience

- Assumption: the $Z_{x,t}$'s are correlated in time, identically distributed
- Further assumption: the mortality experience from the portfolio is reliable as an evidence of the trend of the cohort (or the population)
- \Rightarrow An inferential procedure is adopted for updating the parameters of the pdf of $Z_{x,t}$ to experience

- Steps of the inferential procedure (one cohort is referred to)
 - Valuation at time 0 (issue time; no previous experience available)

Valuation at time 1

- ightharpoonup Let $D_{x_0,1}=d_{x_0,1}$ the observed number of deaths in (0,1)
- ightharpoonup Then $n_{x_0+1,1} = n_{x_0,0} d_{x_0,1}$
- \triangleright We can calculate the posterior pdf of $Q_{x_0,1}$, conditional on $D_{x_0,1}=d_{x_0,1}$. It turns out

$$[Q_{x_0,1}|D_{x_0,1}=d_{x_0,1}]\sim \mathrm{Gamma}\left(\bar{\alpha}+d_{x_0,1},\frac{\bar{\beta}}{q_{x_0,1}^*}+n_{x_0,0}\right)$$

and hence:

$$[Z_{x,t}|D_{x_0,1}=d_{x_0,1}]\sim \mathrm{Gamma}(\bar{\alpha}+d_{x_0,1},\beta+n_{x_0,0}\,q_{x_0,1}^*)$$

We then have

$$[D_{x_0+1,2}|\ n_{x_0,0},d_{x_0,1}] \sim \text{NBin}\left(\alpha_{x_0+1,2},\frac{\theta_{x_0+1,2}}{\theta_{x_0+1,2}+1}\right)$$

$$\alpha_{x_0+1,2} = \bar{\alpha} + d_{x_0,1} \qquad \theta_2 = \frac{\bar{\beta} + n_{x_0,0}\ q_{x_0,1}^*}{n_{x_0+1,1}\ q_{x_0+1,2}^*}$$

- ▶ Valuation at time t-1
 - Having observed

$$D_{x_0,1} = d_{x_0,1}, D_{x_0+1,2} = d_{x_0+1,2}, \dots, D_{x_0+t-2,t-1} = d_{x_0+t-2,t-1}$$

and then

$$n_{x_0+h,h} = n_{x_0+h-1,h-1} - d_{x_0+h-1,h}$$
 at time $h = 1,2,\ldots,t-1$

it turns out

$$\left[D_{x_0+t-1,t}|\ n_{x_0,0},d_{x_0,1},d_{x_0+1,2},\ldots,d_{x_0+t-2,t-1}]\sim \mathrm{NBin}\left(\alpha_{x_0+t-1,t},\frac{\theta_{x_0+t-1,t}}{\theta_{x_0+t-1,t+1}}\right)\right]$$

$$\alpha_{x_0+t-1,t}=\bar{\alpha}+\sum_{h=1}^{t-1}d_{x_0+h-1,h}$$

$$\theta_{x_0+t-1,t}=\frac{\bar{\beta}+\sum_{h=1}^{t-1}n_{x_0+h-1,h-1}q_{x_0+h-1,h}^*}{n_{x_0+t-1,t-1}q_{x_0+t-1,t}^*}$$

For the expected number of deaths, we have

$$\mathbb{E}[D_{x_0+t-1,t}|\ n_{x_0,0}, d_{x_0,1}, d_{x_0+1,2}, \dots, d_{x_0+t-2,t-1}]$$

$$= \frac{\bar{\alpha} + \sum_{h=1}^{t-1} d_{x_0+h-1,h}}{\bar{\beta} + \sum_{h=1}^{t-1} n_{x_0+h-1,h-1} q_{x_0+h-1,h}^*} \ n_{x_0+t-1,t-1} q_{x_0+t-1,t}^*$$

Depending on experience, $\frac{\bar{\alpha} + \sum_{h=1}^{t-1} d_{x_0+h-1,h}}{\bar{\beta} + \sum_{h=1}^{t-1} n_{x_0+h-1,h-1} q_{x_0+h-1,h}^*} \gtrsim \frac{\bar{\alpha}}{\bar{\beta}}$

• For the solvency investigation, we set $\bar{\alpha}=0.75\bar{\beta}$

Capital allocation

- Notation: let $Y_t^{(\Pi)}$ be the present value of future payments for the current portfolio (at a given interest rate)
- A regulatory requirement: the Solvency 2 proposal
 - ► We refer to the SCR (Solvency Capital Requirement) and we consider only the requirement for insurance contracts where the sum at risk is negative
 - a capital charge for longevity risk is required
 - the SCR reduces to such a capital charge
 - ► Capital charge at time z: change in the net value of assets minus liabilities (△NAV) against a permanent 25% decrease in mortality rates for each age
 - Under our assumptions, this reduces to

Capital allocation (cont)

► Portfolio reserve

$$V_z^{(\Pi)} = V_z^{(\Pi)[BE]} + RM_z$$

where RM_z is a risk margin, assessed according to a Cost-of-Capital logic. In particular

$$RM_z = 0.06 \cdot \sum_{h=z+1}^{m} \text{SCR}_h (1 + r_f)^{-h}$$

where

0.06: spread

m: "maturity" of the portfolio (i.e. maximum residual lifetime of in-force policies)

 r_f : risk-free rate

in our implementation, $SCR_h = Life_{long,h}$ as expected according to the BE mortality table

Capital allocation (cont)

Rules for internal models

▶ Let A_t be the amount of portfolio assets at time t

$$A_t = A_{t-1} (1+i) - B_t^{(\Pi)}$$
 $(t = z+1, z+2, ...)$

with A_z given at the valuation time z and i the investment yield (assumed to be the risk-free rate) Then

$$M_t = A_t - V_t^{(\Pi)[BE]}$$

represents the assets available to meet risks (to be split into risk margin and required capital)

- Let
 - ε accepted default probability
 - T time-horizon for solvency ascertainment

Capital allocation (cont)

A reasonable solvency rule

$$[R1] \mid \mathbb{P}[(M_{z+1} \ge 0) \land (M_{z+2} \ge 0) \land \cdots \land (M_{z+T} \ge 0)] = 1 - \varepsilon$$

- We note that in Solvency 2
 - $\,{}^{\triangleright}\,$ The accepted default probability is 0.005. So we set: $\varepsilon=0.005$
- ightharpoonup Requirement [R1] needs a stochastic model

Some numerical investigations

- Input data
 - ▶ One cohort; initial age: $x_0 = 65$; males
 - ► Best estimate life table: IPS55 (projected life table for Italian males, cohort 1955)
 - Maximum age: $\omega=119$, whence the maturity of the portfolio at time z is: m=119-65-z
 - (Initial) parameters of the pdf of $Z_{x,t}$: $\beta=\bar{\beta}=100$, so that $\mathbb{CV}(Q_{x,t})=\frac{\sqrt{\mathbb{V}\mathrm{ar}(Q_{x,t})}}{\mathbb{E}(Q_{x,t})}=10\%$
 - ► Risk-free rate and investment yield: 3% p.a.
 - Annual amount: b=1

- Solvency 2: $\frac{M_z^{[Solv2]}}{V_z^{(\Pi)[BE]}} = \frac{\text{Life}_{\log,z} + RM_z}{V_z^{(\Pi)[BE]}}$ Rule [R1], with T=m: $\frac{M_z^{[R1]}}{V_z^{(\Pi)[BE]}}$
- (1)-(5)
 - with fixed parameters for the pdf of $Z_x(t)$ (1)
 - with updated parameters, experience as the best estimate life table
 - with updated parameters, experience as the Solvency 2 stress scenario (i.e. BE-25%)
 - allowing for random fluctuations only (mortality rate certain, given by q_{xt}^*) (4)
 - allowing for random fluctuations and systematic deterministic deviations (mortality rate certain, given by $0.75 q_{xt}^*$)

- Solvency 2: $\frac{M_z^{[Solv2]}}{V_z^{(\Pi)[BE]}} = \frac{\text{Life}_{\log,z} + RM_z}{V_z^{(\Pi)[BE]}}$ Rule [R1], with T=m: $\frac{M_z^{[R1]}}{V_z^{(\Pi)[BE]}}$
- (1)-(5)
 - with fixed parameters for the pdf of $Z_x(t)$ (1)
 - with updated parameters, experience as the best estimate life table
 - with updated parameters, experience as the Solvency 2 stress scenario (i.e. BE-25%)
 - allowing for random fluctuations only (mortality rate certain, given by q_{xt}^*)
 - allowing for random fluctuations and systematic deterministic deviations (mortality rate certain, given by $0.75 q_{xt}^*$)

- (0) Solvency 2: $\frac{M_z^{[Solv2]}}{V_z^{(\Pi)[BE]}} = \frac{\text{Life}_{\log,z} + RM_z}{V_{z,-}^{(\Pi)[BE]}}$
- (1)–(5) Rule [R1], with T=m: $\frac{\tilde{M}_{z}^{[R1]}}{V_{z}^{(\Pi)[BE]}}$
 - (1) with fixed parameters for the pdf of $Z_x(t)$
 - (2) with updated parameters, experience as the best estimate life table
 - (3) with updated parameters, experience as the Solvency 2 stress scenario (i.e. BE-25%)

- $\begin{array}{ll} \text{(0)} & \text{Solvency 2: } \frac{M_z^{[Solv2]}}{V_z^{(\Pi)[BE]}} = \frac{\text{Life}_{\text{long},z} + RM_z}{V_z^{(\Pi)[BE]}} \\ \text{(1)-(5)} & \text{Rule } [R1], \text{ with } T = m \text{: } \frac{M_z^{[R1]}}{V_z^{(\Pi)[BE]}} \end{array}$
- - with fixed parameters for the pdf of $Z_x(t)$
 - with updated parameters, experience as the best estimate life table (2)
 - (3)with updated parameters, experience as the Solvency 2 stress scenario (i.e. BE-25%)

Concluding remarks

- In Solvency 2, an allowance for the systematic mortality risk is only involved, which is represented in a deterministic way
- The rule is very simple to implement, but the capital charge may result either too large or too low in time or in respect of the portfolio size
- Adoption of internal rules is possible, but validation by the supervisory authority must be obtained
- Even though the insurer does not have the expertise to deal with the methodologies underlying the best estimate table and, in general, with stochastic mortality models, a simple structure may lead to a satisfactory assessment of the impact of mortality risks, including both random fluctuations and longevity risk
- If the insurer prefers to adopt the standard Solvency 2 rule, the proposed inferential procedure may suggest an update of the parameters for the stress scenario (also in this case, a validation by the supervisory authority would be required)

Concluding remarks (cont)

- Further investigations
 - ► More than one cohort
 - ► Age-dependence
 - Calibration
 - **•** . . .
- For details, see
 A. Olivieri, E. Pitacco (2008)
 Stochastic mortality: the impact on target capital
 Available at http://ssrn.com/abstract=1287688