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Intro

• Internal assessments
◮ portfolio valuation
◮ capital allocation (solvency investigation)
◮ . . .

"appraisal of risks

"adoption of a stochastic model

• Focus here is on
◮ a life annuity portfolio. Annuities are immediate, in arrears and

with fixed benefits
◮ mortality risks only�

risk of random fluctuations�

longevity risk
Other risks are disregarded
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Intro (cont)

• Background assumptions
◮ the insurer holds the market life table, which represents the

best estimate assumption about future mortality
◮ the insurer does not have access to data sets and

methodologies underlying the construction of the life table
◮ possibly some alternative tables, e.g. provided by the

institution constructing the best estimate table, are available,
without any specific recommendation about their use

• Our tasks
1. We describe a mortality model allowing for both random

fluctuations and systematic deviations, extending some
classical results about the modelling of the number of deaths
joint to the modelling of parameter uncertainty

2. We then test the setting within an internal solvency model. A
comparison with the relevant requirement proposed within
Solvency 2 is performed
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Basic assumptions

• Time of issue (of the portfolio): t0; entry age: x0

• Annual outflows

outflows: B
(Π)
1 B

(Π)
2 . . . B

(Π)
t . . .

time (since issue): 1 2 . . . t . . .

• If we assume the same annual amount to each annuitant:
B

(Π)
t = b Nt

◮ Nt: number of annuitants at time t
⊲ if known: nt

◮ Nt−1 − Nt = Dt: number of deaths in year (t − 1, t)

• Given N0 = n0, we then address

# deaths: D1 D2 . . . Dt . . .

time (since issue): 1 2 . . . t . . .
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Basic assumptions (cont)

• In detail

time (since issue)
1 2 . . . t . . .

cu
rr

en
ta

ge

x0

...
x Dx,t

...
ω

total #
deaths

D1 D2 . . . Dt . . .
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Basic assumptions (cont)

• Let refer to one cohort only

time (since issue)
1 2 . . . t . . .

cu
rr

en
ta

ge
x0 Dx0,1

x0 + 1 Dx0+1,2

...
x Dx,t

...
ω

total #
deaths

D1 = Dx0,1 D2 = Dx0+1,2 . . . Dt = Dx,t . . .

• Similarly, Nt = Nx,t when just one cohort is referred to
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Basic assumptions (cont)

• The random number of deaths is affected by
◮ random fluctuations
◮ systematic deviations

• Random fluctuations
◮ If the size of the portfolio is large enough, then with high

probability Dx,t

nx,t−1
≈ q∗x,t

︸︷︷︸

best estimate (BE) mortality rate

◮ Due to the actual size of the portfolio, Dx,t

nx,t−1
R q∗x,t

◮ Representation
⊲ For a cohort: [Dx,t| q∗x,t; nx,t−1] ∼ Bin(nx,t−1, q

∗

x,t)

⊲ Possibly approximated as:

[Dx,t|q∗x,t; nx,t−1] ∼ Poi(nx,t−1 q∗x,t)

· via generalization, this can be applied also in the case of
more than one cohort or various benefit amounts
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Basic assumptions (cont)

• Systematic deviations

◮ High probability that Dx,t

nx,t−1
is not close to q∗x,t also in very

large portfolios
⇒ deviation in aggregate mortality

◮ Representation: random mortality rate, Qx,t

◮ The deviation in aggregate mortality can be temporary or
permanent

◮ Temporary deviation
⊲ typically an upward shock, reasonably independent of

previous ones
⊲ the impact could be age-dependent

◮ Permanent deviation
⊲ the underlying trend, for the whole population or for some

cohorts, is other than what described by q∗x,t

⊲ reasonably, deviations are (positively) correlated in time

IFID/MITACS 2008 – p. 8/29



ao

The mortality rate

• We assume the multiplicative model

Qx,t = q∗x,t Zx,t

◮ clearly: Zx,t > 0

and in particular: Zx,t R 1, but such that 0 ≤ Qx,t ≤ 1

◮ The coefficient Zx,t should account for both temporary and
permanent deviations

◮ Possible assumptions about the coefficients Zx,t’s
⊲ Independent or correlated in time/age
⊲ Shape of the probability distribution (pdf)

· age- and time-dependent
· fixed in time (but only when independence in time is

accepted)
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The mortality rate (cont)

• Referring to one cohort

time (since issue)
1 2 . . . t . . .

cu
rr

en
ta

ge

x0 Zx0,1

x0 + 1 Zx0+1,2

...
x Zx,t

...
ω

◮ We test two assumptions
⊲ Independence among the Zx,t’s, which are further assumed

to be identically distributed
⊲ Correlation assumption:

Zx0,1 ⇒ Zx0+1,2 ⇒ . . . ⇒ Zx,t ⇒ . . .
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Probability distribution of systematic deviations

• We assume

Zx,t ∼ Gamma(αx,t, βx,t)

• It follows

Qx,t ∼ Gamma

(

αx,t,
βx,t

q∗x,t

)

• For the number of deaths, setting Qx,t = q we let

[Dx,t| q; nx,t−1] ∼ Poi(nx,t−1 q)

Then we can show that

[Dx,t| nx,t−1] ∼ NBin

(

αx,t,
θx,t

θx,t + 1

)

θx,t =
βx,t

nx,t−1 q∗

x,t
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Probability distribution of systematic deviations (cont)

• We note that
E[Dx,t|q∗x,t; nx,t−1] = nx,t−1 q∗x,t

whilst

E[Dx,t|nx,t−1] =
αx,t

βx,t
︸︷︷︸

nx,t−1 q∗x,t

magnitude of the
systematic deviation

IFID/MITACS 2008 – p. 12/29



ao

Assuming independence in time of systematic deviations

• Assumption: the Zx,t’s are independent in time, and identically
distributed

• Rationale
◮ the mortality dynamics is mainly affected by temporary

deviations
◮ the insurer’s mortality experience is not reliable for detecting

the underlying trend

• For the solvency investigation, we take: Zxt ∼ Gamma(0.75β, β).
It follows

◮ E[Qxt] = 0.75 q∗xt

◮ E[Dt| nt−1] = 0.75 nt−1 q∗xt

consistently with the relevant assumption in Solvency 2

IFID/MITACS 2008 – p. 13/29



ao

Assuming correlation in time of systematic deviations.
Updating parameters to experience

• Assumption: the Zx,t’s are correlated in time, identically
distributed

• Further assumption: the mortality experience from the portfolio is
reliable as an evidence of the trend of the cohort (or the
population)

⇒ An inferential procedure is adopted for updating the parameters
of the pdf of Zx,t to experience
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. . . Updating parameters to experience (cont)

• Steps of the inferential procedure (one cohort is referred to)

◮ Valuation at time 0 (issue time; no previous experience
available)

⊲ Zx,t ∼ Gamma(ᾱ, β̄) for all times t (and ages x = x0 + t)

⊲ Dx0,1 ∼ NBin
(

αx0,1,
θx0,1

θx0,1+1

)

αx0,1 = ᾱ

θx0,1 = β̄

nx0,0 q∗

x0,1
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. . . Updating parameters to experience (cont)

◮ Valuation at time 1

⊲ Let Dx0,1 = dx0,1 the observed number of deaths in (0, 1)
⊲ Then nx0+1,1 = nx0,0 − dx0,1

⊲ We can calculate the posterior pdf of Qx0,1, conditional on
Dx0,1 = dx0,1. It turns out

[Qx0,1|Dx0,1 = dx0,1] ∼ Gamma
(

ᾱ + dx0,1,
β̄

q∗

x0,1
+ nx0,0

)

and hence:
[Zx,t|Dx0,1 = dx0,1] ∼ Gamma(ᾱ + dx0,1, β + nx0,0 q∗x0,1)

⊲ We then have

[Dx0+1,2| nx0,0, dx0,1] ∼ NBin

(

αx0+1,2,
θx0+1,2

θx0+1,2 + 1

)

αx0+1,2 = ᾱ + dx0,1 θ2 =
β̄+nx0,0 q∗

x0,1

nx0+1,1 q∗

x0+1,2
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. . . Updating parameters to experience (cont)

◮ Valuation at time t − 1

⊲ Having observed

Dx0,1 = dx0,1, Dx0+1,2 = dx0+1,2, . . . , Dx0+t−2,t−1 = dx0+t−2,t−1

and then

nx0+h,h = nx0+h−1,h−1−dx0+h−1,h at time h = 1, 2, . . . , t−1

it turns out

[Dx0+t−1,t| nx0,0, dx0,1, dx0+1,2, . . . , dx0+t−2,t−1] ∼ NBin

(

αx0+t−1,t,
θx0+t−1,t

θx0+t−1,t+1

)

αx0+t−1,t = ᾱ +
∑t−1

h=1 dx0+h−1,h

θx0+t−1,t =
β̄+

∑ t−1
h=1 nx0+h−1,h−1 q∗

x0+h−1,h

nx0+t−1,t−1 q∗

x0+t−1,t
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. . . Updating parameters to experience (cont)

◮ For the expected number of deaths, we have

E[Dx0+t−1,t| nx0,0, dx0,1, dx0+1,2, . . . , dx0+t−2,t−1]

=
ᾱ +

∑t−1
h=1 dx0+h−1,h

β̄ +
∑t−1

h=1 nx0+h−1,h−1 q∗x0+h−1,h

nx0+t−1,t−1 q∗x0+t−1,t

Depending on experience, ᾱ+
∑ t−1

h=1 dx0+h−1,h

β̄+
∑ t−1

h=1 nx0+h−1,h−1 q∗

x0+h−1,h

R ᾱ
β̄

• For the solvency investigation, we set ᾱ = 0.75β̄
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Capital allocation

• Notation: let Y
(Π)
t be the present value of future payments for the

current portfolio (at a given interest rate)
• A regulatory requirement: the Solvency 2 proposal

◮ We refer to the SCR (Solvency Capital Requirement) and we
consider only the requirement for insurance contracts where
the sum at risk is negative
⊲ a capital charge for longevity risk is required
⊲ the SCR reduces to such a capital charge

◮ Capital charge at time z: change in the net value of assets
minus liabilities (∆NAV) against a permanent 25% decrease
in mortality rates for each age
⊲ Under our assumptions, this reduces to

Lifelong,z = V (Π)[−25%]
z − V (Π)[BE]

z

E[Y
(Π)
z |{0.75 q∗xt}] E[Y

(Π)
z |{q∗xt}]
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Capital allocation (cont)

◮ Portfolio reserve

V (Π)
z = V (Π)[BE]

z + RMz

where RMz is a risk margin, assessed according to a
Cost-of-Capital logic. In particular

RMz = 0.06 ·
m∑

h=z+1

SCRh (1 + rf )−h

where
0.06: spread
m: “maturity” of the portfolio (i.e. maximum residual lifetime
of in-force policies)
rf : risk-free rate
in our implementation, SCRh = Lifelong,h as expected
according to the BE mortality table
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Capital allocation (cont)

• Rules for internal models
◮ Let At be the amount of portfolio assets at time t

At = At−1 (1 + i) − B
(Π)
t (t = z + 1, z + 2, . . .)

with Az given at the valuation time z and i the investment yield
(assumed to be the risk-free rate)
Then

Mt = At − V
(Π)[BE]
t

represents the assets available to meet risks (to be split into
risk margin and required capital)

◮ Let
ε accepted default probability
T time-horizon for solvency ascertainment
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Capital allocation (cont)

◮ A reasonable solvency rule

[R1] :P[(Mz+1 ≥ 0) ∧ (Mz+2 ≥ 0) ∧ · · · ∧ (Mz+T ≥ 0)] = 1 − ε

◮ We note that in Solvency 2
⊲ The accepted default probability is 0.005. So we set:

ε = 0.005
⊲ Implicitly, for longevity risk T = m

◮ Requirement [R1] needs a stochastic model
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Some numerical investigations

• Input data
◮ One cohort; initial age: x0 = 65; males
◮ Best estimate life table: IPS55 (projected life table for Italian

males, cohort 1955)
◮ Maximum age: ω = 119, whence the maturity of the portfolio

at time z is: m = 119 − 65 − z

◮ (Initial) parameters of the pdf of Zx,t: β = β̄ = 100, so that

CV(Qx,t) =

√
Var(Qx,t)

E(Qx,t)
= 10%

◮ Risk-free rate and investment yield: 3% p.a.
◮ Annual amount: b = 1
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Some numerical investigations (cont)

Valuation time z=0: requirement [R1] - T=m vs Solv2

0%
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30%

35%

0 2000 4000 6000 8000 10000 12000

Portfolio size (at issue): n0

(0)

(1)

(2)

(3)

(4)

(5)

Valuation time z=5: requirement [R1] - T=m vs Solv2

0%

5%

10%

15%

20%

25%

30%

35%

0 2000 4000 6000 8000 10000 12000

Portfolio size (at issue): n0

(0)

(1)

(2)

(3)

(4)

(5)

(0) Solvency 2: M [Solv2]
z

V
(Π)[BE]

z

=
Lifelong,z+RMz

V
(Π)[BE]

z

(1)–(5) Rule [R1], with T = m: M [R1]
z

V
(Π)[BE]

z

(1) with fixed parameters for the pdf of Zx(t)

(2) with updated parameters, experience as the best estimate life table
(3) with updated parameters, experience as the Solvency 2 stress scenario (i.e. BE−25%)
(4) allowing for random fluctuations only (mortality rate certain, given by q∗xt)
(5) allowing for random fluctuations and systematic deterministic deviations (mortality rate certain, given by 0.75 q∗xt)
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Some numerical investigations (cont)

Valuation time z=10: requirement [R1] - T=m vs Solv2
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Valuation time z=15: requirement [R1] - T=m vs Solv2
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(0) Solvency 2: M [Solv2]
z

V
(Π)[BE]

z

=
Lifelong,z+RMz

V
(Π)[BE]

z

(1)–(5) Rule [R1], with T = m: M [R1]
z

V
(Π)[BE]

z

(1) with fixed parameters for the pdf of Zx(t)

(2) with updated parameters, experience as the best estimate life table
(3) with updated parameters, experience as the Solvency 2 stress scenario (i.e. BE−25%)
(4) allowing for random fluctuations only (mortality rate certain, given by q∗xt)
(5) allowing for random fluctuations and systematic deterministic deviations (mortality rate certain, given by 0.75 q∗xt)
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Some numerical investigations (cont)

Portfolio size (at issue) n0=100: requirement [R1] - T= m vs Solv2
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Portfolio size (at issue) n0=1000: requirement [R1] - T= m vs Solv2
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(1)–(5) Rule [R1], with T = m: M [R1]
z

V
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(1) with fixed parameters for the pdf of Zx(t)

(2) with updated parameters, experience as the best estimate life table
(3) with updated parameters, experience as the Solvency 2 stress scenario (i.e. BE−25%)
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Some numerical investigations (cont)

Portfolio size (at issue) n0=5000: requirement [R1] - T=m vs Solv2
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Portfolio size (at issue) n0=10000: requirement [R1] - T=m vs Solv2
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(1) with fixed parameters for the pdf of Zx(t)

(2) with updated parameters, experience as the best estimate life table
(3) with updated parameters, experience as the Solvency 2 stress scenario (i.e. BE−25%)
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Concluding remarks

• In Solvency 2, an allowance for the systematic mortality risk is
only involved, which is represented in a deterministic way

• The rule is very simple to implement, but the capital charge may
result either too large or too low in time or in respect of the
portfolio size

• Adoption of internal rules is possible, but validation by the
supervisory authority must be obtained

• Even though the insurer does not have the expertise to deal with
the methodologies underlying the best estimate table and, in
general, with stochastic mortality models, a simple structure may
lead to a satisfactory assessment of the impact of mortality risks,
including both random fluctuations and longevity risk

• If the insurer prefers to adopt the standard Solvency 2 rule, the
proposed inferential procedure may suggest an update of the
parameters for the stress scenario (also in this case, a validation
by the supervisory authority would be required)
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Concluding remarks (cont)

• Further investigations
◮ More than one cohort
◮ Age-dependence
◮ Calibration
◮ . . .

• For details, see
A. Olivieri, E. Pitacco (2008)
Stochastic mortality: the impact on target capital
Available at http://ssrn.com/abstract=1287688
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