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Main Objective:

Talk about the potential of the EDPF (and GEDPF) and their
features in financial applications.

Secondary Objectives:

Talk about two results:

1. Studying the EDPF under a slightly more general Lévy risk
model than the ones studied so far.

2. Generalizing the EDPF in a new direction. We introduce a
general EDPF that depends on a new random variable that
IS not local at ruin time.



What’s the EDPF and Why can be seen as an interesting
object in financial application?

1. Because of the models for which has been studied,

2. Because of the very definition as a discounted cashflow.

Definition 1 For a surplus process Uy, the EDPF is:

d(w) =E [w(UE-), UM e o lU0) =u| , (1)

where w(x,y) is a nonnegative function and 7 is the time of ruin.
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What are the limitations of the EDPF and What is a
GEDPF?

1. Penalty (cashflow) depends on variables known at ruin time,

2. A GEDPF incorporates new variables that make it path-
dependant.

Definition 2 For a surplus process Uy, the GEDPF is:

d(w) =E |w (U), [U@]LY (=) e o) lUO) =u| , (2)

where w(x,y,z) IS a nonnegative function and v is the time of
ruin.
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Historical Context of Our Model
Lévy Processes in Risk Theory:

The classical risk process [see Grandell (1991)]

N(t)
Ult)=u+ct— ) X;, t>0, (3)
1=1

A diffusion approximation [Iglehart (1969) and Grandell (1977)].

Up(t) =u+ct+ocW(t), t>0. (4)
A perturbed model [Dufresne and Gerber (1991)].
N(1)
Up(t) =utct— > X;+ocW(t), t>0. (5)
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All of these are of the form

U (t)=u++ct+ Z(t), t>0,
where Z is a LP.

A first model with PIIS is Dufresne, Gerber and Shiu (1991)
[discussed examples are Gamma and IG].

Furrer (1998) a-stable risk process.
Yang and Zhang (2001) for spectrally negative LP.

Morales (2003), Garrido and Morales (2006) for some subordi-
nators.

Huzak et al. (2004) for a general perturbed case.

Morales (2007) for a subordinator with a Brownian perturbation.
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Lévy Processes

Lévy processes are stochastic processes with IS increments in a
one-to-one correspondance with ID distributions.

If X isa LP then E [e’izX@)] = ¢tV (2) With

2 :
W(z) =imz+ %22 —I—/ [1 — e 4 izxlly_q 1) (z)| v(dz) , (6)
R
A LP X(t) can be written as
X)) =at+ bW () + J(@), t>0, (7)



Expected Discounted Penalty Function

Gerber and Shiu (1998a) introduced the concept of discounted
penalty function as a mean to study the distribution of the time
to ruin, the amount at and prior to ruin. ¢ is defined as follows:

d(u) =E |w (UG-, UMD e o} lU0) =u| ,  (8)

where w(z,y) is a nonnegative function and 7 is the time of ruin.
If § =0 and w(z,y) = 1 then ¢(u) = ¢ (u).
If § >0 and w(xz,y) = 1 then ¢(u) is the LT of time to ruin 7.

If 6 =0 and w(xzg,yg) = 1 (zero elsewhere) ¢(u) = f(xg,yolu) is
the joint density of surplus prior and at ruin.



Convolution Structure for ¢(u)

For the classical case we have that ¢ satisfies:

o) = h(w) + > ¢ ® @), u>o0,
k=0

for some functions h and g.

This implies that ¢ is the solution of

b(2) = /O (x)g(z — 2)dr + h(z) .  2>0.

¢ can also be expresed in terms of its LT $ i.e.

#(s) = ¢(s)g(s) + h(s) , s20,

or

5s) = 3 [a()Fh(s) =

k=0 T Q\(S)

(9)

(10)
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Renewal Equation for ¢(u)

Extensions of ¢ have been worked out for a model

U(t) = u-+ct — S(t) + oW(t), £>0,

where

1. S a compound Poisson and W is a standard Brownian motion
[Tsai and Willmot (2002)].

2. S a subordinator and W is a standard Brownian motion
[Morales (2007)].

11



Here, the EDPF takes the form

¢p(u) = woE [6_5TH{T<OO,U(T):O}|U(O) = ’“’}
(11)
+E [’w UE), U@ e s o0 () <03 U(0) = ’UJ} :

where wg = w(0, 0) is a positive penalty for ruin caused by hitting
zero.

This has to do with creeping:

P(X;=0)>0.

A spectrally negative Lévy process with positive drift does not
creep downwards unless o > 0.

12



Convolution structure for ¢(u)

[Morales (2007)]

sp(w) = [ opCu—)ap)dy+uoe " L-K @)+ Hu(w) , >0,
where
o) =5 [ eIy — ) [T e Ddm(a) ds.

The parameter p is the unique non-negative solution of

cr + Wo_pw(r) =56.
with p = 0 when 6 = 0.

The function Hy, is given by
Hy(u) = L/u e_p(u_s)k(u —5) /OO e_p(x_s)w(a:) dr ds
1+6.Jo S ’
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where

w(x) = /;Ow(:v,y —x)dm(y) , x> 0.

The distribution functions K and M (with density functions k&

and m) are, respectively, K(z) = 1 — e—(2¢/0%)u gng m(x) =
[ v(s) g
x fgo MN(z)dz

This generalizes Tsai and Willmot (2002). If v(dx) = AdF(x),
it reduces to the case of a compound Poisson perturbed by a
Brownian motion.
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General Model

We would like to work out extensions of ¢ for a slightly more
general model

U(t) = u+ct — S(t) + Z(t) t>0. (12)

e Aggregate claims S are now modeled by a subordinator,

e Perturbation Z is now a zero-mean spectrally negative Lévy
process.

15



Gamma Process

Gamma process

o
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Spectrally Negative Lévy Process.
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First Result

Morales and Olivares (2007) The EDPF satisfies

op(w) = [ opu—y)gp(y)dy+woe ™ [1-K()]+Hu(w) , u>0,
where

1 1y o0
gp(y) = - [ e PO k(y —5) | [T P Dug(da) + Gpls) | ds

Hy(uw) = %/Ou e_p(u_s)k(u — 5) /SOO e_p(x_s)x(:v) dx ds

(@) = [ woy - vsdy) + [ wlay-vgdy), 220,

XT
the function G, is defined through its Laplace transform

/OO e_ngp(a:)dac — \U—J(g) - \If_](p) ,

§=0,
0 p—E&
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p is still the unique non-negative solution of the generalized Lund-
berg equation

cr+WVg_z(r)=6 with p=0 when § =0,

and K (k) is an exponential distribution (density) with mean
02/2¢c, ie. K(z)=1— e—(2c/0%)u

We recuperate the form

d(u) =hw)* > P ), uw>0. (13)
k=0

This reduces to well-known cases for particular choices of S and
Z.
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Proof

This result is obtained as a direct application of recent devel-
opments in the understanding of first-passage times for Lévy
pProcesses.

The first-passage time problem

Let X be a spectrally positive Lévy process with Laplace expo-
nent Wy (s) = 7 InE[e~*%!] and LT denoted by [a, o2, Mx(dz)].

T he first-passage time 7, across a level x is given by

e =inf{t>0|X; >z} . (14)

20



Definitions
Let & denote the right inverse of this Laplace exponent, i.e.

dx(0) =sup{B=0|Wx(B8) =46}.

The running supremum process X is defined as

X; = sup Xs. (15)
0<s<t

The time-at-the-maximum process G is defined as

Gy =sup{s <t| Xy = Xs}. (16)

21



Trajectory of X

it

L] 8(0)
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Associated with 7 we have

° C_;Tx_ is the time of last maximum prior to first passage (last
minimum at ruin),

o 7 — G, ,— IS the time elapsed between the last maximum and
the time of first passage (Time from last minimum to ruin),

e X, —x is the overshoot at first passage (deficit at ruin),

e r — X, _ is the undershoot at first passage (surplus prior to
ruin),

o I —Xm— IS the undershoot of last maximum at first passage
(last minimum at ruin).
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Quintuple law

Doney and Kyprianou (2006)
For each x > 0 we haveon u >0, v>y, y € [0,z] and s,t > 0,
P(G._€dt, . —G._€ds, X, —x €du,z—X,_€dv,xr— X,_ Edy)

= U(ds,z — dy) g(dt,dv —y) MNx(du+v) dv (17)

where the bivariate measures U/ and U/ are defined through their
bivariate Laplace transforms

> Ooe—ozs—ﬂzc s dp) = dx(a) -
/O /O U(ds, dr) = A0 (18)
and
- Ooe_o‘s_ﬁx {(ds. dz) = 1
/O /O U(ds, dx) = oo (19)

24



The general perturbed risk model can be written as

R(t) =z — X(¢), t=0, (20)
where X (t) = S() — Z(t) —ct with S, Z, ¢ and =.

Clearly X is a spectrally positive Lévy process and the ruin time
problem is assimilated to the first-passage time problem, i.e. the
ruin time 7 is the first-passage time of X (7)) accross a level x.

25



Let fz(s,t,u,v,y) be the joint density of the quintuple law on
u>0,v>y, ye[0,x] and s,t > 0.

We need to take into account that P[X,. = x] > 0 (upward
creeping of the process X when g2 > 0), which implies that
fz(s,t,u,v,y) has an atom at 0 and the EDPF is given by (recall
w(0,0) = wp)

(@) = woE e Iy

(21)
+ / / / / e 06T w(u,v) fo(s, t,u,v,y)ds dt du dv dy .
0+ Jy 0+ J0O 0

The main results is obtained from (21) with a straight-forward
integration and a couple of results from the theory of fluctuations
for Lévy processes.
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Second result
Biffis and Morales (2008)
Let

R(t) =z — X(b) t>0. (22)

If we let Y; = =z — X}, we can define the GEDPF ¢ as follows,

pa(z) =E e Tw (|R(T)|, R(7-), Yr) ;<o) R(0) = 2| , (23)

with w a non-negative function on ]R{fi_ U {(0,0,0)} such that
w(0,0,0) = wg > 0.

The quintuple law allows us to find a renewal equation for this
GEDPF.

27



Remarks

e The GEDPF still characterizes the risk associated with the
surplus process. The key feature is that, unlike the classical
EDPF, the GEDPF does not only depend on local character-
istics at ruin but on a path-dependent ruin-related random
variable as well. The extra information brought by the new
variable gives a better description of the underlying process
and therefore of the embedded risk.

e [ his new variable is fundamentally different from the others
considered up to now. Deficit and surplus prior are only
observed at ruin and they have little potential as predictive
tools. The last minimum is not local at ruin.

28



Remarks

e T he new EDPF contains information on the marginal distri-
bution of the last minimum before ruin. This could be used
to set up warning barriers for instance. If we denote this
distribution by FY, we can see that any given level a such
that F¥ (a) = « can be interpreted as: ax 100% of the times

when ruin occurs, we know that the last minimum is smaller
than a.

29



Biffis and Morales (2008) For a generalized perturbed risk
model, the GEDPF ¢+ is given by the following DRE

sa(@) = | sa(e—gaw)dy+Ha(@)Fwoe 1=K ()], 220,

(24)
where
a6) = [P0ty — o) | [T e e Dug(dn) + Gp(s) | ds
(25)
Hea(u) = 1/Ou e_p(u_s)k(u — 5) /OO e_p(x_s)xg(:v, s) dxr ds, (26)
C S
xo(@.8) = [ wly—zz s+ [ wly—a.z,)vs(dy),  2>0.
(27)

The function G, is defined through its Laplace transform

© ne o W_s(©) W)
/O GP( )d - p_g ’

§=0,
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The constant p is still the unique non-negative solution of the
generalized Lundberg equation

cr+WVg_(r)=296,

and K (k) is an exponential distribution (density) with mean
02/2¢c, ie. K(z)=1— e—(2c/0%)u

Once again, we recuperate the convolution form

d(u) =hw)* > P ), uw>0. (28)
k=0

This reduces to well-known cases for particular choices of w, S
and ~Z.
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Proof

et us denote the joint density of the quintuple law by fz(s,t,u,v,y)
onu>0,v>y, ye€[0,z] and s,t > 0. Then a GEDPF is given
by (recall w(0,0,0) = wg and upward creeping when ¢2 > 0)

da(z) = woE[e"™ I —p]
(29)

+ / / / / e 06T wu,v,y) fols, t,u,v,y)ds dt du dv dy .
0+ Jy 0+ JO 0

Straight forward integration yields the following result for this
GEDPF.
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Further Generalizations

We could study and even more general EDPF:

pG(z) =E ety (|R(F)], R(72), Yro) i, <00y |R(0) = ”ﬂ ,

30)
where ( is the time of the last minimum and £ is the time elapsed
between the last minimum and ruin (i.e. 7=+ €).

or

pc(x) =E e Tw (|R(7)|, R(72), Yoo, Yo ) I, o0yl R(0) = a:(J ,
31)
where ¢ is the time of the last minimum and therefore Y,_ is the
second to last minimum.
33



Further Work

We could study the GEDPF in a financial context:

1. Work out expressions for examples that are suitable for fi-
nancial applications,

2. Work out expressions for choices of the penalty function w
that make sense as pay-offs.

3. Study further the potential of the sequence of minimums
leading to ruin (the barrier) in financial applications.

34



Conclusions

e \We have presented expressions for EDPF in a slightly more general case
that includes a subordinator perturbed by a spectrally negative Lévy
process.

e \We have presented an extended version of the EDPF that includes a
third ruin-related random variable. Expressions for this GEDPF have
been worked out showing that the well-known convolution structure is
still preserved.

e Further work: Study this new GEDPF within those settings where the
classical EDPF plays a role.

e Further work: EDPF and GEDPF for more general examples where

the perturbation also jumps upwards and not only downwards [Mordecki
(2005)].
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A Little Bit of History

Earlier forms for the EDPF:

1. Dufresne and Gerber (1988): The surpluses immediately be-
fore and at ruin, and the amount of the claim causing ruin

2. Dickson (1992): On the distribution of the surplus prior to
ruin

3. Gerber and Shiu (1998): The joint distribution of the time
of ruin, the surplus immediately before ruin, and the deficit
at ruin
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A Little Bit of History

Earlier forms for the quintuple law:

1. Gusak (1969): On the joint distribution of the first exit time
and exit value for homogeneous process with independent
increments.

2. Gusak and Korolyuk (1969): On the first passage time across
a given level for processes with independent increments.

3. Korolyuk (1975): On ruin problem for compound Poisson
process.
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Inverse Gaussian Risk Process
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Classical Model

Yi~ I

N (1)
Ult)=u—+ct — Z Y; .
1=1
N (%)
2 Yi S () P ()
=1 n=0

Subordinator Model

S(t) ~ Gamma, IG or GIG, Y; ~

Ut) =u—+ct—S>) .

[E ve(s)ds

[P ve(s)ds
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Other results

The EDPF satisfies the following IDE

%2 (b’]’g(u) -+ cqb’P(u) + /OU [op(u —y) — dp(u)]vg(dy) + xs(u)
(32)
+ [ [op(u =) = op(w) +yop(w)] v(dy) = Ns(w) + 8l $p(w)
together with

im ¢p(u) = O (33)

Uu— o
{ op(u— z) if u—2>0,

op(u—2z) = (34)

w(u, z —u) if u—2<0.

Where Mg(u) = [§ vg(dy) is the integrated tail of vg and xg(u) =
JiZ w(u, y — w)vg(dy).
42



More Results

The LT of the functions ¢p, gp and Hy, are

bole) = TP 20,

[Ws(s) = Ws(p)]l(s + p)

R P I eEy M
- [%,(2) — 2] (s + )
B R N F R
where
W) = [T [Ty - 2udy| de, s3>0,

A(x) = e P[1 - K(x)], x>0,
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Remark

The functions m and K can be seen to be equal to those in
generalized ladder—height decomposition.

Huzak et al. (2004) Let X(t) = U(t) — u, then, its associated
ruin probability satisfies :

0 s 1 n
1 —yY(u) = —— (—) M*n*K*(n"_l)(u), u>0,
146 a—o \1 + 0
(35)
where M is a ladder—height distribution, with LT given by
00 \\
7 (s) =/ 5T M (z) = 258
0 sE[S(1)]

and K is the distribution with Laplace transform given by

R(s) = /O e=5% dK () = T
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Interpretation

Let us consider
u—U@)=XG)=5Sk) —ct— Z(¢t), t >0, (36)

Let also S(¢) = sup X(s) be the running supremum of X at ¢.
0<s<t
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Ladder-Height Decomposition
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Interpretation

There is no first claim. But we can condition on o1. Let y be
the size of the first overshoot causing a new record in X(t) =
S(t)—Z(t)—ct. There are three things that could have happened:

I) This jump of the subordinator did not cause ruin i.e. S(oq1) <
u. T his implies that ruin was not caused previously by a jump
of Z,

II) This jump, regardless of whether or not it caused ruin, was
preceded by a jump from the perturbation Z that caused ruin
i.e. S(o1—) > u.

III) This jump caused ruin, i.e. S(o1) > uw and ruin had not been
previously caused by the perturbation, i.e. S(o1—) < .
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In general the ruin problem is known for any Lévy process.

Consider X a Lévy process. We can decompose its path into
two paths X1 and X .

X{I_:St: Sup X87
0<s<t

X, =X;— 5.
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If we take the supremum at an exponential random time n (pa-

rameter ¢) then the paths Xﬁ" and X~ are independent and we
have the Wiener-Hopf factorization

E [eZX’?} =K [eZXﬁ'_] E [eZX”_] = W (q,2)V (q,2),

where W1 and W~ are the so called Wiener-Hopf factors of X.
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If we construct a process Lévy risk process U(t) = u + X3 then
the ruin probability

Yi(uw) =Pl inf Xg > —u] .
t>s>0

It turns out that
o0 " o0
V7 (q,2) = qz/o e 4 /O e ““[1 — ¢(u)]dudt ,

i.e., the WH factor W~ is the double Laplace transform of the
survival probability.

The problem involves inverting a double Laplace transform of a
WH factor.
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