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3Motivation

• In 1996, Centre Re issued a catastrophe equity put option contract to RLI Corporation. The

contract gave RLI Corporation the right to issue up to $50 million cumulative convertible

preferred shares in a catastrophic event. The contract was underwritten by AON.

• In 1997, Horace Mann Educators Corporation entered into a multi-year equity put program

that allowed it to receive up to $100 million from Centre Re in exchange for an equivalent

value of its convertible preferred shares.

• The catastrophic event was defined as that when the PCS catastrophic losses exceed a

pre-specified level (the trigger).

• Catastrophe equity put options thus provide insurers with access to additional equity in

the wake of huge catastrophic losses and hence diversify catastrophe risks from insurers.

• They allow the participation of investors in the insurance market, which improves the

capital capacity of the reinsurance market.



4Option Payoff

Let S(t) be the stock price of an insurer and LR(t) the aggregate losses of the insured over the

time period (0, t].

Let LR be the trigger level and K the strike price of a put.

If the option is exercised at time t, its payoff can be expressed as

max{K − S(t), 0} I{LR(t)>LR}, (1)

where IA is the indicator function.



5Model for Stock Price

The aggregate losses LR(t) is modelled by a compound Poisson process:

LR(t) =

N(t)∑

i=1

Yi,

where Yi’s are individual catastrophic losses.

The underlying stock price S(t) under a risk-neutral probability measure is of the form

S(t) = s exp{ct − αLR(t) + σW (t)} = s exp{ct − L(t) + σW (t)}, (2)

where 0 < α < 1 is the impact parameter, W (t) is a standard Brownian motion stochastically

independent of LR(t).



6For notational simplicity, let

L(t) = αLR(t) =

N(t)∑

i=1

Xi , (3)

where Xi’s have the common distribution function P (x) and the scaled loss trigger L = αLR.

Throughout, we assume a mixture of Erlangs for P (x):

p(x) =

n∑

j=1

aj
xj−1e−x/θ

θj(j − 1)!
, x > 0 , (4)

where aj ≥ 0, j = 1, 2, · · · , n, and
∑n

j=1 aj = 1.

The risk-neutral assumption implies:

c = δ − σ2

2
+ k,

where k is the loss compensation rate and given by

k = λ[1 − p̃(1)] ,

where p̃(ξ) =
∫ ∞

0 e−ξxdP (x) is the Laplace transform of the loss distribution function P (x).



7Perpetual American Put and its Exercise Boundary

Both the stock price process and the aggregate losses process are stationary and of independent

increments.

As a result, the optimal exercise strategy of a perpetual American put with the payoff (1)

is of the form

Tϕ,L = inf {t; S(t) < ϕ and L(t) > L} , (5)

where ϕ is the level optimal exercise boundary that is to be determined.

That is, the option is exercised as soon as the stock price falls below the level ϕ and the

aggregate losses exceed the trigger L.



8Price of the Perpetual American Option

Let CL(s, ϕ) denote the price of the perpetual CatEPut with such a strategy Tϕ,L.

CL(s, ϕ) = E [ e−δTϕ,LΠ(S(Tϕ,L)) | S(0) = s ], (6)

where

Π(S) = max{K − S, 0},
and δ is the force of interest or annual rate of interest compounded continuously.



9A Preparatory Pricing Formula

CL(s, ϕ) = E [ e−δTLC(S(TL), ϕ) I{S(TL)≥ϕ} |S(0) = s ]

+ E [ e−δTLΠ(S(TL)) I{S(TL)<ϕ} |S(0) = s ] (7)

where TL = inf{t; L(t) > L}.

The first term represents the case where the stock price is still above the boundary when

the aggregate losses exceed the trigger. At time TL the holder holds the perpetual put as a

regular perpetual American put.

The second term is for the case where the stock price is below the boundary when the ag-

gregate losses exceed the trigger. the holder will thus exercise the option immediately.

The optimal exercise boundary for this perpetual put is the same as the optimal exercise

boundary for the regular perpetual American put (with no trigger).



10Penalty Function Approach for Pricing Regular Perpetual American Put

Let U(t) = ln S(t)
ϕ .

U(t) = u + ct − L(t) + σW (t), t ≥ 0, (8)

where u = ln(s/ϕ).

The log-price process U(t) is interpreted in ruin theory as an insurer’s surplus, where u is

the initial surplus, c is the premium rate, L(t) is the aggregate losses up to time t and the

diffusion term σW (t) represents the fluctuation of the surplus.

The exercise time Tϕ = inf{t|S(t) < ϕ} is the same as the time of ruin T = inf{t|U(t) < 0}.

The expected discounted penalty function

φ(u) = E[e−δTw(U(T )) I{T<∞} | U(0) = u] , (9)

where the penalty function

w(x2) = Π(ϕe−x2) (10)

represents a penalty when the deficit at ruin is |x2|.

The parameter δ is the force of interest.



11Gerber and Landry’s Results

C(s, ϕ) = φ(u) with ln(s/ϕ) = u satisfies the defective renewal equation

C(s, ϕ) =

∫ ln(s/ϕ)

0

C(se−y, ϕ)g(y)dy +
(ϕ

s

)β

Π(ϕ) +

∫ ∞

ln(s/ϕ)

Π(se−y)g(y)dy

−
(ϕ

s

)β
∫ ∞

0

Π(ϕe−y)g(y)dy .

where

D =
σ2

2
, β = c/D + 1 ,

c = δ − D + λ[1 − p̃(1)], and

g(y) =
λ

D

∫ y

0

e−β(y−z)

∫ ∞

z

e−(x−z)dP (x)dz.

The optimal exercise boundary:

ϕ∗ = K
δ

c + 2D − λ
∫ ∞

0 xe−xp(x)dx
.



12Lin and Willmot’s Results

C(s, ϕ) =
1 + γ

γ

∫ ln(s/ϕ)

0

Ĥ(se−x, ϕ)dK(x) + Ĥ(s, ϕ) , s ≥ ϕ , (11)

where

γ =
δ

k
,

K(x) =

∞∑

n=0

γ

1 + γ

(
1

1 + γ

)n

G∗n(x) , u ≥ 0 ,

and

Ĥ(s, ϕ) =
(ϕ

s

)β

Π(ϕ) +

∫ ∞

ln(s/ϕ)

Π(se−y)g(y)dy −
(ϕ

s

)β
∫ ∞

0

Π(ϕe−y)g(y)dy .



13The Joint Distribution of TL and L(TL) − L

Introduce the surplus process Ũ(t) = L − L(t).

This surplus process has the initial surplus L and no premium.

The time of ruin coincides with the triggering time TL.

The deficit at ruin |Ũ(TL)| is the same as the excess loss L(TL) − L.

Define the penalty w(x2) = ezx2.

The expected discounted penalty function is of the expression

ψ(L, δ, z) = E [ e−δTL−z|Ũ(TL)| | Ũ(0) = L],

which is the Laplace transform of the joint distribution of TL and |Ũ(TL)| = L(TL) − L.



14Associated Defective Renewal Equation

The Laplace transform satisfies the defective renewal equation

ψ(u, δ, z) =
λ

λ + δ

∫ u

0

ψ(u − x, δ, z)p(x)dx +
λ

λ + δ

∫ ∞

u

w(x − u)p(x)dx, u ≥ 0.

The same approach as Lin and Willmot’s leads to an explicit formula for the joint distribution:

f(t, x) =

n∑

j=1

ajθ
−j

j∑

k=1

xj−ke−x/θ

(j − k)!

∞∑

i=0

hi(t)
Li+k−1

θi(i + k − 1)!
e−L/θ, x > 0, t > 0 , (12)

where

hi(t) =

i∑

j=0

bij
λj+1tj

j!
e−λt ,

and bij is computed recursively by

bij =

i−1∑

k=j−1

ai−kbk,j−1,

with b00 = 1 and bk0 = 0, k = 1, 2, · · · .



15Pricing Formula for the Catastrophe American Put

CL(s, ϕ∗) = I(s, ϕ∗) + II(s, ϕ∗),

where

I(s, ϕ∗)

=

∫ ∞

0

∫ ∞

0

∫ ∞

ln(ϕ∗/s)−ct+L+x

σ
√

t

e−δtC
(
s exp

{
σ
√

ty + ct − L− x
}

, ϕ∗
)

n(y)f(t, x)dydtdx,

where n(y) is the density of the standard normal distribution, f(t, x) is given in (12), and

C(s, ϕ∗) is given in (11), and

II(s, ϕ∗)

=

∫ ∞

0

∫ ∞

0

[
Ke−δtN(−d2) − sekt−L−xN(−d1)

]
f(t, x)dtdx ,

where

d1,2 =
ln(s/ϕ∗) + (δ + k)t − L− x

σ
√

t
± σ

√
t

2
,

and N(y) is the cdf of the standard normal distribution.



16Remarks

The approaches may be used for pring other types of options.

Let w(x2) = ezx2 in (9). One obtains the joint distribution of the barrier hitting time of

the stock price and the stock price at the hitting time.

This distribution may be used to price digital options and barrier options.



17Fitting the Mixture of Erlangs to Catastrophe Loss Data

The proposed distribution for P (x):

p(x|θ, {ani
}) =

M∑

i=1

ani

xni−1e−x/θ

θni(ni − 1)!
, x > 0 , (13)

where θ and ani
’s are to be estimated.

Theoretical justification (Tijms Approximation):

Let

p̂(x|θ) =

∞∑

i=1

(P (iθ) − P ((i − 1)θ))
xi−1e−x/θ

θi(i − 1)!

Then,

lim
θ→0

P̂ (x|θ) = P (x),

for all continuous x.



18An EM Algorithm

A MLE based expectation-maximization algorithm for incomplete data.

Let x = (x1, x2, · · · , xn) be an incomplete sample generated from a pair of random vari-

ables (X,Y ) with joint density p(x, y|Φ),

where Y is an unobservable random variable and Φ is the set of parameters to be estimated.

The corresponding complete data is {(x1, Y1), (x2, Y2), · · · , (xn, Yn)},

The complete-data log-likelihood is given by

l(Φ|x,Y ) =

n∑

i=1

ln p(xi, Yi|Φ)
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22Testing the Algorithm Using Common Distributions



Figure 1: Histogram of uniform distribution and line for the fitted distribution

generated uniformly for study. In this study, we will use Dufresne’s result as a comparison.

The EM algorithm is applied to the data. A mixture of 19 Erlangs with a fixed θ of 0.000498 fits the data

well with each Erlang having significant weight. The parameters that maximize the log-likelihood function

can be found in the appendix. The resulting log-likelihood value is -83.18.

5.1 Graphical comparison of the fitted distribution and underlying distribution

The fitted distribution is graphed with the empirical histogram overlay in the Figure 1. It can be observed

that the fitted curve tightly envelops the relative histogram with slight overshoot near x = 1− and x = 2+.

In Figure 2, the QQ plot provides another evidence of overshooting at the extremes. PP plot suggests that

the proposed model has a good fitness.

5.2 Statistical tests

The following table summarizes the results of the statistical tests suggested in the previous section.

14



Figure 3: Histogram for Weibull(2,2) and the fitted density using a mixture of 6 Erlangs

Figure 4: PP and QQ plots for Weibull(2,2) and the fitted distribution

The plots in Figures 3 and 4 show our proposed model has an almost complete fit for the light tailed

Weibull distribution.

Example 2: Heavy tailed Weibull distribution

17



Figure 5: Histogram for Weibull(0.8, 2) and the fitted density using a mixture of 10 Erlangs

Figure 6: PP and QQ plots for Weibull(0.8, 2)

The plots in Figures 5 and 6 show our proposed model again performs well in fitting for the heavy tailed

Weibull distribution. The QQ plot suggests that the fitness of the tail is not perfect. However, the problem

can be solved by using more Erlangs. The effect of increasing the number of Erlangs will be shown in the

example for the lognormal distribution.

18



Example 3: Pareto distribution

Figure 7: Histogram for Pareto(1, 1) and the fitted density using a mixture of 5 Erlangs

Figure 8: PP and QQ plots for Pareto(1, 1)

As shown in Figures 7 and 8, the plots again show our model has a good fitness for Pareto distribution.

19



Example 4: Lognormal distribution

Figure 9: Histogram for lognormal(1, 1) and the fitted density using a mixture of 15 Erlangs

Figure 10: PP and QQ plots for lognormal(1, 1)

By increasing the number of Erlangs used for fitting to 15, the fitness for heavy tailed distribution

improves significantly. As shown in Figures 9 and 10, the plots again show our model has an almost perfect

20



23Fitting PCS Catastrophe Data

Data: 1271 catastrophe losses in US from 1997 to 2005.

Some stylish facts:

1. The data is multi-modal.

2. The maximum value of the data is 247 times of the mean.

3. There are 9.13% of the observations categorized as outliers.

4. The skewness and kurtosis for the data are 23.04 and 619.63.

5. 56% of the data is smaller than 0.1% of the maximum value while 96.6% of the data is

smaller than 1% of the maximum value.

All of the above point to that the data is irregular and heavy tailed.



Figure 11: Histogram of observed loss and line for the fitted distribution

Figure 12: Histogram of observed loss and line for the fitted distribution
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24Goodness of Fit

nth moment Empirical Fitted Fitted/Empirical Percentage Difference (%)
1 9.833 * 107 9.833 * 107 1.0000 0.00%
2 6.917 * 1017 6.908 * 1017 0.9987 -0.13%
3 1.317 * 1028 1.315 * 1028 0.9983 -0.17%
4 2.932 * 1038 2.926 * 1038 0.9979 -0.21%
5 6.857 * 1048 6.840 * 1048 0.9975 -0.25%

Table 1: Catastrophe data–raw moments

Quantities Empirical Fitted Fitted/Empirical Percentage Difference (%)
Mean 98.33 million 98.33 million 1.0000 0.00%

Standard Deviation 825.85 million 825.31 million 0.9993 -0.07%
Skewness 23.03 23.04 1.0003 0.03%
Kurtosis 619.28 619.63 1.0006 0.06%

Table 2: Catastrophe data–central moments



25Related Issues

Calculation of VaR and CVaR (TVaR, CTE, Expected Shortfall)

VaR Vp at security level p:

Vp is the solution of

e−Vp/θ
M∑

i=0

Qi

V i
p

θii!
= 1 − p

where Qi =
M∑

j=i+1

aj.

Conditional VaR at security level p:

CV aRp =
θe−Vp/θ

1 − p

M∑

i=0

Q∗
i

V i
p

θii!
+ Vp,

where Q∗
i =

M∑
j=i

Qj.



26Distribution and Risk Measures of Aggregate Losses

Collective Risk Model:

S =

N∑

n=1

Xn

Where N is the number of losses and the iid sequence Xn : n = 1, 2, · · · , are successive loss

amounts following a mixture of Erlangs.

Its distribution is a zero-modified mixture of Erlangs with positive density

fS(x) =

∞∑

k=1

ηk
xi−1e−x/θ

θi(i − 1)!
.

Here ηk, k = 0, 1, · · · , are the coefficients of the power series PN(Pa(z)), where PN(z) is the

probability generating function of N and Pa(z) =
M∑
i=1

aiz
i.

Its Var and CVaR are obtainable.



27Individual Risk Model:

S = S1 + S2 + · · · + Sn.

Sj’s are mixtures of Erlangs, independent but not identical.

Each Sj may represent a individual risk or a collective risk.

Its distribution is again a zero-modified mixture of Erlangs with positive density

fS(x) =

∞∑

k=1

ηk
xi−1e−x/θ

θi(i − 1)!
,

Where ηk, k = 0, 1, · · · , are the coefficients of the power series
∏n

j=1 Paj
(z).


