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AGENDA 
 
• Introductory Comments  
 
• Nature of Data 
 
• Basic Lee-Carter Model 
 
• Age-Period-Cohort Model 
 
• Risk Measurement 
 
• Back Testing 
 
• Concluding Comments 
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WHY ARE WE INTERESTED IN MORTALITY? 
 
 
• Life expectancy is increasing – a good news story 
 
 
• Future trend is uncertain – leading to “longevity risk” 
 
 
• Systematic risk for DB pension plans and annuity providers 

(noting shift from DB to DC and growing importance of annuities) 
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WHY ARE WE INTERESTED NOW IN MORTALITY? 
 
 
• Life expectancy increases have been a long term phenomenon 
 
 
• Impact on financial institutions hidden by high investment returns. 

Since 2000: lower equity returns and low interest rates. 
 
 

[ Note closure of Equitable Life to new business in 2000 ] 
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WHY DO WE NEED TO MODEL MORTALITY DYNAMICS? 
 
 
• Setting prudent reserves for annuity providers and funding 

strategies for DB pension plans 
 
• Good risk management practice 
 
• Dealing with insurance contracts with guarantees and embedded 

options e.g. GAOs in UK, Variable Annuities in US 
 
• Development of longevity – linked securities : pricing and hedging.  
 
Deterministic models are not fit for purpose.  
 
Hence, we need to discuss stochastic models.  



ILLUSTRATION OF DATA CONFIGURATION 
 

 
Typical rectangular data array and targeted projected array.   
 

 
 

 6 



NOTATION 
 

 

 
Data: ( xtd , xte ) 

xtd = number of deaths at age x and time t 
 xte  = matching exposure to risk of death 
with empirical central mortality rate 

ˆ /xt xt xte . m d=
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LEE CARTER MODELS: BASE VERSION 
 
 

STRUCTURE 
 
One of the benchmark demographic models used for mortality modelling and 
projections in many countries. Lee and Carter (1992) proposed: 
 

ln ,xt xt xt xt x x tm   = η + ε η = α +β κ , 
 
where the xtε  are IID 2(0, )σΝ  variables. 
 

This is a regression framework with no observable quantities on the RHS.  
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STRUCTURE (cont) 
 
 
 
Structure is invariant under the transformations 
 

{ , , } { , / , }x x t x x tc cα β κ α β κ  
 

{ , , } { , , }x x t x x x tc cα β κ α − β β κ +  
 

and is made identifiable using the following constraints (which are not unique):  

1

0
nt

t
t t=

κ =∑ , 1,x
x

β =∑  and which imply the least squares estimator 

11

1ˆ ln
1

nt

x xt
t tn

 m
t t

∧

=

α =
− + ∑  
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INTERPRETATION OF PARAMETERS 
 

 
 

xα :  ‘average’ of log xtm  over time t so that exp xα represents the general shape   
of the age-specific mortality profile.  
 
 

tκ : underlying time trend. 
 
 

xβ : sensitivity of the logarithm of the hazard rate at age x to the time trend 
represented by . tκ
 
 

xtε : effects not captured by the model. 
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FITTING BY SVD 
 
 
 

A two-stage estimation process: estimate xα  as above. Estimate  
tκ  and x β  as the 1st right and 1st left singular vectors in the SVD of the matrix 

ˆˆ[log ]xt xm −α . 
Thus 
         1 1 1

1

ˆˆlog( ) ( ) ( ) ( ) ( )xt x i i i
i

m s u x v t s u x v t
>

= α + +∑  

where 
      i, ,i is  u  v  = (ordered) singular values and vectors 
and 
 )1 1 1

ˆ ˆ ( ) (x t s u x v tβ κ =  
subject to the constraints on tκ  and xβ . 

ˆFinally, tκ  are adjusted so that 
 

  tˆ
xt xt

all, x all, x
d d   = ∀∑ ∑ .  where  ˆ ˆˆ ˆexp( )xt xt x xd e t= α +β κ . 
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FITTING BY WEIGHTED LEAST SQUARES (GAUSSIAN) 
 
 

Perform the iterative process 
 

 

 

Set starters ˆˆˆ , ,x xα β κt ; compute ˆxty  
↓  

update ˆ xα ; compute ˆxty  

update , adjust s.t. ˆ tκ
1

0
nt

t
t t=

κ =∑ ; compute ˆxty

update ˆ
xβ ; compute ˆxty  

ˆ( ,compute )xt x y t  D y
↓  

repeat; stop when )ˆ( ,xt x y t  converges D y

Where   ˆˆ ˆlog ,xt xt xt xty m  y= = η , 2ˆ ˆ( , ) ( )xt xt xt xt xt
x,t

D y y w y y= −∑  

with weights 
 xt = xt   (or = 1). w d
For a typical parameter, we use the updating algorithm: 

 
2

2( ) D Dupdated ∂ ∂
θ = θ −

∂θ ∂θ
. 
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POISSON BILINEAR MODEL 
 
 
 
 

 , ( ) exp( ),xt xt xt xt x xY D  Y e= Ε = α +β κt  Var( ) ( )xt xtY Y= φΕ  
 

with log-link and non-linear predictor 
log xt xt x teη = +α +β κx . 

 

Perform iterative process with 
ˆ ˆˆ ˆˆ, exp( )xt xt xt xt xt x x ty d  y d e= = = α +β κ  

        ( )ˆ ˆ( , ) 2 log ˆ
xt

xt xt xt xt xt xt
x,t xt

dD d  d w d d d
d

⎧ ⎫⎛ ⎞⎪ ⎪= − −⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
∑  

with weights 
 

1, 0
0 0

xt
xt

xt

e
w   

, e
>

=
=
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LEE CARTER: BINOMIAL 
 

 
 

xt x x t= +η α β κ    1,  0
nx t

x
= =∑β κ  

 
and link functions ( )xt xtg q=η  

 
Possible choices of  are: g

 
I. complementary log-log link  ( ){ }log log 1xt xtq= − −η  
 

II. log-odds link      log
1

xt
xt

xt

q
q

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

η  

 
III. probit link      ( )1

xt xtq−= Φη  
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DIAGNOSTICS 
 

 
1) Proportion of the total temporal variance explained by the 1st SVD 

component: 

 
2
1

2 100%
i

all, i

s
s
×

∑
. 

 
(Not a good indicator of goodness of fit.) 
 
2) Standardised deviance residuals 

ˆ ˆsign( )xt xt xty yε = − ( )dev x,t / φ  
 
(we could also use standardised SVD residuals) 
 
3) Plot differences between actual total and expected total deaths for 

each time period, t. 
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PROJECTIONS 
 
 

Time series (ARIMA) 
 

1ˆ{ : t [ , ]}t nt tκ ∈  0{ : }
nt s s+κ > . 

 
Construct mortality rate projections 

ˆ ˆˆ exp{ ( )}, 0
n n n nx,t s xt x t s tm m  s+ += β κ − κ >   

 

by alignment with the latest available mortality rates. 
 

Note 
 ˆ ˆ( , ) exp{ ( )}, 0

n nn x t s tF x t s  s++ = β κ − κ >  
 

is a mortality reduction factor, as widely used in the UK (e.g. by CMI 
Bureau) and elsewhere. 
 

For ARIMA(0,1,0) with drift parameter  λ
 

 ˆ ˆ( , ) exp( ), 0n xF x t s s  s+ = β λ > , 
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E+W 1961 – 2003 male mortality experience. Log crude mortality  
rates against period, for grouped age (0-,1-,5-,10-, …, 90-, 95-).
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E+W female mortality experience (LC) 
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E+W male mortality experience (LC) 
 

 
LC model: E+W mortality experience 
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INTERIM CONCLUSIONS     
 
 

 
• Basic LC model fits England and Wales females mortality 

experience fairly well; but poor fit for male experience 
 
• Enhancements 
 

- optimize choice of fitting period 
 
- add a second factor: 2 )1 1 2( ) ( ) ( ) (

tx x t xα β κ β κ+ +  
 

- use a principal components approach 
 

- allow for a cohort effect 
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AGE-PERIOD-COHORT MODELS IN LC FRAMEWORK     
 
 

 
UK: Strong cohort effect for those born in period 1925 – 1945 (also US, 
Japan, Germany Sweden) 
 
The Lee-Carter structure may be expanded to incorporate a cohort effect: 
  
 (0) (1)

xt xt x x t-x x tAPC: logeη = + α +β ι + β κ  
 
under the Poisson setting.  
 

 
The age-cohort substructure 

(1) 0AC: xβ =  
is also of interest, while we recall that for the standard model 

(0) 0LC: xβ = . 
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FITTING AGE-PERIOD-COHORT MODELS 
 
 

 
Fitting is problematic because of the relationship 

cohort = (period – age) or z = t – x 
between the three main effects. 
 

We resort to a two-stage fitting strategy, in which xα  is estimated first, 
according to the original Lee-Carter SVD approach, thus 

 
11

1ˆ ln
1

nt

x xt
t tn

 m
t t

∧

=

α =
− + ∑  

 
The remaining parameters can then be estimated subject to the 

parameter constraints 
 

 t
( ) ( ),

kx x t x
x x

  and   or 
1 1

0 11 1 0 0β β ι κ−= = = =∑ ∑ . 

Effective starting values are obtained by setting ( ) ( )
x x
0 1 1β β= =

z

 and fitting a 
restricted version of the model to generate starting values for ι  and tκ . 
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PROJECTIONS 
 

 
Use separate ARIMA time series 
 

ˆ{ : [ , ]}t nt t t1κ ∈  { : }
nt s s 0κ + > , 

 
ˆ{ : [ , ]}z k nz t x t x1 1ι ∈ − −  { : }

nt x s s
1

0ι − + > , 
 

then 
 

( ) ( )ˆ ˆˆ ˆ( , ) exp{ ( ) ( )},
n n n nn x t x s t x x t s tF x t s  s− + − ++ = − + − >β ι ι β κ κ0 1 0 

 

where 
 

ˆ ,

,
n

n

n

t x s
t x s

t x s

 s x-x

 s x-x
1

1

ι
ι

ι
− +

− +
− +

≤
=

>
. 
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UK female mortality experience (LC) – residual plots 
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UK female mortality experience (AC) – residual plots 
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UK female mortality experience (APC) – residual plots 
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APPLICATIONS 
 
 

 
Time Series Forecasts 
 
• For :tκ   

 
ARIMA (1, 1, 0) for females 
 
ARIMA (2, 1, 0) for males 

 
 
• For zι  :  

 
ARIMA (1,1,0) for both genders 
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England and Wales population, parameter estimates, APC model: 
(a) females; (b) males 
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England and Wales population, parameter estimates, APC model: 

(b) females; (b) males 
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Latest and projected xtlogμ  age profiles: 

 31 
(a) LC and AC modelling; (b) LC and APC modelling 
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APC 

APC 

APC 

APC 

 
Life expectations at age 65 for a range of periods, computed by period and by 

cohort under age-period (LC) and age-period-cohort (APC) modelling 



 

RISK MEASUREMENT AND PREDICTION INTERVALS 
 
• uncertainty in projections needs to be quantified i.e. by prediction 

intervals  
 
• but analytical derivations are difficult 
 
• 2 different sources of uncertainty need to be combined 

 
-  errors in estimation of parameters of  

    Lee Carter model 
 

- forecast errors in projected ARIMA  
model 

 
• indices of interest (e.g. hazard rates, annuity values, life 

expectancies) are complex non linear functions of , ,x tχα β κ  and 
ARIMA parameters. 
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DIFFERENT SIMULATION STRATEGIES  
 
 

A) Semi-parametric (Poisson) Bootstrap: generates new data sets 

Let xd
∧

 be fitted number of deaths. 

Simulate response ( )j
xd  from Poisson ( xd

∧

) 

Compute ( )j
xμ  

Fit model: obtain estimates of ( j ) ( j ) ( j )
x x t, ,α β κ  

Compute ( )
n n n

j( j ) ( j ) *
t k t k t k j

 34 

E Var .zκ κ κ+ + +
⎡ ⎤⎡ ⎤= +⎣ ⎦ ⎣ ⎦  

Repeat for 1,...,j = Ν  

 
 
 



DIFFERENT SIMULATION STRATEGIES (Continued) 
 
C) Residuals Bootstrap: generates new data sets 

 
Let xr  be the deviance residuals 

 
Sample with replacement to get ( )j

xr  
 
Map from ( )j

xr  to ( )j
xd  for each x 

 
Compute ( )j

xμ  
 
Fit Model: obtain estimates of ( j ) ( j ) ( j )

x x t, ,α β κ  
 

Compute ( )
n n n

j( j ) ( j ) *
t k t k t k j

 35 

E Var .zκ κ κ+ + +
⎡ ⎤⎡ ⎤= +⎣ ⎦ ⎣ ⎦  

 
Repeat for 1,...,j = Ν  



DIFFERENT SIMULATION STRATEGIES (Continued) 

 
B) Parametric Monte Carlo Simulation: generates new parameter 

estimates from fitted parameter estimates 
 
Simulate )  vector of e ( j (0,1)Ν  errors 

CLet  be the Cholesky factorisation matrix of the 
variance- covariance matrix (needs to be invertible) 
 
Compute simulated model parameters 

                    

θ θ ϕ= +( j ) ( j )ˆ  C e  
 

   where ϕ  is optional scale parameter 
 
   Compute 

n

( j )
t kκ +  

 

Repeat for 1,...,j = Ν  
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JOINT MODELLING 
 
Attempt to model variable dispersion parameter (rather than fixed ϕ) 
 
2 stage process (LG model) 
 
 

1. Model xtD  as independent Poisson response 

Define 
{ }

)(E
)(E 2

xt

xtxt
xtxt D

DD
R

−
ω=  the resulting squared Pearson residuals 

 

 

2. Define xtR  as independent gamma responses 
{ } ( ) 2V;

)(EV
)(Var,)(E uu  

R
R  R

xt

xt
xtxtxt =

ω
τ=φ=                

    and log link and linear parametric structure in age.  
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NEGATIVE BINOMIAL MODELLING 
 
 
 
 
 

Extend Poisson model (with no scale parameter 1ϕ = ) 
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Variance function in GLM becomes: 
 
 
 

2( ) xV u u u= +λ  
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(APC) 

(APC) 
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(APC) 

(APC) 
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BACK-FITTING EXPERIMENTS 
 
Test stability of model and parameter estimates 
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FINAL COMMENT 
 

 
 

• Other approaches to prediction intervals for Lee-Carter models – 
Bayesian methods 

 
• Extreme ages – extrapolation methods needed where data are 

scarce 
 

• Problems with forecasting structural changes 
 

• Time series methods and their application to long forecasting periods 
 
 
 
 
 
 
 



FINAL COMMENT (continued) 
 

 
 
 

• Effect of xβ  on smoothness of projected age profiles: need for 
smoothing of estimates 

 
• Quality of data sources and appropriateness for particular 

applications: adverse selection and “basis risk”. 
 

• Model error – essential to investigate more than one modelling 
framework. 

 
• Sources of uncertainty – process, parameter, model, judgement. Not 

all sources of uncertainty can be quantified.  
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