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 Goal of active portfolio management is to beat a benchmark/index

(passive managers track an index)

— Benchmark/Index is some specific portfolio strategy (eg liability)

— = Goal of active manager is to beat another portfolio strategy

If you have to beat the index, then it is a

» Survival Problem (Investing if you must ala Dubins and Savage)

If you can beat the index, then you can find a

 Growth Strategy (Kelly type)




o Objectives of interest: for a given investment “goal” and “shortfall” level,

— Maximize probability of achieving goal before shortfall (survival) ...

— Minimize expected time until goal reached, etc.. (growth) ...,

o For fixed finite horizon problems, option strategies are optimal
(Browne Adv. Appl. Prob., IAFE and J. Portf. Management),
but are very “risky”

o Constant proportions is optimal for many objectives over an infinite horizon
(Browne Finance ¢ Stochastics)
but is considered “too simple” an idea to be used.



Today

— Background: Gambling, portfolio theory

— Continuous-time models, stochastic control

— Financial models where ‘Dubins and Savage' as well as ‘Kelly" apply
+ External risk (insurance funds), liabilities, benchmarking

+ Finite-time goal problem and Connections with Digital options

* New objectives for risk (shortfall probability)/ return (time to goal)
tradeoff

]

Policy is no longer constant proportion

[

Framework allows consideration of risk-constraints

+ Two - player game theoretic versions

o Contrast with discrete-time results



Gambling/Investing

(Zy:n =1} ~iid, E(Z)=p, Var(Z) = o?

Let 7, = fraction of wealth invested on nth trial.
Wealth after n gambles: X, =X, 1+(m X, 1) Z, = =X [[ (1 +mZ;)
i=1

Portfolio Theory:

+ ko risky securities, & 1 risk-free, with return R.
Ly =[Ziny .. Lin), Zin=return on security i over period n.
- Random walk model: E(Z,)=p,Var(Z,) =X,

+ Portfolio weights: m; ,=% of wealth invested in security 7 over period
J— f.r-- !
Ty = (‘“1.?1 ----- ?r;x'..'i'?-)

+ Wealth process:
Xo=X,  [l+7Z,+1-71)R =X, 1+ R+x (Z, — R1)]



HOW TO INVEST 7

Econ/Finance

Gambler/Probabilist

Objectives | max E [U({Xy)] | “Goal Problems” (survival, growth)
(<0 m, =0, all n Survival: Dubins and Savage
T, = 111'111{1, %Tll — 1}
p>0 |if Ulz) =219 Optimal Growth Policy: (Kelly)

m* = argsup, EIn(1 + 77Z;)




« Optimal growth corresponds to U(x) = In(x).

Kelly (1957) treated case where P(Z;, =1)=0=1—- P(Z, = —1),
with > 1/2, so

Tt =20 -1
« Ferguson (1965) conjectured that just as U(x) = In(x) corresponds to
“arowth”, the exponential utility function, U(x) = —e~* corresponds

%

to “survival”, for some 4. Browne (95, 97, 99 for continuous-time
relevance)



|. Single period problem:
+ Markowitz (1952-1950)

max F (X, | X, 1) subject to Var(X,|X,._) <

min Var (X, | X, 1) subectte E(X,|X,.4) =p
- Efficient frontier gives .... but which one 77

+ Econemic theory (Tobin...): Utility function
U(E(Xn | Xozt), Var (X, | Xazq)) with Uy =0, and Uy < ()

A utility maximizer will invest

i
i)

= ———%!(u — Rl
7= g S (- R1)

- Portfolio seperation, Mutual fund theorem: individuals differ only
according to their risk preference, —%’E



[I. Multiperiod problem - dynamic portfolios

-X-w — -X-u.—l '[1 + TTJ»:;,ZH + [1 - ﬂ:;]-]'R]' — -X-D H '[1 + R + ﬂ-J; [Ze - Rl]}'
1=1

+ Utility theory: U( Xy )= utility from terminal wealth

Dynamic programming:

F(r,n) = max £ [U(Xy)

X, = 1]

= max E[F(z[1+ R+w'(Z — R1)], n+1)]

T

F(z,N) = Ulx)



+ THEOREM
(Bellman 1957, Hakansson 1970, Mossin 1968, Samuelson 1970)

7w} = (constant proportions) if and enly if

DNe)=a"a<1) or Ulx)=Inlx)

- Constant proportiens is a contrarian policy

+ Optimal Growth (Kelly 1956)

o Suppose that w, = m, all n (Constant Proportions policy)

1:-:;

mn

| i—

X, = Xpexp {ﬂl In (1 -I—H-I—?r’[zj—ﬂllzll}
1

1
= XDC:{D{H .E-'lnI:l-I—R-I—?rI[Z'l—Rl]:I]-I—r":l(—)}
n

o to “grow’ optimally, choose

m*=argsupEln(1+R 4+’ [31 - Rl]:'
w
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- 1. 7" also optimal for sup, E (In Xy ).

- ii. " is asymptotically optimal for min, E{time to b), as b | oc.
(Breiman 1961)

- iii. " is game theoretically optimal to maximize P(beat opponent),
in one play (Bell & Cover 1980)

+ Special case: k=1, simple random walk

=T 99— 1R

- ) +0 wp. f ., (1+R)é
ZE_{—{}‘ w.p. 1 -6 =7 62 — R?
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Continuous-time

Sequence of random walks: {Z:-':”}:-;;_}l, {Z;:Q]}g;:l, . ,{Z}mj}g;_}l,.

.. where

Z!:m:l . +0m  W.p.
s B _(Sm W.p. 1 - gm

. _ 1 1
Rm — i. Om = {:1—1 9??1 = -+ H_.—
m VM 2 20ym

viosze >

— ut + oW, where {W;,t > 0} is standard Brownian
motion.

+ ii.  For ‘optimal growth’,

o (1 + 'rf!ﬂ’} |[||I'£ o T:l . —r
n {TQ o/ — = 2
. AL T

. 1 )2 .
Xy 2 X! = Xoexp { (-r' i (‘” ‘") ) t 4 (’” r) I-h}
2 T a
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 iii. For any constant T,

I..lﬂ-

9 9
X — Xi = Xo-exp {(r +m(p—r) — — ) t+ iffﬂ-"[—-‘}}

2
and by lto,

dX: = [r+ w(p —r)] Xedt + mo XedW;

(Ruin is impossible in finite time.)
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The Basic Continuous Time Model:

ETH

< Stock Price (geometric Brownian motion): dS; = puSidt+oSdW;

ETH

- Money Market (Riskless Bond): dB; = rBdt

ETH

< Portfolio Allocation (Trading) Strategy:

7, = fraction of wealth invested in risky stock at time ¢

« Wealth Process: X[ = wealth associated with strategy ™ = {m,t >

0}

ETH

.S,
t S'El

B
f le

d.:'{;r = Tt + I:l — ?Tf]l
= [r+m(p—r)) X7dt + moX]TdW,

For m; =0 for all t, X = B,

]

For m: = 1 for all ¢, Xfl = 5

]
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+ Constant proportions strategy: m; = 7 for all ¢

-2 9
o For constant 7, X[ = Xg-exp { (-r + 7y —7r) — - f ) t+ F?GT-'T-'}}

+ When is constant proportions optimal 7

o Maximizing terminal utility of wealth, with U(z) = 2 for a < 1,
or
U(x) = In(x) [Bellman, Hakansson, Samuelson, Merton & others]

For any t, “Growth rate” %Eln (X¢/Xqp), is maximized by

. M

i

p [Optimal Growth (OG) strategy|

Y
OG Wealth: X/ = Xpexp { (-r + U'T; ) ) t+ ot 1[__.1[__.-'#}

- " optimal for log-utility

- " minimizes the expected time to reach any goal
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- Supermartingale structure and asymptotic dominance of OG:

For any other strategy {m:,t > 0}, the wealth process X[ satisfies

E (J{as

T
X i+s

X7
Ff) = Xj* — 0, ast —
At

XT o’ i
o For any constant T, Xj* = exp {—7 (m" — )t —o (7" — 1) W,
Af

< Option Pricing & Optimal Growth:

o Derivative security: At T" will get payoff g (Y})

&

"y

=1
Time ¢ “fair” (Black & Scholes) price = X} E (g(}LT’) ‘ .ﬁ)
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+ Some Portfolio Goal Problems
o Fixed Liability, must pay %¢ per unit time (Browne, MOR 1997)

NOTATION: f; = amount invested in risk stock(s) = mX;

ds dB a , .
{ f ( i — fz‘) B:} cdt = l‘—"}xsf + filp—7r) — G] dt+ fiodW;

X/ = ”‘{XD__F 4 [ [ — r)ds + odW]

Wealth space breaks down into 2 regions:
1. Xo < & Danger Zone (Survival important)

- ii.  Xg > = Safe Region (Growth possible)

17



« Survival in danger zone: Xp < *.

- Objective is to min P(get to b before a), for b < ¢/r.

frx) == (£~ x))

[ — 71 \7r

i. Invest a constant proportion of the shortfall to the safe region,
independent of o2, a. b.

ii. Is conservative near b, but doesn’t panic near a.

iii.  Under f*, the optimal wealth process, X/ is

, 2 _. i
dX¢ = (E - Xt) dt + o (E — Xs) dli
r ft— 1 \r

18



PROBLEM: Let b — <, then

L+ .
L. P, (1} > T,_f_‘:;r,) = 1"— (%)Jr < 00, so ¢/r is an
“attracting boundary”

2.k, (min {T§~T;,.fr}) = oo, (in fact T;‘:;r =00 a.s.) so ¢/r is
an ‘inaccessible boundary”

Conclusion: No optimal policy for going from danger zone to the
safe region.

o Similar solution and issues if we want to maximize the expected NPV
of the obligation (i.e., annuity)

T _rs C : —rT
EIL ce dSZ;(l—Eﬂ;(E’ ))

o Maximizing probability of survival until Exponentially distributed death

19



+ Survival: Dubins and Savage in continuous-time

4V, = m(YY, f)dt +v(Y, fdw;

U(y) =sup P, ( > T,J) . Ua)=0,T(b) =
f

\ Ay, f) . /)
HJB: 51}1}{-m('E;1.f,)‘1'y+f g ijy}_ﬂ_ P H:;(y,fjw | W f)}

For classical solution, ¥, > 0, ¥, < 0, as such

) m(y, f)
f —argm;p{m}

m(y, f*)
vy, f*)

1Y s(x)dx

—e"{p{ Qf (7 d?,f} U(y) = 5———

plz) = I s(x)de

. True only for v* > 0, if not 7

- Can develop e-optimal policy 20



o Growth (Xp = ¢/r): How to invest in the safe region 7

- Objective: get to b as quickly as possible (minimize expected time)

. p—r{., c
frx =2 (-5

?—1

i.  Invests a constant proportion (ordinary optimal growth) of
the surplus

ii. Independent of target b
iii. Makes danger zone inaccessible from above

iv. gives form for “Constant Proportion Portfolio Insurance”

21



— Survival: Exogenous risk/incomplete market (Browne, MOR 1995)

Y} is an exogenous risk (e.g. insurance claims)

d St
St

+ (X - ) %‘% +dY,

ixi = 1,

X/ + filp— )| dt + fiodWD + adt + aWD

|. By continuous-time Dubins and Savage, to max; P (TC{- > be)

fiz) =

;ﬁ (‘v’f('m? +a — ‘%,?[,U- — ?‘:))2 + 32(1 — p?) (%)Q —(rz + a:))

i fY(z) <0, and f*(x)—0,as x |.
i. When r =0,

frla) = fro) = L 20

ont o

where it is poitive root to 7> (M) — 1 ({T}: — ﬂ) — % (E)Q = 0.

a

ii. If constrained by f; < X;, then f} = max{X;, f*(0)}.

iv. Discounted time treated by HJB methods 22



. Utility maximization: For U(z) = & — #e=%", optimal policy to max

£ (0 (54
fr = =T _r(T—t) p3

. do? a

o For r =10,

=7 pld
f _ﬁ1 .

do? 7

So, maximizing exponential utility with & = maximizes survival. (Ver-
ifies Ferguson’s 1965 conjecture.)

23



Active Portfolio Management (incomplete market case)

Controlled wealth:
dXT = XT [[?‘ + mlp — 7)) dt +mo ril—i-"t':l:']
Benchmark Target process:

dy, =Y, [;_;.wif. +ay f;r_wg?"-?]  with BW VW = gt

- If g* < 1, “incomplete” (no perfect min-var hedge exists).
- |f Ir;j =1, and Y is traded, then "no arbitrage” = &2 = 8T

oy

py =r+wlp—r), and oy = wa, for some 7

o Investment goal u reached at ¢+ if X7 =u - V..
+ Shortfall level [ reached at ¢ if XT =1-Y}.
Constant allocations optimal for many ‘goal’ chjectives

- Minimize shortfall probability (i.e. maximize probability of reaching
goal before shortfall)

- Minimize [maximize] expected time to reach goal [shortfall]

- Max [Min] expected discounted reward [cost| of reaching goal [short-

fall] 24



Maximizing Probability of reaching goal before shortfall

' Ratio: Z7 o= X7/Y, == { dZ = ZF (m(m)dt +v(m)dW,) |

- Drift: mm) =w(p—r— o’8) — (y —r — ot
- Diffusion: 1*(r) = m°a* 4+ 04 — 215° 03
-3 =poy/o

o Minimum - Diffusion pertfolio strategy: =, = 4
- vt(F) = oy (1 — pﬂ)

 Maximum probability strategy:

i)
i-'z{'-'l'aj'

i ob . . .
Y = the pointwise maximizer of

griereb — N M2 4 52— 2pM S

2
—r =
where M = 1Y 21" and 5=22
ph—r—a )
o Who invests more 7
Tr'i‘ﬁi-ﬁpJ'-ﬂl!‘l < ."3

25



Minimizing/maximizing expected time:

Depends on sign of “faverability” parameter: # = %[ﬁfs + (gﬂ —
iy — )

(independent of p 1)

I
i
i
i
i

Ordinary optimal growth strategy, 7" = (u—r) /?, is again optimal with
benchmark

o If @ =0, then 7 minimizes expected time to goal

o If @ < (), then ™ maximizes expected time to shortfall

26



Active Portfolic Management: complete market case, p® =1
py =r+m(p—r) and oy =70,

where 7 is the "benchmark” strategy

+ If objective is to maximize probability of beating benchmark return
by a fixed deadline T, then optimal strategy is to replicate a binary
(digital) option.

(Browne 1996 & 1999)

o Risky, in that it can lead to substantial shortfalls

+ Infinite horizen probability maximizing problem becomes trivial (can
reach goal with probability 1)

+ Expected time to shortfall can be made infinite, and 7 will minimize
expected time to goal

So whats wrong with =+ 7

27



So whats wrong with 7* 7

+ Strategy is independent of the benchmark policy .

+ Probability of reaching goal before shortfall is independent of bench-
mark policy, as well as any other parameter.

In particular, the ratio is the geometric BM

dZi(m* m) = Z(7* 7)) [ydt + (7" — 7)) odWy |, where ~ = o2 (" — ?r:jg /2

for which

[

The probability of reaching goal u before shortfall [, starting from

zZ1s
L oufz—
Iz) = 2 (-u. — E)

The expected time to exit the strip ([, u) is

. (r(x".7) =77 o) (7) ~1n (7)

o

28



— Linear tradeoff between shortfall probability and expected time to goal.

SI;D{&'P; (Zf = ) — OE. (Tf)}

where 7/ is the first escape time from the strip (I, u).

+ Optimal portfolio strategy is no longer constant:

, , b ue=18 — |
f'lZy)=a"+(7" —m) Z where b= T_ E_w!‘,;

]

Inversely modulated by the level of the ratio process Z.

]

Depends on benchmark through v = ¢ (7" — 1) /2

The probability of reaching goal before shortfall is

(2= 1)(u +b)
(2 +b)(u—1)

]

(follows from Z} = (1 + Eiu) Zi(m*,m) — b)

]

We always have b > —|

29



Risk-Constrained Minimal Time: (Gottlieb 1985)

« Initial shortfall probability prespecified: Pgu[:fo =u) > p

+ Risk-constrained problem: minimize expected time to beat benchmark
subject to shortfall probability constraint

+ The dual of this problem is

sup | F. [:Zf_,- =u) — (F, Tf] where now /7 is Lagrangian multiplier.
f

+ From risk-constraint (met at equality), we can determine /3, or equiv-
alently b

Optimal strategy:

o ... b pZolu —1) —ul(Zy — 1)
(Z:) =" ™ —7) — h h = : S
J(%) + ) Zi where o Zo— 1 —plu—1)

30




Optimal strategy:

v e b pZo(u—1) —u(Zy — 1)
fZ)=7m + (7 —7) 7 where b= Zo—1—p(u—1)

Problem is feasible only for p > (Zy — 1) /(u — [}

For p =1, b = —I[, which makes the lower barrier [ unattainable
as in many “portfolio insurance” models

The insurance level b is positive for values of p satisfying
Zo—1 (Z[) — .If)
< 'j
u—1 Zg uw—

and b is negative for larger values in the region

w (Zo—Il\ . .
p}Z(-u—I):m‘Zﬂj'

i.e., to have a higher “success’ probability than the 7*, the active
portfolio manager must take less risk and invest less {smce b < 0)
than the ordinary optimal growth investor

 Optimal value function provides another connection between utility
(in this case HARA) and goal problems



2-Player game-theoretic goal problems:

+ Two stocks, each investor restricted from one stock. ..

dSY = i 8Odt + ;. SOAWD i =12, E(WOWE) = pat

. i n‘Sl _ B
Investor A: dX{ = fiX/ S() +(1— f) X{ B:
¢ g ds® : dB
Investor B: dX{ = ¢.X/ =@ +(1—g) X7 :

+ Games have nontrivial values IFF p? < 1 (contrary to the discrete
case...)

+ Constant proportions (i.e., f = (', g = () are optimal for a variety
of games:

- . A— —% . Ui—T
o Degree of advantage parameter: k = 7} /my (7] = £35)

2 Jf

32



+ Probability maximizing game: Solution exists if p < £ < %

p/t—1)y -1 Sl
1 o/ , d ~=
where 1= oy an | 1+ k2 — 2pk
o Who bets more 7
fr e
g p1—T

© SymmEtriC Case; f* = g* —

+ Expected time minimizing (maximizing) game: require x > (<1

ff=m, g-=m (optimal growth again)
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