Proving the Regularity of the Minimal Probability of Ruin via a Game of Stopping and Control

Erhan Bayraktar

University of Michigan

joint work with Virginia R. Young, University of Michigan

► Consumption rate follows a geometric Brownian motion given

$$dc_t = c_t(a dt + b dB_t^c), \quad c_0 = c > 0.$$

► Consumption rate follows a geometric Brownian motion given

$$dc_t = c_t(a dt + b dB_t^c), \quad c_0 = c > 0.$$

▶ The individual invests in a risky asset whose price at time t, S_t , follows geometric Brownian motion given by

$$dS_t = S_t(\mu dt + \sigma dB_t^S), \quad S_0 = S > 0.$$

► Consumption rate follows a geometric Brownian motion given

$$dc_t = c_t(a dt + b dB_t^c), \quad c_0 = c > 0.$$

▶ The individual invests in a risky asset whose price at time t, S_t , follows geometric Brownian motion given by

$$dS_t = S_t(\mu dt + \sigma dB_t^S), \quad S_0 = S > 0.$$

Assume that B^c and B^S are correlated Brownian motions with correlation coefficient $\rho \in [-1, 1]$.

► Consumption rate follows a geometric Brownian motion given

$$dc_t = c_t(a dt + b dB_t^c), \quad c_0 = c > 0.$$

▶ The individual invests in a risky asset whose price at time t, S_t , follows geometric Brownian motion given by

$$dS_t = S_t(\mu dt + \sigma dB_t^S), \quad S_0 = S > 0.$$

- Assume that B^c and B^S are correlated Brownian motions with correlation coefficient $\rho \in [-1, 1]$.
- ► The wealth dynamics

$$dW_t = (r W_t + (\mu - r) \pi_t - c_t) dt + \sigma \pi_t dB_t, \quad W_0 = w > 0.$$

▶ Minimizing the probability of lifetime ruin is our objective

$$\psi(w,c) = \inf_{\pi \in \mathcal{A}} \mathbf{P}^{w,c} \left(\tau_0 < \tau_d \right)$$

▶ Minimizing the probability of lifetime ruin is our objective

$$\psi(w,c) = \inf_{\pi \in \mathcal{A}} \mathbf{P}^{w,c} \left(\tau_0 < \tau_d \right)$$

▶ $\tau_0 = \inf\{t \ge 0 : W_t \le 0\}.$

Minimizing the probability of lifetime ruin is our objective

$$\psi(w,c) = \inf_{\pi \in \mathcal{A}} \mathbf{P}^{w,c} \left(\tau_0 < \tau_d \right)$$

- ▶ $\tau_0 = \inf\{t \geq 0 : W_t \leq 0\}.$
- $ightharpoonup au_d$ is exponentially distributed with parameter λ (Time of death).

Our Goal

 ψ given is decreasing and convex with respect to w, increasing with respect to c and is the unique classical solution of the following HJB equation

$$\lambda v = (rw - c) v_w + a c v_c + \frac{1}{2} b^2 c^2 v_{cc} + \min_{\pi} \left[(\mu - r) \pi v_w + \frac{1}{2} \sigma^2 \pi^2 v_{ww} + \sigma \pi b c \rho v_{wc} \right],$$
 (1
$$v(0, c) = 1 \text{ and } v(w, 0) = 0.$$

Our Goal

 ψ given is decreasing and convex with respect to w, increasing with respect to c and is the unique classical solution of the following HJB equation

$$\lambda v = (rw - c) v_w + a c v_c + \frac{1}{2} b^2 c^2 v_{cc} + \min_{\pi} \left[(\mu - r) \pi v_w + \frac{1}{2} \sigma^2 \pi^2 v_{ww} + \sigma \pi b c \rho v_{wc} \right],$$
 (1)
$$v(0, c) = 1 \text{ and } v(w, 0) = 0.$$

The optimal investment strategy π^* is given in feedback form by

$$\pi_t^* = -\frac{(\mu - r)\psi_w(W_t^*, c_t) + \sigma b \rho c_t \psi_{wc}(W_t^*, c_t)}{\sigma^2 \psi_{ww}(W_t^*, c_t)},$$

in which W^* is the optimally controlled wealth process.

▶ **Dimension Reduction.** We reduce the dimension of the problem from two variables to one and obtain another problem which also is a ruin minimization problem.

- ▶ **Dimension Reduction.** We reduce the dimension of the problem from two variables to one and obtain another problem which also is a ruin minimization problem.
- ▶ **Approximation.** We, then, construct a regular sequence of convex functions that converges uniformly to the value function that we obtain after the dimension reduction.

- ▶ **Dimension Reduction.** We reduce the dimension of the problem from two variables to one and obtain another problem which also is a ruin minimization problem.
- ▶ **Approximation.** We, then, construct a regular sequence of convex functions that converges uniformly to the value function that we obtain after the dimension reduction.
- ► Convex Duality. We construct this sequence by taking the Legendre transform of a controller-and-stopper problem of Karatzas.

- ▶ **Dimension Reduction.** We reduce the dimension of the problem from two variables to one and obtain another problem which also is a ruin minimization problem.
- ▶ **Approximation.** We, then, construct a regular sequence of convex functions that converges uniformly to the value function that we obtain after the dimension reduction.
- ► Convex Duality. We construct this sequence by taking the Legendre transform of a controller-and-stopper problem of Karatzas.
- ► Analysis of the Controller and Stopper Problem.

Dimension Reduction

Dimension Reduction

It turns out that $\psi(w,c) = \phi(w/c)$

Dimension Reduction

It turns out that $\psi(w,c)=\phi(w/c)$ in which ϕ is the unique classical solution of the following HJB equation on \mathbb{R}_+ :

$$\lambda f = (\tilde{r}z - 1) f' + \frac{1}{2} b^2 (1 - \rho^2) z^2 f'' + \min_{\tilde{\pi}} \left[(\mu - r - \sigma b \rho) \tilde{\pi} f' + \frac{1}{2} \sigma^2 \tilde{\pi}^2 f'' \right], \quad (2)$$

$$f(0) = 1 \text{ and } \lim_{z \to \infty} f(z) = 0,$$

in which $\tilde{r} = r - a + b^2 + (\mu - r - \sigma b \rho) \rho b / \sigma$.

Consider two (risky) assets with prices $\tilde{S}^{(1)}$ and $\tilde{S}^{(2)}$ following the diffusions

$$d\tilde{S}_t^{(1)} = \tilde{S}_t^{(1)} \left(\tilde{r} dt + b\sqrt{1-
ho^2} d\tilde{B}_t^{(1)}
ight),$$

and

$$d ilde{S}_t^{(2)} = ilde{S}_t^{(2)} \left(ilde{\mu} dt + \sqrt{b^2(1-
ho^2)+\sigma^2} d ilde{B}_t^{(2)}
ight),$$

in which $\tilde{\mu} = \mu - r + \sigma b \rho + \tilde{r}$.

Consider two (risky) assets with prices $\tilde{S}^{(1)}$ and $\tilde{S}^{(2)}$ following the diffusions

$$d\tilde{S}_t^{(1)} = \tilde{S}_t^{(1)} \left(\tilde{r} dt + b\sqrt{1-
ho^2} d\tilde{B}_t^{(1)}
ight),$$

and

$$d\tilde{S}_t^{(2)} = \tilde{S}_t^{(2)} \left(\tilde{\mu} dt + \sqrt{b^2(1-\rho^2) + \sigma^2} d\tilde{B}_t^{(2)}
ight),$$

in which $\tilde{\mu} = \mu - r + \sigma b \rho + \tilde{r}$. Also, $\tilde{B}^{(1)}$ and $\tilde{B}^{(2)}$ are correlated standard Brownian motions with correlation coefficient

$$ilde{
ho}=rac{b\sqrt{1-
ho^2}}{\sqrt{b^2(1-
ho^2)+\sigma^2}}.$$

▶ Suppose an individual has wealth Z_t at time t, consumes at the constant rate of 1, and wishes to invest in these two assets in order to minimize her probability of lifetime ruin.

- ▶ Suppose an individual has wealth Z_t at time t, consumes at the constant rate of 1, and wishes to invest in these two assets in order to minimize her probability of lifetime ruin.
- ▶ With a slight abuse of notation, let $\tilde{\pi}_t$ be the dollar amount that the individual invests in the second asset at time t; then, $Z_t \tilde{\pi}_t$ is the amount invested in the first asset at time t.

- ▶ Suppose an individual has wealth Z_t at time t, consumes at the constant rate of 1, and wishes to invest in these two assets in order to minimize her probability of lifetime ruin.
- ▶ With a slight abuse of notation, let $\tilde{\pi}_t$ be the dollar amount that the individual invests in the second asset at time t; then, $Z_t \tilde{\pi}_t$ is the amount invested in the first asset at time t.
- lacktriangle The function ϕ is again a minimum probability of lifetime ruin!

$$\phi(z) = \inf_{\tilde{\tau} \in \tilde{\mathcal{A}}} \tilde{\mathbb{P}}^z \left(\tilde{\tau}_0 < \tau_d \right)$$

► Consider the hitting time $\tilde{\tau}_M$ defined by and $\tilde{\tau}_M = \inf\{t \geq 0 : Z_t \geq M\}$, for M > 0.

- ▶ Consider the hitting time $\tilde{\tau}_M$ defined by and $\tilde{\tau}_M = \inf\{t \geq 0 : Z_t \geq M\}$, for M > 0.
- ▶ Let us define the auxiliary problem

$$\phi_{M}(z) = \inf_{\tilde{\pi} \in \tilde{\mathcal{A}}} \tilde{\mathbb{P}}^{z} \left(\tilde{\tau}_{0} < \left(\tilde{\tau}_{M} \wedge \tau_{d} \right) \right),$$

▶ The modified minimum probability of lifetime ruin ϕ_M is continuous on \mathbb{R}_+ and is decreasing, convex, and \mathcal{C}^2 on (0, M).

- ▶ The modified minimum probability of lifetime ruin ϕ_M is continuous on \mathbb{R}_+ and is decreasing, convex, and \mathcal{C}^2 on (0, M).
- ▶ Additionally, ϕ_M is the unique solution of the following HJB equation on [0, M]:

- ▶ The modified minimum probability of lifetime ruin ϕ_M is continuous on \mathbb{R}_+ and is decreasing, convex, and \mathcal{C}^2 on (0, M).
- ▶ Additionally, ϕ_M is the unique solution of the following HJB equation on [0, M]:

$$\lambda f = (\tilde{r}z - 1) f' + \frac{1}{2} b^2 (1 - \rho^2) z^2 f'' + \min_{\tilde{\pi}} \left[(\mu - r - \sigma b \rho) \tilde{\pi} f' + \frac{1}{2} \sigma^2 \tilde{\pi}^2 f'' \right],$$

$$f(0) = 1, \quad f(M) = 0.$$

- ▶ The modified minimum probability of lifetime ruin ϕ_M is continuous on \mathbb{R}_+ and is decreasing, convex, and \mathcal{C}^2 on (0, M).
- ▶ Additionally, ϕ_M is the unique solution of the following HJB equation on [0, M]:

$$\lambda f = (\tilde{r}z - 1) f' + \frac{1}{2} b^2 (1 - \rho^2) z^2 f'' + \min_{\tilde{\pi}} \left[(\mu - r - \sigma b \rho) \tilde{\pi} f' + \frac{1}{2} \sigma^2 \tilde{\pi}^2 f'' \right],$$

$$f(0) = 1, \quad f(M) = 0.$$

▶ Furthermore, on \mathbb{R}_+ , we have

$$\lim_{M\to\infty}\phi_M(z)=\phi(z).$$

Define a controlled stochastic process Y^{lpha} by

$$dY_t^{\alpha} = Y_t^{\alpha} \left[(\lambda - \tilde{r}) dt + \frac{\mu - r - \sigma b \rho}{\sigma} d\hat{B}_t^{(1)} \right] + \alpha_t \left[b \sqrt{1 - \rho^2} dt + d\hat{B}_t^{(2)} \right].$$

Define a controlled stochastic process Y^{α} by

$$dY_t^{\alpha} = Y_t^{\alpha} \left[(\lambda - \tilde{r}) dt + \frac{\mu - r - \sigma b \rho}{\sigma} d\hat{B}_t^{(1)} \right] + \alpha_t \left[b \sqrt{1 - \rho^2} dt + d\hat{B}_t^{(2)} \right].$$

Admissible strategies, $\mathcal{A}(y)$: $(\alpha_t)_{t\geq 0}$ that satisfy the integrability condition $\int_0^t \alpha_s^2 ds < \infty$, and $Y_t^{\alpha} \geq 0$ almost surely, for all $t \geq 0$.

A Controller and Stopper Problem

The controller-and-stopper problem

$$\hat{\phi}_M(y) = \inf_{\tau} \sup_{\alpha \in \mathcal{A}(y)} \hat{\mathbb{E}}^y \left[\int_0^{\tau} e^{-\lambda t} Y_t^{\alpha} dt + e^{-\lambda \tau} u_M(Y_{\tau}^{\alpha}) \right],$$

A Controller and Stopper Problem

The controller-and-stopper problem

$$\hat{\phi}_{M}(y) = \inf_{\tau} \sup_{\alpha \in \mathcal{A}(y)} \hat{\mathbb{E}}^{y} \left[\int_{0}^{\tau} e^{-\lambda t} Y_{t}^{\alpha} dt + e^{-\lambda \tau} u_{M}(Y_{\tau}^{\alpha}) \right],$$

Here "payoff function" u_M for $y \ge 0$ is given by

$$u_M(y) := \min(My, 1).$$

$$D = \{ y \in \mathbb{R}_+ : \hat{\phi}_M(y) < u_M(y) \},$$

$$D = \{ y \in \mathbb{R}_+ : \hat{\phi}_M(y) < u_M(y) \},$$

▶ There exist $0 \le y_M \le 1/M \le y_0 \le \infty$ such that $D = (y_M, y_0)$

$$D = \{ y \in \mathbb{R}_+ : \hat{\phi}_M(y) < u_M(y) \},$$

- ▶ There exist $0 \le y_M \le 1/M \le y_0 \le \infty$ such that $D = (y_M, y_0)$
 - Suppose that $y_1 > 0$ is such that $\hat{\phi}_M(y_1) = u_M(y_1)$. First, suppose that $y_1 \leq 1/M$; then, because $\hat{\phi}_M(0) = 0$ and because $\hat{\phi}_M$ is non-decreasing, concave, and bounded above by the line My it must be that $\hat{\phi}_M(y) = My$ for all $0 \leq y \leq y_1$. Thus, if $y_1 \leq 1/M$ is not in D, then the same is true for $y \in [0, y_1]$.

$$D = \{ y \in \mathbb{R}_+ : \hat{\phi}_M(y) < u_M(y) \},$$

- ▶ There exist $0 \le y_M \le 1/M \le y_0 \le \infty$ such that $D = (y_M, y_0)$
 - Suppose that $y_1 > 0$ is such that $\hat{\phi}_M(y_1) = u_M(y_1)$. First, suppose that $y_1 \leq 1/M$; then, because $\hat{\phi}_M(0) = 0$ and because $\hat{\phi}_M$ is non-decreasing, concave, and bounded above by the line My it must be that $\hat{\phi}_M(y) = My$ for all $0 \leq y \leq y_1$. Thus, if $y_1 \leq 1/M$ is not in D, then the same is true for $y \in [0, y_1]$.
 - Finally, suppose that $y_1 \geq 1/M$; then, because ϕ_M is non-decreasing, concave, and bounded above by the horizontal line 1 it must be that $\hat{\phi}_M(y) = 1$ for all $y \geq y_1$. Thus, if $y_1 \geq 1/M$ is not in D, then the same is true for $y \in [y_1, \infty)$.

Viscosity Solutions

 $g\in\mathcal{C}^0(\mathbb{R}_+)$ is a viscosity supersolution (respectively, subsolution) if

$$\max \left[\lambda g(y_1) - y_1 - (\lambda - \tilde{r}) y_1 f'(y_1) - m y_1^2 f''(y_1) - \max_{\alpha} \left[b \sqrt{1 - \rho^2} \, \alpha f'(y_1) + \frac{1}{2} \alpha^2 f''(y_1) \right],$$

$$g(y_1) - u_M(y_1) \right] \ge 0$$

(respectively, ≤ 0) whenever $f \in \mathcal{C}^2(\mathbb{R}_+)$ and g-f has a global minimum (respectively, maximum) at $y=y_1\geq 0$. (ii) g is a viscosity solution of if it is both a viscosity super- and subsolution.

If $M>1/\lambda$, then $D=(y_M,y_0)$ is non-empty. In particular, $y_M<1/M<\lambda\leq y_0$. Also, $y_0\geq \lambda$.

If $M>1/\lambda$, then $D=(y_M,y_0)$ is non-empty. In particular, $y_M<1/M<\lambda\leq y_0$. Also, $y_0\geq \lambda$.

Suppose $M>1/\lambda$, and suppose that D is empty. Then, for all $y\geq 0$, we have $\hat{\phi}_M(y)=u_M(y)=\min(My,1)$. $\hat{\phi}_M=u_M$ is a viscosity solution. Because $M>1/\lambda$, there exists $y_1\in (1/M,\lambda)$. The value function is identically 1 in a neighborhood of y_1 , the QVI evaluated at $y=y_1$ becomes $\max[\lambda-y_1,0]=0$, which contradicts $y_1<\lambda$. Thus, the region D is non-empty.

If $M>1/\lambda$, then $D=(y_M,y_0)$ is non-empty. In particular, $y_M<1/M<\lambda\leq y_0$. Also, $y_0\geq \lambda$.

- Suppose $M>1/\lambda$, and suppose that D is empty. Then, for all $y\geq 0$, we have $\hat{\phi}_M(y)=u_M(y)=\min(My,1)$. $\hat{\phi}_M=u_M$ is a viscosity solution. Because $M>1/\lambda$, there exists $y_1\in (1/M,\lambda)$. The value function is identically 1 in a neighborhood of y_1 , the QVI evaluated at $y=y_1$ becomes $\max[\lambda-y_1,0]=0$, which contradicts $y_1<\lambda$. Thus, the region D is non-empty.
- ▶ On the other hand, for any $y>y_0$, since u_M is a viscosity solution, we have that $\max[\lambda-y,0]=0$, i.e., $\lambda\leq y$. This implies that $\lambda\leq y_0$.

Assume that $M>1/\lambda$. Let $y_0<\infty$. The function $\hat{\phi}_M$ satisfies the smooth pasting condition, that is,

Assume that $M>1/\lambda$. Let $y_0<\infty$. The function $\hat{\phi}_M$ satisfies the smooth pasting condition, that is,

$$D_-\hat{\phi}_M(y_0)=0,\quad \text{and}\quad D_+\hat{\phi}_M(y_M)=M.$$

Assume that $M>1/\lambda$. Let $y_0<\infty$. The function $\hat{\phi}_M$ satisfies the smooth pasting condition, that is,

$$D_-\hat{\phi}_M(y_0) = 0$$
, and $D_+\hat{\phi}_M(y_M) = M$.

Assume that

$$D_{+}\hat{\phi}_{M}(y_{0}) < D_{-}\hat{\phi}_{M}(y_{0}).$$

Let

$$\delta \in (D_+(y_0)\hat{\phi}_M, D_-\hat{\phi}_M(y_0)).$$

. Then the function

$$\psi_{\varepsilon}(y) = 1 + \delta(y - y_0) - \frac{(y - y_0)^2}{2\varepsilon},$$

dominates $\hat{\phi}_M$ locally at y_0 . Since $\hat{\phi}_M$ is a viscosity subsolution of we have that

$$\lambda - y_0 - (\lambda - \tilde{r})\lambda\delta + \frac{m\lambda^2}{\varepsilon} + \frac{1}{2}b^2(1 - \rho^2)\frac{\delta^2}{\varepsilon} \leq 0.$$

Regularity of the Controller-and-Stopper Problem

Regularity of the Controller-and-Stopper Problem

 $\hat{\phi}_M$ is the unique classical solution of the following free-boundary problem:

$$\lambda g = y + (\lambda - \tilde{r})yg' + my^2g'' + \max_{\alpha} \left[b\sqrt{1 - \rho^2}\alpha g' + \frac{1}{2}\alpha^2 g'' \right] \quad \text{on} \quad D,$$

$$g(y_M) = My_M \text{ and } g(y_0) = 1.$$

Regularity of the Controller-and-Stopper Problem

 $\hat{\phi}_M$ is the unique classical solution of the following free-boundary problem:

$$\begin{split} \lambda g &= y + (\lambda - \tilde{r}) y g' + m y^2 g'' + \max_{\alpha} \left[b \sqrt{1 - \rho^2} \alpha g' + \frac{1}{2} \alpha^2 g'' \right] \quad \text{on} \quad D, \\ g(y_M) &= M y_M \text{ and } g(y_0) = 1. \end{split}$$

▶ The value function for this problem, namely $\hat{\phi}_M$, is non-decreasing (strictly increasing on D), concave (strictly concave on D), and C^2 on \mathbb{R}_+ (except for possibly at y_M where it is C^1).

Define the convex dual

$$\Phi_M(z) = \max_{y \ge 0} \left[\hat{\phi}_M(y) - zy \right] (**).$$

Define the convex dual

$$\Phi_M(z) = \max_{y \ge 0} \left[\hat{\phi}_M(y) - zy \right] (**).$$

▶ We have two cases to consider: (1) $z \ge M$ and (2) z < M.

Define the convex dual

$$\Phi_M(z) = \max_{y \ge 0} \left[\hat{\phi}_M(y) - zy \right] (**).$$

- ▶ We have two cases to consider: (1) $z \ge M$ and (2) z < M.
- ▶ If $z \ge M$, then $\Phi_M(z) = 0$ because $\hat{\phi}_M(y) \le u_M(y) \le My \le zy$, from which it follows that the maximum on the right-hand side of (**) is achieved at $y^* = y_M$.

Define the convex dual

$$\Phi_M(z) = \max_{y \ge 0} \left[\hat{\phi}_M(y) - zy \right] (**).$$

- ▶ We have two cases to consider: (1) $z \ge M$ and (2) z < M.
- ▶ If $z \ge M$, then $\Phi_M(z) = 0$ because $\hat{\phi}_M(y) \le u_M(y) \le My \le zy$, from which it follows that the maximum on the right-hand side of (**) is achieved at $y^* = y_M$.
- ▶ When z < M, $y^* = I_M(z)$ maximizes (**), in which I_M is the inverse of $\hat{\phi}'_M$ on $(y_M, y_0]$.

▶ For z < M we have

$$\Phi_M(z) = \hat{\phi}_M[I_M(z)] - zI_M(z).$$

ightharpoonup For z < M we have

$$\Phi_M(z) = \hat{\phi}_M \left[I_M(z) \right] - z I_M(z).$$

Which implies

$$\begin{aligned} \Phi_{M}'(z) &= \hat{\phi}_{M}'[I_{M}(z)] I_{M}'(z) - I_{M}(z) - z I_{M}'(z) \\ &= z I_{M}'(z) - I_{M}(z) - z I_{M}'(z) = -I_{M}(z). \end{aligned}$$

ightharpoonup For z < M we have

$$\Phi_M(z) = \hat{\phi}_M [I_M(z)] - zI_M(z).$$

Which implies

$$\Phi'_{M}(z) = \hat{\phi}'_{M}[I_{M}(z)]I'_{M}(z) - I_{M}(z) - zI'_{M}(z)$$

= $zI'_{M}(z) - I_{M}(z) - zI'_{M}(z) = -I_{M}(z).$

Taking one more derivative

$$\Phi''_{M}(z) = -I'_{M}(z) = -1/\hat{\phi}''_{M}[I_{M}(z)].$$

Letting $y=I_M(z)=-\Phi_M'(z)$ in the partial differential equation for $\hat{\phi}_M$ we get

Letting $y=I_M(z)=-\Phi_M'(z)$ in the partial differential equation for $\hat{\phi}_M$ we get

$$\lambda \hat{\phi}_{M} [I_{M}(z)] = I_{M}(z) + (\lambda - \tilde{r})I_{M}(z)\hat{\phi}'_{M} [I_{M}(z)] + mI_{M}^{2}(z)\hat{\phi}''_{M} [I_{M}(z)]$$
$$- \frac{1}{2}b^{2}(1 - \rho^{2})\frac{\left(\hat{\phi}'_{M} [I_{M}(z)]\right)^{2}}{\hat{\phi}''_{M} [I_{M}(z)]}.$$

Letting $y=I_M(z)=-\Phi_M'(z)$ in the partial differential equation for $\hat{\phi}_M$ we get

$$\lambda \hat{\phi}_{M} [I_{M}(z)] = I_{M}(z) + (\lambda - \tilde{r})I_{M}(z)\hat{\phi}'_{M} [I_{M}(z)] + mI_{M}^{2}(z)\hat{\phi}''_{M} [I_{M}(z)]$$
$$- \frac{1}{2}b^{2}(1 - \rho^{2})\frac{\left(\hat{\phi}'_{M} [I_{M}(z)]\right)^{2}}{\hat{\phi}''_{M} [I_{M}(z)]}.$$

Rewrite this equation in terms of Φ_M to get

$$\lambda \Phi_M(z) = (\tilde{r}z - 1)\Phi_M'(z) - m\frac{(\Phi_M'(z))^2}{\Phi_M''(z)} + \frac{1}{2}b^2(1 - \rho^2)z^2\Phi_M''(z).$$

Letting $y=I_M(z)=-\Phi_M'(z)$ in the partial differential equation for $\hat{\phi}_M$ we get

$$\lambda \hat{\phi}_{M} [I_{M}(z)] = I_{M}(z) + (\lambda - \tilde{r})I_{M}(z)\hat{\phi}'_{M} [I_{M}(z)] + mI_{M}^{2}(z)\hat{\phi}''_{M} [I_{M}(z)]$$
$$- \frac{1}{2}b^{2}(1 - \rho^{2})\frac{\left(\hat{\phi}'_{M} [I_{M}(z)]\right)^{2}}{\hat{\phi}''_{M} [I_{M}(z)]}.$$

Rewrite this equation in terms of Φ_M to get

$$\lambda \Phi_M(z) = (\tilde{r}z - 1)\Phi_M'(z) - m\frac{(\Phi_M'(z))^2}{\Phi_M''(z)} + \frac{1}{2}b^2(1 - \rho^2)z^2\Phi_M''(z).$$

Also obtain the boundary conditions $\Phi_M(M) = 0$ and $\Phi_M(0) = 1$.

Letting $y=I_M(z)=-\Phi_M'(z)$ in the partial differential equation for $\hat{\phi}_M$ we get

$$\lambda \hat{\phi}_{M} [I_{M}(z)] = I_{M}(z) + (\lambda - \tilde{r})I_{M}(z)\hat{\phi}'_{M} [I_{M}(z)] + mI_{M}^{2}(z)\hat{\phi}''_{M} [I_{M}(z)]$$
$$- \frac{1}{2}b^{2}(1 - \rho^{2})\frac{\left(\hat{\phi}'_{M} [I_{M}(z)]\right)^{2}}{\hat{\phi}''_{M} [I_{M}(z)]}.$$

Rewrite this equation in terms of Φ_M to get

$$\lambda \Phi_{M}(z) = (\tilde{r}z - 1)\Phi'_{M}(z) - m\frac{(\Phi'_{M}(z))^{2}}{\Phi''_{M}(z)} + \frac{1}{2}b^{2}(1 - \rho^{2})z^{2}\Phi''_{M}(z).$$

Also obtain the boundary conditions $\Phi_M(M)=0$ and $\Phi_M(0)=1$. Thanks to a verification theorem $\Phi_M=\phi_M$.

The Scheme for the proofs

The Scheme for the proofs

▶ Show that $\hat{\phi}_M$ is a viscosity solution of the quasi-variational inequality.

- ▶ Show that $\hat{\phi}_M$ is a viscosity solution of the quasi-variational inequality.
- ▶ Prove a comparison result for this quasi-variational inequality.

- Show that $\hat{\phi}_M$ is a viscosity solution of the quasi-variational inequality.
- ▶ Prove a comparison result for this quasi-variational inequality.
- ▶ Show that $\hat{\phi}_M$ is \mathcal{C}^2 and strictly concave in the continuation region.

- Show that $\hat{\phi}_M$ is a viscosity solution of the quasi-variational inequality.
- Prove a comparison result for this quasi-variational inequality.
- ▶ Show that $\hat{\phi}_M$ is C^2 and strictly concave in the continuation region.
- Show that smooth pasting holds for the controller-and-stopper problem.

► Conclude that the convex dual, namely Φ_M , of $\hat{\phi}_M$ (via the Legendre transform) is a \mathcal{C}^2 solution of ϕ_M 's HJB on [0, M] with $\Phi_M(z) = 0$ for $z \geq M$.

- ▶ Conclude that the convex dual, namely Φ_M , of $\hat{\phi}_M$ (via the Legendre transform) is a \mathcal{C}^2 solution of ϕ_M 's HJB on [0, M] with $\Phi_M(z) = 0$ for $z \geq M$.
- Show via a verification lemma that the minimum probability of ruin ϕ_M defined in equals Φ_M .

- ▶ Conclude that the convex dual, namely Φ_M , of $\hat{\phi}_M$ (via the Legendre transform) is a \mathcal{C}^2 solution of ϕ_M 's HJB on [0, M] with $\Phi_M(z) = 0$ for $z \geq M$.
- ▶ Show via a verification lemma that the minimum probability of ruin ϕ_M defined in equals Φ_M .
- ▶ Show that $\lim_{M\to\infty} \phi_M$ is a viscosity solution of the HJB equation for ϕ .

- ▶ Conclude that the convex dual, namely Φ_M , of $\hat{\phi}_M$ (via the Legendre transform) is a \mathcal{C}^2 solution of ϕ_M 's HJB on [0, M] with $\Phi_M(z) = 0$ for $z \geq M$.
- ▶ Show via a verification lemma that the minimum probability of ruin ϕ_M defined in equals Φ_M .
- ▶ Show that $\lim_{M\to\infty} \phi_M$ is a viscosity solution of the HJB equation for ϕ .
- ▶ Show that $\lim_{M\to\infty} \phi_M$ is smooth.

- ▶ Conclude that the convex dual, namely Φ_M , of $\hat{\phi}_M$ (via the Legendre transform) is a \mathcal{C}^2 solution of ϕ_M 's HJB on [0, M] with $\Phi_M(z) = 0$ for $z \geq M$.
- ▶ Show via a verification lemma that the minimum probability of ruin ϕ_M defined in equals Φ_M .
- ▶ Show that $\lim_{M\to\infty} \phi_M$ is a viscosity solution of the HJB equation for ϕ .
- ▶ Show that $\lim_{M\to\infty} \phi_M$ is smooth.
- ▶ Show that $\lim_{M\to\infty} \phi_M = \phi$ on \mathbb{R}_+ and that ϕ is the unique smooth solution of the corresponding HJB.

- ▶ Conclude that the convex dual, namely Φ_M , of $\hat{\phi}_M$ (via the Legendre transform) is a \mathcal{C}^2 solution of ϕ_M 's HJB on [0, M] with $\Phi_M(z) = 0$ for $z \geq M$.
- ▶ Show via a verification lemma that the minimum probability of ruin ϕ_M defined in equals Φ_M .
- ▶ Show that $\lim_{M\to\infty} \phi_M$ is a viscosity solution of the HJB equation for ϕ .
- ▶ Show that $\lim_{M\to\infty} \phi_M$ is smooth.
- ▶ Show that $\lim_{M\to\infty} \phi_M = \phi$ on \mathbb{R}_+ and that ϕ is the unique smooth solution of the corresponding HJB.
- ▶ A verification theorem shows that $\psi(w,c) = \phi(w/c)$.

(1) Proving the Regularity of the Minimal Probability of Ruin via a Game of Stopping and Control. Available on ArxiV.

- (1) Proving the Regularity of the Minimal Probability of Ruin via a Game of Stopping and Control. Available on ArxiV.
- (2) Correspondence between Lifetime Minimum Wealth and Utility of Consumption, Finance and Stochastics , 2007, Volume 11 (2) 213-236.

- (1) Proving the Regularity of the Minimal Probability of Ruin via a Game of Stopping and Control. Available on ArxiV.
- (2) Correspondence between Lifetime Minimum Wealth and Utility of Consumption, Finance and Stochastics, 2007, Volume 11 (2) 213-236.
- (3) Minimizing the Probability of Lifetime Ruin under Borrowing Constraints, Insurance Mathematics and Economics, 2007, 41: 196-221.

- (1) Proving the Regularity of the Minimal Probability of Ruin via a Game of Stopping and Control. Available on ArxiV.
- (2) Correspondence between Lifetime Minimum Wealth and Utility of Consumption, Finance and Stochastics , 2007, Volume 11 (2) 213-236.
- (3) Minimizing the Probability of Lifetime Ruin under Borrowing Constraints, Insurance Mathematics and Economics, 2007, 41: 196-221.
- (4) Maximizing Utility of Consumption Subject to a Constraint on the Probability of Lifetime Ruin, to appear in Finance and Research Letters.

- (1) Proving the Regularity of the Minimal Probability of Ruin via a Game of Stopping and Control. Available on ArxiV.
- (2) Correspondence between Lifetime Minimum Wealth and Utility of Consumption, Finance and Stochastics , 2007, Volume 11 (2) 213-236.
- (3) Minimizing the Probability of Lifetime Ruin under Borrowing Constraints, Insurance Mathematics and Economics, 2007, 41: 196-221.
- (4) Maximizing Utility of Consumption Subject to a Constraint on the Probability of Lifetime Ruin, to appear in Finance and Research Letters.
- (5) Optimal Investment Strategy to Minimize Occupation Time, to appear in Annals of Operations Research.

Thanks for your attention!