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Probability of Lifetime Ruin with Stochastic Consumption

I Consumption rate follows a geometric Brownian motion given

dct = ct(a dt + b dBc
t ), c0 = c > 0.

I The individual invests in a risky asset whose price at time t,
St , follows geometric Brownian motion given by

dSt = St(µ dt + σ dBS
t ), S0 = S > 0.

I Assume that Bc and BS are correlated Brownian motions
with correlation coefficient ρ ∈ [−1, 1].

I The wealth dynamics

dWt = (r Wt + (µ− r)πt − ct) dt +σ πt dBt , W0 = w > 0.
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I Minimizing the probability of lifetime ruin is our objective

ψ(w , c) = inf
π∈A

Pw ,c (τ0 < τd)

I τ0 = inf{t ≥ 0 : Wt ≤ 0}.
I τd is exponentially distributed with parameter λ (Time of

death).
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Our Goal

ψ given is decreasing and convex with respect to w , increasing
with respect to c and is the unique classical solution of the
following HJB equation

λ v = (rw − c) vw + a c vc +
1

2
b2 c2 vcc

+ min
π

[
(µ− r)π vw +

1

2
σ2 π2 vww + σ π b c ρ vwc

]
,

v(0, c) = 1 and v(w , 0) = 0.

(1)

The optimal investment strategy π∗ is given in feedback form by

π∗t = −(µ− r)ψw (W ∗
t , ct) + σ b ρ ct ψwc(W ∗

t , ct)

σ2 ψww (W ∗
t , ct)

,

in which W ∗ is the optimally controlled wealth process.
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Outline of the Proof

I Dimension Reduction. We reduce the dimension of the
problem from two variables to one and obtain another
problem which also is a ruin minimization problem.

I Approximation. We, then, construct a regular sequence of
convex functions that converges uniformly to the value
function that we obtain after the dimension reduction.

I Convex Duality. We construct this sequence by taking the
Legendre transform of a controller-and-stopper problem of
Karatzas.

I Analysis of the Controller and Stopper Problem.
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Dimension Reduction

It turns out that ψ(w , c) = φ(w/c) in which
φ is the unique classical solution of the following HJB equation on
R+ :

λ f = (r̃ z − 1) f ′ +
1

2
b2 (1− ρ2) z2 f ′′+

min
π̃

[
(µ− r − σbρ) π̃ f ′ +

1

2
σ2 π̃2 f ′′

]
,

f (0) = 1 and lim
z→∞

f (z) = 0,

(2)

in which r̃ = r − a + b2 + (µ− r − σbρ)ρb/σ.
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Interpretation of the Reduced Problem

Consider two (risky) assets with prices S̃ (1) and S̃ (2) following the
diffusions

dS̃
(1)
t = S̃

(1)
t

(
r̃ dt + b

√
1− ρ2 dB̃

(1)
t

)
,

and

dS̃
(2)
t = S̃

(2)
t

(
µ̃ dt +

√
b2(1− ρ2) + σ2 dB̃

(2)
t

)
,

in which µ̃ = µ− r + σbρ+ r̃ .

Also, B̃(1) and B̃(2) are correlated
standard Brownian motions with correlation coefficient

ρ̃ =
b
√

1− ρ2√
b2(1− ρ2) + σ2
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Interpretation of the Reduced Problem

I Suppose an individual has wealth Zt at time t, consumes at
the constant rate of 1, and wishes to invest in these two
assets in order to minimize her probability of lifetime ruin.

I With a slight abuse of notation, let π̃t be the dollar amount
that the individual invests in the second asset at time t; then,
Zt − π̃t is the amount invested in the first asset at time t.

I The function φ is again a minimum probability of lifetime ruin!

φ(z) = inf
π̃∈Ã

P̃z (τ̃0 < τd)
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An Approximating Sequence

I Consider the hitting time τ̃M defined by and
τ̃M = inf{t ≥ 0 : Zt ≥ M}, for M > 0.

I Let us define the auxiliary problem

φM(z) = inf
π̃∈Ã

P̃z (τ̃0 < (τ̃M ∧ τd)) ,
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An Approximating Sequence

I The modified minimum probability of lifetime ruin φM is
continuous on R+ and is decreasing, convex, and C2 on
(0,M).

I Additionally, φM is the unique solution of the following HJB
equation on [0,M] :
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1

2
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I Furthermore, on R+, we have

lim
M→∞

φM(z) = φ(z).
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A Controller and Stopper Problem

Define a controlled stochastic process Y α by

dY α
t = Y α

t

[
(λ− r̃) dt +

µ− r − σbρ

σ
dB̂

(1)
t

]
+ αt

[
b
√

1− ρ2 dt + dB̂
(2)
t

]
.

Admissible strategies, A(y): (αt)t≥0 that satisfy the integrability
condition

∫ t
0 α

2
s ds <∞, and Y α

t ≥ 0 almost surely, for all t ≥ 0.



A Controller and Stopper Problem

Define a controlled stochastic process Y α by

dY α
t = Y α

t

[
(λ− r̃) dt +

µ− r − σbρ

σ
dB̂

(1)
t

]
+ αt

[
b
√

1− ρ2 dt + dB̂
(2)
t

]
.

Admissible strategies, A(y): (αt)t≥0 that satisfy the integrability
condition

∫ t
0 α

2
s ds <∞, and Y α

t ≥ 0 almost surely, for all t ≥ 0.



A Controller and Stopper Problem

Define a controlled stochastic process Y α by

dY α
t = Y α

t

[
(λ− r̃) dt +

µ− r − σbρ

σ
dB̂

(1)
t

]
+ αt

[
b
√

1− ρ2 dt + dB̂
(2)
t

]
.

Admissible strategies, A(y): (αt)t≥0 that satisfy the integrability
condition

∫ t
0 α

2
s ds <∞, and Y α

t ≥ 0 almost surely, for all t ≥ 0.



A Controller and Stopper Problem

The controller-and-stopper problem

φ̂M(y) = inf
τ

sup
α∈A(y)

Êy

[∫ τ

0
e−λt Y α

t dt + e−λτ uM(Y α
τ )

]
,

Here “payoff function” uM for y ≥ 0 is given by

uM(y) := min(My , 1).
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Continuation Region

I

D = {y ∈ R+ : φ̂M(y) < uM(y)},

I There exist 0 ≤ yM ≤ 1/M ≤ y0 ≤ ∞ such that D = (yM , y0)

I Suppose that y1 > 0 is such that φ̂M(y1) = uM(y1). First,
suppose that y1 ≤ 1/M; then, because φ̂M(0) = 0 and because
φ̂M is non-decreasing, concave, and bounded above by the line
My it must be that φ̂M(y) = My for all 0 ≤ y ≤ y1. Thus, if
y1 ≤ 1/M is not in D, then the same is true for y ∈ [0, y1].

I Finally, suppose that y1 ≥ 1/M; then, because φ̂M is
non-decreasing, concave, and bounded above by the horizontal
line 1 it must be that φ̂M(y) = 1 for all y ≥ y1. Thus, if
y1 ≥ 1/M is not in D, then the same is true for y ∈ [y1,∞).
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Viscosity Solutions

g ∈ C0(R+) is a viscosity supersolution (respectively, subsolution)
if

max

[
λg(y1)− y1 − (λ− r̃)y1f

′(y1)−my2
1 f ′′(y1)

−max
α

[
b
√

1− ρ2 αf ′(y1) +
1

2
α2f ′′(y1)

]
,

g(y1)− uM(y1)

]
≥ 0

(respectively, ≤ 0) whenever f ∈ C2(R+) and g − f has a global
minimum (respectively, maximum) at y = y1 ≥ 0. (ii) g is a
viscosity solution of if it is both a viscosity super- and subsolution.



Back to the Continuation Region

If M > 1/λ, then D = (yM , y0) is non-empty. In particular,
yM < 1/M < λ ≤ y0. Also, y0 ≥ λ.

I Suppose M > 1/λ, and suppose that D is empty. Then, for
all y ≥ 0, we have φ̂M(y) = uM(y) = min(My , 1). φ̂M = uM

is a viscosity solution. Because M > 1/λ, there exists
y1 ∈ (1/M, λ). The value function is identically 1 in a
neighborhood of y1, the QVI evaluated at y = y1 becomes
max[λ− y1, 0] = 0, which contradicts y1 < λ. Thus, the
region D is non-empty.

I On the other hand, for any y > y0, since uM is a viscosity
solution, we have that max[λ− y , 0] = 0, i.e., λ ≤ y . This
implies that λ ≤ y0.
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Smooth Fit

Assume that M > 1/λ. Let y0 <∞. The function φ̂M satisfies the
smooth pasting condition, that is,

D−φ̂M(y0) = 0, and D+φ̂M(yM) = M.

Assume that
D+φ̂M(y0) < D−φ̂M(y0).

Let
δ ∈ (D+(y0)φ̂M ,D−φ̂M(y0)).

. Then the function

ψε(y) = 1 + δ(y − y0)− (y − y0)2

2ε
,

dominates φ̂M locally at y0. Since φ̂M is a viscosity subsolution of
we have that

λ− y0 − (λ− r̃)λδ +
mλ2
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+
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2
b2(1− ρ2)
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ε
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Regularity of the Controller-and-Stopper Problem

I φ̂M is the unique classical solution of the following
free-boundary problem:

λg = y + (λ− r̃)yg ′ + my2g ′′ + max
α

[
b
√

1− ρ2αg ′ +
1

2
α2g ′′

]
on D,

g(yM) = MyM and g(y0) = 1.

I The value function for this problem, namely φ̂M , is
non-decreasing (strictly increasing on D ), concave (strictly
concave on D), and C2 on R+ (except for possibly at yM

where it is C1).
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Fenchel-Legendre Duality

I Define the convex dual

ΦM(z) = max
y≥0

[
φ̂M(y)− zy

]
(∗∗).

I We have two cases to consider: (1) z ≥ M and (2) z < M.

I If z ≥ M, then ΦM(z) = 0 because
φ̂M(y) ≤ uM(y) ≤ My ≤ zy , from which it follows that the
maximum on the right-hand side of (**) is achieved at
y∗ = yM .

I When z < M, y∗ = IM(z) maximizes (**), in which IM is the
inverse of φ̂′M on (yM , y0].
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Fenchel-Legendre Duality

I For z < M we have

ΦM(z) = φ̂M [IM(z)]− zIM(z).

I Which implies

Φ′M(z) = φ̂′M [IM(z)] I ′M(z)− IM(z)− zI ′M(z)

= zI ′M(z)− IM(z)− zI ′M(z) = −IM(z).

I Taking one more derivative

Φ′′M(z) = −I ′M(z) = −1/φ̂′′M [IM(z)] .
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Fenchel-Legendre Duality

Letting y = IM(z) = −Φ′M(z) in the partial differential equation

for φ̂M we get

λφ̂M [IM(z)] = IM(z) + (λ− r̃)IM(z)φ̂′M [IM(z)] + mI 2
M(z)φ̂′′M [IM(z)]

− 1

2
b2(1− ρ2)

(
φ̂′M [IM(z)]

)2

φ̂′′M [IM(z)]
.

Rewrite this equation in terms of ΦM to get

λΦM(z) = (r̃ z − 1)Φ′M(z)−m
(Φ′M(z))2

Φ′′M(z)
+

1

2
b2(1− ρ2)z2Φ′′M(z).

Also obtain the boundary conditions ΦM(M) = 0 and ΦM(0) = 1.
Thanks to a verification theorem ΦM = φM .
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The Scheme for the proofs

I Show that φ̂M is a viscosity solution of the quasi-variational
inequality.

I Prove a comparison result for this quasi-variational inequality.

I Show that φ̂M is C2 and strictly concave in the continuation
region.

I Show that smooth pasting holds for the controller-and-stopper
problem.
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The Scheme for the proofs

I Conclude that the convex dual, namely ΦM , of φ̂M (via the
Legendre transform) is a C2 solution of φM ’s HJB on [0,M]
with ΦM(z) = 0 for z ≥ M.

I Show via a verification lemma that the minimum probability
of ruin φM defined in equals ΦM .

I Show that limM→∞ φM is a viscosity solution of the HJB
equation for φ.

I Show that limM→∞ φM is smooth.

I Show that limM→∞ φM = φ on R+ and that φ is the unique
smooth solution of the corresponding HJB.

I A verification theorem shows that ψ(w , c) = φ(w/c).
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