Proving the Regularity of the Minimal Probability
of Ruin via a Game of Stopping and Control

Erhan Bayraktar

University of Michigan

joint work with
Virginia R. Young, University of Michigan



Probability of Lifetime Ruin with Stochastic Consumption



Probability of Lifetime Ruin with Stochastic Consumption

» Consumption rate follows a geometric Brownian motion given

dc; = ce(adt + bdBf), co=c>0.



Probability of Lifetime Ruin with Stochastic Consumption

» Consumption rate follows a geometric Brownian motion given

dc; = ce(adt + bdBf), co=c>0.

» The individual invests in a risky asset whose price at time t,
S;, follows geometric Brownian motion given by

dS; = Si(pdt + o dB?), Sy =S >0.



Probability of Lifetime Ruin with Stochastic Consumption

» Consumption rate follows a geometric Brownian motion given

dc; = ce(adt + bdBf), co=c>0.

» The individual invests in a risky asset whose price at time t,
S;, follows geometric Brownian motion given by

dS; = Si(pdt + o dB?), Sy =S >0.

» Assume that B¢ and B® are correlated Brownian motions
with correlation coefficient p € [—1,1].



Probability of Lifetime Ruin with Stochastic Consumption

» Consumption rate follows a geometric Brownian motion given

dc; = ce(adt + bdBf), co=c>0.

» The individual invests in a risky asset whose price at time t,
S;, follows geometric Brownian motion given by

dS; = Si(pdt + o dB?), Sy =S >0.

» Assume that B¢ and B® are correlated Brownian motions
with correlation coefficient p € [—1,1].

» The wealth dynamics

th:(rWt+(/l/7r)Wt*Ct)dt+U7TtdBt, W0:W>0
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» Minimizing the probability of lifetime ruin is our objective

— inf P¥<
P(w, c) nf, (10 < 74)

» 7o =inf{t >0: W; <0}
> T4 is exponentially distributed with parameter A (Time of
death).
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with respect to ¢ and is the unique classical solution of the
following HJB equation

1
)\v:(rW—c)vW+ach+§b2c2vcc

1
+ min (u—r)7er+5027T2VWW+U7TbCprc ) (1)
™

v(0,c) =1 and v(w,0) = 0.
The optimal investment strategy 7* is given in feedback form by

o (=) w (Wi e) + o bperdue(WE, cr)
' o2 Yo (W, ct) ’

in which W* is the optimally controlled wealth process.
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Outline of the Proof

» Dimension Reduction. We reduce the dimension of the
problem from two variables to one and obtain another
problem which also is a ruin minimization problem.

» Approximation. We, then, construct a regular sequence of
convex functions that converges uniformly to the value
function that we obtain after the dimension reduction.

» Convex Duality. We construct this sequence by taking the
Legendre transform of a controller-and-stopper problem of
Karatzas.

» Analysis of the Controller and Stopper Problem.
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Dimension Reduction

It turns out that ¥(w, ¢) = ¢(w/c) in which
¢ is the unique classical solution of the following HJB equation on

Ry :
A= (Fz— 1) F 4 B D)2
m%in (M*f*gbp)ﬁf,+%o'2’ﬁ'2fﬂ , (2)
f(0)=1and ZIi_)ng()f(z):O,

in which F=r —a+ b>+ (u—r —abp)pb/o.
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Consider two (risky) assets with prices S() and 5 following the
diffusions

d5 = 5V (Pt + by/1 - 2 dBY),

and

d5® = 5@ (ﬂ dt + \/b2(1 — )+ 02 déf2)> :

in which i = u — r +obp + . Also, B®) and B® are correlated
standard Brownian motions with correlation coefficient

b\/1 — p?
VR )T

b=
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Interpretation of the Reduced Problem

» Suppose an individual has wealth Z; at time t, consumes at
the constant rate of 1, and wishes to invest in these two
assets in order to minimize her probability of lifetime ruin.

» With a slight abuse of notation, let 7t; be the dollar amount
that the individual invests in the second asset at time t; then,
Z; — 7+ is the amount invested in the first asset at time t.

» The function ¢ is again a minimum probability of lifetime ruin!

#(z) = inf Pz (To < 74)
el
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» Consider the hitting time 7y, defined by and
Ty =inf{t >0: 2 > M}, for M > 0.

» Let us define the auxiliary problem

¢M(Z) = inf~I~P’z (?‘o < (%/\// A Td)),
TeA
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An Approximating Sequence

» The modified minimum probability of lifetime ruin ¢y is
continuous on R and is decreasing, convex, and C? on
(0, M).

» Additionally, ¢p is the unique solution of the following HJB
equation on [0, M] :

1
Mo=(Fz=1)f + b2 (1-p") 2 '+

1
min (u—r—abp)ﬁf’+§(72ﬁ2f” ,
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» Furthermore, on R, we have

Jim ou(z) = o(2).
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Define a controlled stochastic process Y by

dye = yo [()\ ~F)dt+ ’H_prdéﬁl)]
g
t o [b\/l — 2 dt+ déﬂ .

Admissible strategies, A(y): (a¢)t>0 that satisfy the integrability
condition fot ag ds < o0, and Y > 0 almost surely, for all t > 0.
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The controller-and-stopper problem

.
dm(y) =inf sup K U e MY dt 4+ e M uy(YY)|,
T acAly) 0

Here “payoff function” ups for y > 0 is given by

upm(y) := min(My, 1).
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» Suppose that y; > 0 is such that qASM(yl) = up(y1). First,
suppose that y; < 1/M, then, because ¢(0) = 0 and because
b is non-decreasing, concave, and bounded above by the line
My it must be that cZ;M(y) = My for all 0 <y < y;. Thus, if
y1 <1/Mis not in D, then the same is true for y € [0, y1].

» Finally, suppose that y; > 1/M; then, because b is
non-decreasing, concave, and bounded above by the horizontal
line 1 it must be that ¢p(y) =1 for all y > y;. Thus, if
y1 > 1/Mis not in D, then the same is true for y € [y, 00).



Viscosity Solutions

g € CO(R,) is a viscosity supersolution (respectively, subsolution)
if

max [Ag(yl) - (A= BDnfn) - mA ()
1
— max [b\/ 1—p2af'(y1) + 5042f//()/1) )

g) - uM(m] >0

minimum (respectively, maximum) at y = y; > 0. (ii) g is a
viscosity solution of if it is both a viscosity super- and subsolution.

(respectively, < 0) whenever f € C?>(R) and g — f has a global
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Back to the Continuation Region

If M > 1/X, then D = (ym, yo) is non-empty. In particular,
ym <1/M < X<y Also, yo > A.

» Suppose M > 1/, and suppose that D is empty. Then, for
all y >0, we have dp(y) = um(y) = min(My,1). dp = up
is a viscosity solution. Because M > 1/), there exists
y1 € (1/M, ). The value function is identically 1 in a
neighborhood of y;, the QVI evaluated at y = y; becomes
max[\ — y1,0] = 0, which contradicts y; < A. Thus, the
region D is non-empty.

» On the other hand, for any y > yg, since up; is a viscosity
solution, we have that max[A — y,0] =0, i.e., A < y. This
implies that A < yp.
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Smooth Fit
Assume that M > 1/\. Let yp < co. The function ng satisfies the
smooth pasting condition, that is,

D_¢m(yo) =0, and Dydm(ym) =M.
Assume that
Dy pm(y0) < D_dm(yo)-
Let
5 € (Dy(y0)ém, D-dm(x0)).
. Then the function

2
vely) = 1+ oy —yo) - Y20

dominates <ZA>M locally at yg. Since ggM is a viscosity subsolution of
we have that

A1 52
)\—yo—()\—?))\é—i-m?—|—§b2(1—p2)? <0.
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Regularity of the Controller-and-Stopper Problem

> &M is the unique classical solution of the following
free-boundary problem:

1
Ag =y + (A—F)yg' + my?g” + max | by/1— plag’ + §a2g” on D,
(6
g(ym) = Myp and g(yo) = 1.

» The value function for this problem, namely ¢y, is
non-decreasing (strictly increasing on D), concave (strictly
concave on D), and C2 on R (except for possibly at yy
where it is C1).
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Fenchel-Legendre Duality

» Define the convex dual
Ou(2) = max | duly) — 2y (++)

» We have two cases to consider: (1) z> M and (2) z < M.

> If z> M, then ®y(z) = 0 because
dm(y) < um(y) < My < zy, from which it follows that the
maximum on the right-hand side of (**) is achieved at
Yy =ym.

» When z < M, y* = Iyy(z) maximizes (**), in which /y is the
inverse of ¢, on (yum, yo.
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» For z < M we have

Om(z) = dm [Im(2)] - 2l (2).

» Which implies

O (2) = S [ (2)] l1u(2) — Iu(2) — 2ly(2)
= zli)(2) — In(2) — 2l (2) = —Iu(2).

» Taking one more derivative

®i(2) = ~lu(2) = =1/ Iu(2)].
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Fenchel-Legendre Duality

Letting y = Im(z) = —®),(2) in the partial differential equation
for gZ;M we get

Aou [n(2)] = In(2) + (X = F)Im(2) Sy [I(2)] + mi(2) 8 [Im(2)]
N 2
1 (S (20
— (1 - pA)— L.
A ATE)
Rewrite this equation in terms of ®,; to get

(Ph(2))?
>y (2)
Also obtain the boundary conditions ®,(M) = 0 and $,(0) = 1.

Thanks to a verification theorem ®yy = ¢p.

APu(2) = (Fz = 1)y (2) — m + %b2(1 _ D)2 (2).
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The Scheme for the proofs

» Show that qASM is a viscosity solution of the quasi-variational
inequality.

» Prove a comparison result for this quasi-variational inequality.

> Show that ¢ is C? and strictly concave in the continuation
region.

» Show that smooth pasting holds for the controller-and-stopper
problem.
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The Scheme for the proofs

Conclude that the convex dual, namely ®,, of QASM (via the
Legendre transform) is a C? solution of ¢p's HJB on [0, M]
with ®(z) =0 for z > M.

Show via a verification lemma that the minimum probability
of ruin ¢y defined in equals .

Show that limp;_.. ¢am is a viscosity solution of the HJB
equation for ¢.

» Show that limpy_. ¢ is smooth.

v

Show that limy_,o ¢p = @ on R and that ¢ is the unique
smooth solution of the corresponding HJB.

A verification theorem shows that ¢(w, ¢) = ¢(w/c).
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