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Disclaimer

This document is NOT a research report under U.S. law and is NOT a product of a 

fixed income research department.  Opinions expressed here do not necessarily 

represent opinions or practices of Bank of America N.A. The analyses and materials 

contained herein are being provided to you without regard to your particular 

circumstances, and any decision to purchase or sell a security is made by you 

independently without reliance on us. This material is provided for information 

purposes only and is not an offer or a solicitation for the purchase or sale of any 

financial instrument. Although this information has been obtained from and is based 

on sources believed to be reliable, we do not guarantee its accuracy. Neither Bank of 

America N.A., Banc Of America Securities LLC nor any officer or employee of Bank 

of America Corporation affiliate thereof accepts any liability whatsoever for any 

direct, indirect or consequential damages or losses arising from any use of this report 

or its contents.
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Discussion Plan

� Margin agreements as a means of reducing 
counterparty credit exposure

� Collateralized exposure and the margin period of risk

� Semi-analytical method for collateralized EE
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Margin agreements as a means of 
reducing counterparty credit exposure
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Introduction

� Counterparty credit risk is the risk that a counterparty in an 
OTC derivative transaction will default prior to the expiration of 
the contract and will be unable to make all contractual payments.

– Exchange-traded derivatives bear no counterparty risk.

� The primary feature that distinguishes counterparty risk from 
lending risk is the uncertainty of the exposure at any future date.

– Loan: exposure at any future date is the outstanding balance, 
which is certain (not taking into account prepayments).

– Derivative: exposure at any future date is the replacement cost, which is 
determined by the market value at that date and is, therefore, uncertain.

� For the derivatives whose value can be both positive and 
negative (e.g., swaps, forwards), counterparty risk is bilateral.
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Exposure at Contract Level

� Market value of contract i with a counterparty is known only 
for current date         . For any future date t, this value           is 
uncertain and should be assumed random.

� If a counterparty defaults at time τ prior to the contract maturity, 
economic loss equals the replacement cost of the contract 

– If                , we do not receive anything from defaulted counterparty, 
but have to pay          to another counterparty to replace the contract. 

– If                , we receive           from another counterparty, but have to 
forward this amount to the defaulted counterparty.

� Combining these two scenarios, we can specify contract-level 
exposure at time t according to 
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Exposure at Counterparty Level

� Counterparty-level exposure at future time t can be defined as 
the loss experienced by the bank if the counterparty defaults 
at time t under the assumption of no recovery

� If counterparty risk is not mitigated in any way, counterparty-
level exposure equals the sum of contract-level exposures

� If there are netting agreements, derivatives with positive value 
at the time of default offset the ones with negative value within 
each netting set         , so that counterparty-level exposure is

– Each non-nettable trade represents a netting set
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Margin Agreements

� Margin agreements allow for further reduction of counterparty-
level exposure.

� Margin agreement is a legally binding contract between two 
counterparties that requires one or both counterparties to post 
collateral under certain conditions:

– A threshold is defined for one (unilateral agreement) or both (bilateral 
agreement) counterparties. 

– If the difference between the net portfolio value and already posted 
collateral exceeds the threshold, the counterparty must provide collateral 
sufficient to cover this excess (subject to minimum transfer amount).   

� The threshold value depends primarily on the credit quality of 
the counterparty. 



9

Collateralized Exposure

� Assuming that every margin agreement requires a netting 
agreement, exposure to the counterparty is

where            is the market value of the collateral for netting set 
NSk at time t. 

– If netting set NSk is not covered by a margin agreement, then 

� To simplify the notations, we will consider a single netting set: 

where VC (t) is the collateralized portfolio value at time t given by
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Collateralized exposure and 
the margin period of risk
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Naive Approach

� Collateral covers excess of portfolio value V(t) over threshold H:

� Therefore, collateralized portfolio value is 

� Thus, any scenario of collateralized exposure 

is limited by the threshold from above and by zero from below. 
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Margin Period of Risk

� Collateral is not delivered immediately – there is a lag δtcol.

� After a counterparty defaults, it takes time δtliq to liquidate the 
portfolio. 

� When loss on the defaulted counterparty is realized at time τ , 
the last time the collateral could have been received is τ −δt, 
where δt = δtcol + δtliq is the margin period of risk (MPR). 

� Thus, collateral at time t is determined by portfolio value 
at time τ −δt .

� While δt is not known with certainty, it is usually assumed 
to be a fixed number.

– Assumed value of δ t depends on the portfolio liquidity

– Typical assumption for liquid trades is δ t =2 weeks
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Including MPR in the Model

� Suppose that at time t −δt we have collateral collateral C(t −δt) 
and portfolio value is V(t −δt)

� Then, the amount ∆C(t) that should be posted by time t is 

– Negative ∆C(t) means that collateral will be returned

� Collateral C(t) available at time t is

� Collateralized portfolio value is
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Full Monte Carlo Algorithm

� Suppose we have a set of primary simulation time points {tk}
for modeling non-collateralized exposure

� For each tk >δt , define a look-back time point tk −δt

� Simulate non-collateralized portfolio value along the path that 
includes both primary and look-back simulation times

� Given V(tk−1) and C(tk−1), we calculate

– Uncollateralized portfolio value V(tk −δ t) at next look-back time tk −δ t

– Uncollateralized portfolio value V(tk) at next primary time tk

– Collateral at tk : 

– Collateralized value at tk :

– Collateralized exposure at tk :
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Illustration of Full Monte Carlo Method

�Simulating collateralized portfolio value

– Collateralized exposure can go above the threshold due to MPR and MTA
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Semi-analytical method 
for collateralized EE
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Portfolio Value at Primary Time Points

� Let us assume that we have run simulation only for primary 
time points t and obtained portfolio value distribution in the 
form of M quantities             , where j (from 1 to M) designates 
different scenarios 

� From the set                we can estimate the unconditional 
expectation µ (t) and standard deviation σ (t) of the portfolio 
value, as well as any other distributional parameter 

� Can we estimate collateralized EE profile without simulating 
portfolio value at the look-back time points                      ?
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Collateralized EE Conditional on Path

� Collateralized EE can be represented as 

where               is the collateralized EE conditional on             :

� Collateralized portfolio value              is

� If we can calculate               analytically, the unconditional 
collateralized EE can be obtained as the simple average of 

over all scenarios j
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If Portfolio Value Were Normal…

� Let us assume that portfolio value V(t) at time t is normally 
distributed with expectation µ (t) and standard deviation σ (t).

� Then, we can construct Brownian bridge from          to 

� Conditionally on             ,                     has normal distribution
with expectation

and standard deviation

� Conditional collateralized EE can be obtained in closed form!
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Illustration: Brownian Bridge

� Brownian bridge from           to 

� Conditionally on            , the distribution of               is 

normal with mean            and standard deviation
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Arbitrary Portfolio Value Distribution

� We will keep the assumption that, conditionally on             ,
the distribution of                    is normal, but will replace σ (t)
with the local quantity σ loc(t)

� Let us describe portfolio value V(t) at time t as

where            is a monotonically increasing function of 
a standard normal random variable Z. 

� Let us also define a normal equivalent portfolio value as

� To obtain σ loc(t) , we will scale σ (t) by the ratio of 
probability densities of W(t) and V(t)

( ) ( , )V t v t Z=

( , )v t Z

( ) ( , ) ( ) ( )W t w t Z t t Zµ σ= = +

( )( )j
V t

( )( )j
V t tδ−



22

Scaled Standard Deviation

� Let us denote probability density of quantity X via          and 
scale the standard deviation according to

� Changing variables from  W(t) and  V(t) to  Z ,  we have

� Substitution to the definition of σ loc(t,Z) above gives 
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Estimating CDF

� Value of        corresponding to             can be obtained from

� Let us sort the array             in the increasing order so that  

where j (k) is the sorting index

� From the sorted array we can build a piece-wise constant CDF 
that jumps by 1/M as V (t) crosses any of the simulated values:
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Estimating Derivative

� Now we can obtain        corresponding to             as

� Local standard deviation             can be estimated as :

� Offset ∆k should not be too small (too much noise) or too large 
(loss of resolution). This range works well:
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Back to the Bridge

� We assume that, conditionally on             ,                  has 
normal distribution with expectation

and standard deviation

� Collateralized exposure depends on               , which is also 
normal conditionally on             with the same standard deviation

and expectation              given by
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Calculating Conditional Collateralized EE

� Collateralized EE conditional on scenario j at time t is

� equals zero whenever                   , so that 

� Since                 has normal distribution, we can write 
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Conditional Collateralized EE Result

� Evaluating the integrals, we obtain:

where

{ } [ ]{
[ ] }

( )

( ) ( )

2 1

( ) ( )

2 1 1

( ) 0
EE ( ) 1 ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

j

j j

C

j j

V t
t H t d d

t d d V t d

δα

β φ φ

>
 = + Φ − Φ 

+ − + Φ

( ) ( ) ( )

1 2( ) ( )

( ) ( ) ( )
              

( ) ( )

j j j

j j

H t V t H t
d d

t t

δα δα
β β

+ − += =



28

Example 1:  5-Year IR Swap Starting in 5 Years

� Uncollateralized EE and the two thresholds we will consider
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Forward Starting Swap and Small Threshold

� Collateralized EE when threshold is 0.5%
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Forward Starting Swap and Large Threshold

� Collateralized EE when threshold is 2.0%
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Example 2:  5-Year IR Swap Starting Now

� Uncollateralized EE and the two thresholds we will consider
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Swap Starting Now and Small Threshold

� Collateralized EE when threshold is 0.5%
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Swap Starting Now and Large Threshold

� Collateralized EE when threshold is 2.0%
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Conclusion

� Margin agreements are important risk mitigation tools that need 
to be modeled accurately

� Collateral available at a primary time point depends on the 
portfolio value at the corresponding look-back time point

� Full Monte Carlo method of simulating collateralized exposure 
is the most flexible approach, but requires simulating portfolio
value at both primary and look-back time points

� We have developed a semi-analytical method of calculating 
collateralized EE that avoids doubling the simulation time

– Portfolio value is simulated only at primary time points

– For each portfolio value scenario at a primary time point, conditional 
collateralized EE is calculated in closed form

– Unconditional collateralized EE at a primary time point is obtained by 
averaging the conditional collateralized EE over all scenarios


