A Multiname First Passage Model for Credit Risk

Department of Applied Mathematics
University of Western Ontario
ametzle@uwo.ca

Fields Institute - February 25, 2009

Model Overview

- Model "credit quality" of an obligor
 - Continuous process
- Delineate systematic and idiosyncratic risk
 - Conditional independence structure
- Calibrates well across tranches and maturities simultaneously
 - CDX index tranches from 2006 and 2008

Challenges in Credit Risk Modeling

► Complex dependence

Dynamics

► High dimension

Common Modeling Approaches

► Copula/Factor Models (Li, 2000)

▶ Intensity Models (Lando, 1998; Duffie and Singleton, 1999)

Structural Models (Black and Cox, 1976)

The Black-Cox Model

▶ Firm value a geometric Brownian motion

$$S_t = S_0 \exp\left(\mu t + \sigma W_t\right)$$

Default threshold deterministic

$$B_t = B_0 \exp\left(\lambda t\right)$$

▶ Default is first passage time of S_t to B_t

$$\tau = \inf \left\{ t \ge 0 : S_t \le B_t \right\}$$

Multivariate Version

Simply correlate the driving Brownian motions

$$Corr\left(W_t^i, W_t^j\right) = \rho_{ij}$$

$$B_t^i = B_0^i \exp\left(\lambda_i t\right)$$

Issues with Black-Cox

- ► Implementation
 - Relevant mathematical structure is FPT of correlated BM

- Poor fit to market data
 - Predictions very similar to Gaussian copula
 - ▶ Hull et al. (2005); Overbeck and Schmidt (2005)

A Closer Look at Black-Cox

- ▶ Firms default at FPT of "credit quality" to zero
 - $X_t^i = \log\left(S_t^i/B_t^i\right) = x_i + \mu_i t + \sigma_i W_t^i$
 - ▶ Wⁱ correlated BM

- $\blacktriangleright \mu_i, \sigma_i$ represent *trend* and *volatility* in credit quality
- Systematic risk correlated "noise" about trend

Our Framework

Model dynamics of credit quality as

$$dX_t^i = \mu_i(M_t) dt + \sigma_i(V_t) dW_t^i$$

- $ightharpoonup M_t, V_t$ correlated processes (unobserved)
- $\triangleright \mu_i, \sigma_i$ deterministic functions
- $lackbox{W}^i$ a BM independent of everything
- ▶ Default time τ_i is FPT of X^i to zero

Intuition (Heuristic)

$$X_{t+h}^{i} - X_{t}^{i} \overset{d}{\approx} N\left(h\mu_{i}\left(M_{t}\right), h\sigma_{i}^{2}\left(V_{t}\right)\right)$$

- Systematic factors "set the tone" for a day's operations
- $\blacktriangleright \ X^i_{t+h} X^i_t$ and $X^j_{t+h} X^j_t$ approximately independent
 - Once the tone has been set, obligors operate independently

Continuous-time analogue of factor models

General Properties

$$X_{t}^{i} = X_{0}^{i} + \int_{0}^{t} \mu_{i}(M_{s}) ds + \int_{0}^{t} \sigma_{i}(V_{s}) dW_{s}^{i}$$

- ▶ In general credit qualities *not* Markovian
- Credit qualities are continuous
 - ▶ M_t, V_t may have jumps
- Credit qualities are conditionally independent

Default Process

▶ Define *default process*

$$D_N(t) := \frac{1}{N} \sum_{i=1}^N I\left(\tau_i \le t\right)$$

When it exists, call

$$D(t) := \lim_{N \to \infty} D_N(t)$$

the asymptotic proportion of defaults

Dimension reduction, insights/intuition

Large Portfolio Approximation

With probability one

$$\lim_{N \to \infty} \left(D_N(t) - E \left[D_N(t) \middle| \mathcal{H}_t \right] \right) = 0$$

- ▶ \mathcal{H}_t the filtration generated by $\{M_s, V_s: 0 \le s \le t\}$
- lacktriangle Intuition: can predict proportion of defaults in a large portfolio based solely on realized paths of M and V
 - "In a large portfolio, all risk is systematic"
- ▶ Whenever well-defined, D(t) is \mathcal{H}_t -measurable
 - Path functional of systematic factors

Homogeneous Portfolios

▶ All obligors influenced by systematic factors in same way

$$dX_t^i = \mu(M_t) dt + \sigma(V_t) dW_t^i$$

Asymptotic proportion of defaults is

$$D(t) = P\left(\tau_i \le t \,| \mathcal{H}_t\right)$$

Conditional default probability of an arbitrary firm

Grouped Portfolios

- ▶ *K* homogeneous groups
 - $ightharpoonup P_k$ conditional default probability for group K
 - w_k the proportion of obligors in group K
- lackbox D(t) a weighted average of conditional default probabilities

$$D(t) = \sum_{k=1}^{K} w_k \cdot P_k$$

A Linear Model

$$X_t^i = x_0 + Mt + \sqrt{V}W_t^i$$

- ▶ M, V random variables; x_0 constant
- $ightharpoonup x_0 > 0$ a constant
- Closed-form for default rate
 - $D(t) = h(M, V, x_0, t)$

Calibrating the Model

- ▶ We assume
 - ightharpoonup (M, V) have a Gaussian copula
 - lacktriangledown M and $\log(V)$ have a Laplace distribution
- Assume constant interest and recovery rates
 - Minimize mean relative error (simulated annealing)
 - Use large portfolio approximation and Monte Carlo
 - CDS spreads not included in calibration

Calibration Results (2006)

	5Y		7Y		10Y	
	Market	Model	Market	Model	Market	Model
0-3%	24.38	24.43	40.44	40.61	51.25	49.1
3-7%	90	90.2	209	250.5	471	471.1
7-10%	19	17.5	46	45	112	112
10-15%	7	7	20	20	53	44
15-30%	3.5	2.5	5.75	9.3	14	19.8
30-100%	1.73	0.38	3.12	2	4	4
CDX	35	34.8	45	47.3	57	57.5

- ▶ 8 model parameters
- ▶ Data obtained from DiGraziano and Rogers (2006)

Interesting Observations

$$X_t^i = x_0 + Mt + \sqrt{V}W_t^i$$

- lacktriangle Correlation between M and V exceeds 80% in both cases
 - ▶ 2006 and 2008

- Large portfolio losses (senior tranches impaired) characterized by
 - $M << 0 \text{ and } V \approx 0$
 - "Low-volatility" market crashes

Understanding "Low-Volatility" Crashes

▶ Condition upon (M, V) = (m, v)

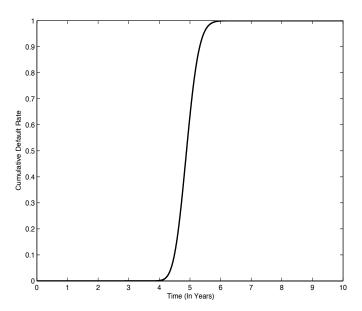
$$X_t^i = x_0 + mt + \sqrt{v}W_t^i$$

Now send $v \to 0$

$$X_t^i \approx x_0 + mt$$

- ▶ If m < 0 default with near certainty at $t^* = -\frac{x_0}{m}$
 - $h(m, v, x_0, \cdot)$ converges to degenerate c.d.f. as $v \to 0$

$h(-0.375, 0.003, 1.8, \cdot)$

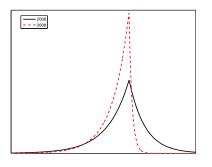


Interpreting the Systematic Factors

$$X_t^i = x_0 + Mt + \sqrt{V}W_t^i$$

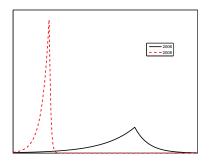
- $ightharpoonup X_t^i \sim Mt$ as $t \to \infty$
 - ightharpoonup M is the "dominant long-term" force
- V modulates influence of idiosyncratic component
 - Downgraded during "bad times"
 - Stochastic correlation factor?

Calibrated Densities - M



	5Y CDX						
	0-3%	3-7%	7-10%	10-15%	15-30%		
2006	24.4	90	19	7	3.5		
2008	67.4	727	403	204	115		

Calibrated Densities - $\log(V)$



▶ Idiosyncratic risk has been "priced out"

The Model is Not Perfect

Major flaw - no time dynamics in systematic factors

- ► Economic environment "frozen in time"
 - No recovering from a recession
 - No cyclicality in default rate
- "Predictability" of default rate

"Predictability" of Default Rate

$$D(t) = h(M, V, x_0, t)$$

- ightharpoonup For fixed x_0
 - \blacktriangleright $(m,v)\mapsto h(m,v,x_0,\cdot)$ is one-to-one
- lacktriangleright If we observe losses over any interval [0,T] we can
 - ightharpoonup Determine realized values of M, V
 - Predict future losses with certainty

Adding Time Dynamics

$$dX_t^i = M_t dt + \sqrt{V_t} dW_t^i \qquad X_0^i = x_0$$

- $lacktriangleq M_t, V_t$ processes with integrable sample paths
- $ightharpoonup x_0 > 0$ constant

Conditional Default Probabilities

▶ Condition upon realized paths of (M, V), say (m_t, v_t) .

$$X_t^i = x_0 + \int_0^t m_s ds + \int_0^t \sqrt{v_s} dW_s^i$$

$$\stackrel{\mathcal{L}}{=} x_0 + \int_0^t m_s ds + W^i \left(\int_0^t v_s ds \right)$$

$$= a_t + W^i (b_t)$$

Default at first passage of TCBM to non-linear barrier

Simulating Portfolio Losses

$$\blacktriangleright \ D(t) = \Psi \left(A, B, t \right)$$

$$A_t = x_0 + \int_0^t M_s ds$$

$$B_t = \int_0^t V_s ds$$

- We show that $\Psi\left(A^n,B^n,t\right) \implies \Psi\left(A,B,t\right)$ under very mild conditions
 - $ightharpoonup A^n, B^n$ piecewise linear approximations

Example

Model M_t , V_t as stationary mean-reverting diffusions

$$dM_t = \theta \left(\mu - M_t\right) dt + \nu \left(M_t\right) dZ_t^1$$

$$dV_t = \alpha (\beta - V_t) dt + \xi (V_t) dZ_t^2$$

- $ightharpoonup Z^1, Z^2$ correlated Brownian motion
 - $ightharpoonup
 u(\cdot)$ chosen so that M_t is Laplace
 - lacktriangle $\xi(\cdot)$ chosen so that V_t is log-Laplace

Calibration Results - Diffusion Model (2008)

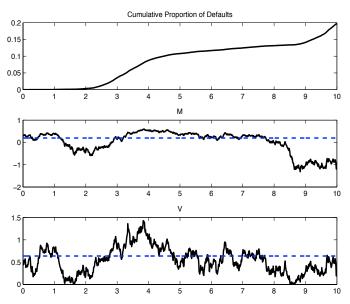
	5Y		7`	7Y		10Y	
	Market	Model	Market	Model	Market	Model	
0-3 %	67.38	64.71	70.5	70.46	73.5	71.89	
3-7 %	727	727	780	842	895.5	899.6	
7-10%	403	376	440	437	509	452	
10-15%	204	223	248	263	282	282	
15-30%	115	115	128.5	129.3	139.5	139.1	

- ▶ 10 model parameters
- ▶ Data obtained from Krekel (2008)
- Implied CDS curve is hump-shaped

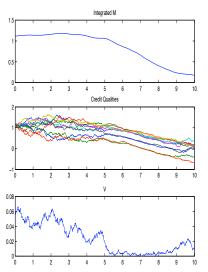
Comments

- $ightharpoonup M_t, V_t$ driven by correlated BM
 - Correlation exceeds 98% in both cases (2006 and 2008)
- Large portfolio losses (senior tranches impaired) characterized by periods where
 - $M_t << 0$ and $V_t pprox 0$ for prolonged periods of time
- Unlike linear model, economy can recover
 - ► Observe cyclical behaviour

The Importance of Time Dynamics



$$X_t^i = x_0 + \int_0^t M_s ds + \int_0^t \sqrt{V_s} dW_s^i$$



Conclusions/Future Work

Continuous first-passage models can fit market data

- Relate credit quality to observable covariates
- Investigate dynamics of credit/CDS/tranche spreads
 - Impact of various investor information
- ▶ Importance sampling for diffusion processes

Calibration Results - Linear Model (2006)

	5`	Y	7Y		10Y	
	Market	Model	Market	Model	Market	Model
0-3 %	24.38	24.43	40.44	40.61	51.25	49.1
3-7 %	90	90.2	209	250.5	471	471.1
7-10%	19	17.5	46	45	112	112
10-15%	7	7	20	20	53	44
15-30%	3.5	2.5	5.75	9.3	14	19.8
30-100%	1.73	0.38	3.12	2	4	4
CDX	35	34.8	45	47.3	57	57.5

Calibration Results - Diffusion Model (2006)

	5Y		7Y		10Y	
	Market	Model	Market	Model	Market	Model
0-3 %	24.38	22.30	40.44	40.90	51.25	51.04
3-7 %	90	89.4	209	235.7	471	471
7-10%	19	19.1	46	46.5	112	110.5
10-15%	7	8	20	18.9	53	42
15-30%	3.5	3.5	5.75	6.21	14	14
30-100%	1.73	0.36	3.12	1.39	4	1.49
CDX	35	33.6	45	46	57	55.4

Calibration Results - Linear Model (2008)

	5Y		7`	7Y		10Y	
	Market	Model	Market	Model	Market	Model	
0-3 %	67.38	65.90	70.5	70.79	73.5	71.76	
3-7 %	727	733	780	859	895.5	894.7	
7-10%	403	355	440	417	509	430	
10-15%	204	219	248	265	282	277	
15-30%	115	100	128.5	128.1	139.5	141.2	

Calibration Results - Diffusion Model (2008)

	5Y		7`	7Y		10Y	
	Market	Model	Market	Model	Market	Model	
0-3 %	67.38	64.71	70.5	70.46	73.5	71.89	
3-7 %	727	727	780	842	895.5	899.6	
7-10%	403	376	440	437	509	452	
10-15%	204	223	248	263	282	282	
15-30%	115	115	128.5	129.3	139.5	139.1	