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Motivation

» When a company defaults all of the instruments written on its
name will be affected : Stocks, bonds , options, credit
defaults swaps, etc.

» Until recently the affects of default on the implied volatility
surface has been ignored.

» We will build an intensity based model that is able to
explicitly price to credit and equity derivatives — Cross
market calibration.
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Motivation

» We will estimate the recovery rate and the default intensity
jointly from the implied volatility surface and the bond yield.

» Predict the credit default swap + A much better fit to the
implied volatility surface

» Implied Vol is composed of Stochastic Vol. (e.g. Index
Options)+ Premium for Default Risk (way out of the money
put options on individual stocks).
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Default Model

Let us introduce the Cox process (time changed Poisson process)
2 N(f, Asds), t >0, where

)\t = f( Yt; Zt)

dy, = f(m Yt)dt—i—ithz, Yo=y,

\[
dZ; = 6c(Zy)dt + Vog(Z)dW?, Zy = z,
We model the time of default as
T=inf{t>0: N, =1}

Interest rate:

dre = (o — Bre)dt +ndW}, ro=r.
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Stock price model

Stock price:

tAT
dX; = X: <ftdt+‘7tthO_d<Nt_/ /\Udu>) J
0

Xo = x, where the volatility is stochastic and is defined through
or = U(Y/t),

VA 1,’.;7_" _M M 4
dYt_(e( A \[/\(Yt)>dt+\[th,

Yo = y. The pre-banktruptcy stock price coincides with the
solution of

dXe = (re + A\e) Xedt + 0 XedWP, Xy = x.
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Derivatives
Call Option:

-
C(t; T,K)=E [exp (—/ rsds> (Xr = K)"1am
t

;
=LK [exp (- /tT(fs + >\s)d5> (XT - K)*

Bond price (the holder of the bond recovers a constant fraction
1 — / of the pre-default value):

-
exp </ rsds) lirs1)
t

+ exp (/ rsds> Lir<y (L =1N)B(7— T)
t

e fon(- [ s1008)

on {7 > t}.

7.

B(t; T)=E

.
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The present value of the premium leg of the contract:
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Credit Default Swap

The present value of the premium leg of the contract:

exp < / rsds) LirsTm) Qt]

Tm
= 1{T>t}c (t;7) Z E [exp (—/ (rs + )\s)ds> ’ft] .
t

The present value of the protection leg:

Premium(t; 7)
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Determining the Premium

Protection(t; 7')
l C
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Determining the Premium

Protection(t; 7))
l C

= lon </) <B (t: Tm) —E
/

_ 1{T>f}<1_/) <BC(t; Tw) — E [exp <_/tTM(rs + )\s)ds>

By setting the protection leg=premium leg:

‘)
)

(1)

il

B(t; Tm) — {exp( ftTM(rs+ A )ds)

5o (s ]

m=1

/
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Pricing Equation

.
PO (t, X, re, Ye, Ve, Z) = E [exp (-/ (rs + //\S)ds) h(X7)
t

ft} .
P<:9 is the solution of

LAPS(t, x,r,y,7,2) =0,
P(T,x,r,y,¥,2) = h(x),

where the partial differential operator £ is defined as

1 1 )
LALE Lo+ L1+ Lo+ VOIMy+ My + \/>/\/l3.
€ Ve €



Differential Operators
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Asymptotic Expansion
First, we consider an expansion of P9 in powers of v/

P = P§ + VP + 6P5 + - -

Matching powers of §

<£o+£1+£2> =
PS(T,x,r,y,3,2) = h(x

and that Pf satisfies
1£+1£+£ P = M+LM P
B 0 \ﬁ 1 2 1 — 1 \ﬁ 3 0
Pi(T,x,y,y,z,r) =0.
Next, we expand in powers of /e
P§ = Po+ VePro+ ePoo+ €/P3g + - -
P; = Po1+ \/EP171 +ePr1 + 63/2/33,1 + -



Approximate Prices

P = Py + VEePyo + VioPos,

{<£2>P0 =0
Po(T,x,r;z) = h(x).

(L2)Pro = (L1£57 (L2 — (L2))) Po,
P1o(T,x,r;z) =0.

(L2)Py1 = —(Mi)Po,
Po1(T,x,r;z) =0.
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Driving Terms

The derivatives with respect to r and z might potentially be
problematic in obtaining explicit solutions for P; o and P 1:

(L1LyH (L2 — (L2)))Po

= /P2V\[2<U¢y>( ) gPQ =+ /P1277V\[<¢y>( )% (Xaa/zo — P0>
0 ( 20°P 9 [ PP
(o (78) oy ()

83P 83/3
~ 1, 5 0 3 Zo
+ prani/2 ( (Ky)x Ox20r + Wy <X6x8r2)>

,OP, PP
- V2 (G258 4 s 1L ).

Also
9?2 0?2

My = U(Y)Psg(z)xm + 77,0138(2)@-



Explicit Expression for Py

The leading order term Py is given by:

Po(t.x.riz) = B5(eriz ) [ ”<exp<“”zw1<tr>
(u—m(t, T))?
ep ( - z(r))"

where

B§(t,r;z, T,I) = exp (—//_\(z)(T—t)—l—a(T—t)—b(T—t)r). (6)
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Proof

Applying Feynman-Kac theorem
Po(t,x,r; 2)

_E [exp (— /tT(rs + /X(z))ds> h(ST)|Se = x, 12 = r] |

where the dynamics of S is given by
dS; = (re + M2))Sedt + 52S:d WP,

in which W is a Wiener process whose correlation with W is
= G
pL= 5,pP1-
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Let us define

T ~ ~
Po(t,x,r;z) =E [exp (—/ rsds> h(ST)|S: = x, 1 = r] ,
t
in which N N o
dSt == rtStdt+ 5’2Stthp
Then

Po(t,x,r;z) = e*I’_\(T*t)INDO(t,xexp(j\(z)(T —t)),z,r).

JpT  exp (— iy rsds>

da? ~ B(0,T)

B(t, T)=E [exp <— /tT rsds> ‘]—"t] .

where
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We can obtain the following representation of Py using the T
forward measure

lso(t, gt, re; z)
= B(t, T)E" [n(S7)| 7| = B(t, T)ET [h(Fr)|F].
in which _
St
B(t,T)’

Foo

which is a PT martingale.
Note that an explicit expression for B(t, T) is available since r; is a
Vasicek model:

B(t, T) =exp(a(T —t) — b(T — t)rt).
Applying It6's formula we observe that the dynamics of F is

dF: = Fi(51d W2 + b(T — t)nd W}).



Correction Terms, Py

The correction term /ePy g is given by

2 2
VePro=—(T —1t) (foza Py VSX% (XQ@ P>>

Ox? Ox?
PPy 0Py 93Py 9Py 9Py
V5| — - — V, 2 7 9 Ve Ve
RS ( X oxda 8&) X ox2oa T 5X5'n8x Ve X oa’
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Proof
Proof: 1) x" 8@):” commutes with (Lp).

2) —(T —t)(x"

aaX"n )Py solves:

(Ly)u = <Xn88x"> Po, u(T,x,r;z)=0.

3) Differentiating “BS PDE" with respect to «, we see that — a'DO
also solves
P
<L2>U:88r0, U(T,X7F;Z):O.

4) Using 1) and 2) above and the equation we obtain
dlfFerentlatmg ‘BS PDE" with respect to 7, we can show that

1/n- (alplxgxgg - %—":]0) solves

2Py

)t =52

u(T,x,r;z) =0.



Correction Term P4

The correction term \/gPo,l is given by

VoPoy = V= (g + (L= Dx g V25 1% 5a0x ! Ba
n (T —1)? (X282P0 0P,
2

2Py 0P,
8X2—/xax—|—/P0>—(T—t)<x 0 0

8r8x_/6'r)]'
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Proof

Differentiating BS-PDE with respect to z we see that P° solves

(L2)u = —N(2)x C{;H) +IN(2)Py, u(T,x,r;z)=0.

As a result

0Py < 0Py
az (T— )A(Z)(XaX—IPO>

from which it follows that —(M1)Py can be represented as

2
- MPo = ~(T = OV () (paae) (2 7

P, *Py 0Py
+(1 - /)Xa) + np13g(z) <X8x8r - /8r) )




Proof cont.

1) We first observe that @(x” 22 )Py solves

n

(Lo)u= —(T — 1) <x"a‘1n> Po, u(T,x,riz)=0.

2) Next, we apply (£L2) on (T — t)% and obtain

@ (7052 ) ==

0Py 0Pg
+(T— t) <_X8X +6W + Po)

as a result of which see that

1, 0Py (T —1t)2 0P 0Py
3500 2 W PH(T0G
solves op
(Lo)u= (T —t) 0 u(T,x,r;z)=0.

or’



Parameter Estimation - i

» The parameters of the interest rate model {«, 3,71} are
obtained by a least-square fitting to the Treasury yield curve.

> D1 = %pl, the “effective” correlation between risk-free
interest rate r and stock price is estimated from historical
risk-free spot rate and stock price data.

> 0o, the “effective” stock price volatility is estimated from the
historical stock price data.



Estimation of /X and {/Vs, /Vy} from the Corporate Bond
Price Data.

The approximate price formula for a defaultable bond
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Estimation of /X and {/Vs, /Vy} from the Corporate Bond
Price Data.

The approximate price formula for a defaultable bond
B = B§ + v/eBfo + V6Bs1,

in which B is given by (6) and

0B§
\[Bl 0 — /V3 da 0
1[ 0B§ (T —1t)? OB§
0B§, = IVy = | -2 BS + (T —t)
VoBS, ﬁ[8a+ 7 BT =07
We obtain {/\(2), V5, IV{} from least-squares fitting, i.e. by
minimizing

n

Z( obs(t T) model(t Ti; /)‘ IV37/V2)) )
i=1



Estimation of {/, Vf, V5, Vi, ViE, VE, V) from the Equity
Option Data

These parameters are calibrated from the stock options data by a
least squares fit to the observed implied volatility:
n
Z(Iobs(t, Ti, Ki) — hnodel(t, T;, Ki; model parameters))?
i=1

n

~ Z (Pobs(t, Tiy Ki) — Pmodel(t, Ti, Ki; model parameters))?
- P vega?(T;, K;) ’




Estimation of {/, V, V5, Vi,

<, VE, VY from the Equity
Option Data
These parameters are calibrated from the stock options data by a
least squares fit to the observed implied volatility:

n
Z(Iobs(t, Ti, Ki) — hnodel(t, T;, Ki; model parameters))?
i=1
~ z": (Pobs(t, Tiy Ki) — Pmodel(t, Ti, Ki; model parameters))?
- P vega?(T;, K;) ’

Recall that

Prodel(t, Ti, Ki; model parameters)

= Po(t, Ti, Kii A) + Vigu(Ti, Kis A) + Vsga(Ti, Kii )
+ V5gs(Ti, Kit A) + Viga(Ti, Kis N) + Vegs(Ti, Kii A)
+ VEgo(Ti Kin N) + Vi gr(Ti, Kis N) + Vi gs( T, Kii M)



Model Implied CDS Premium

Ty = B(t, Twi 1) — B(t, Twi 1) o

model 1—1 Mo
S BE(t, T 1)
m=1




Testing the Model
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Implied Volatility on the 4th of April, 2007
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Implied Volatility of our model, Ford June 8, 2007
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Implied Volatility of Foque et al.’s model
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Figure: The fit to the Implied Volatility Surface of SPX on June 8, 2007



Thanks for your attention!



