On Pairing-Friendly Elliptic Curves

Edlyn Teske University of Waterloo

Toronto, 14 May 2009

Reference:

David Freeman, Michael Scott and Edlyn Teske, A taxonomy of pairing-friendly elliptic curves.

52 pages, 2006-2009.

Cryptology ePrint Archive: Report 2006/372 (continuously updated)

To appear in Journal of Cryptology

Contents of the "taxonomy paper":

- Description of all constructions of pairingfriendly curves known to date (May 2009), and a coherent framework for them.
- Several new constructions with improved ρ -values for certain embedding degrees.
- Construction to obtain families with good ρ -value (< 2) and variable CM discriminant.
- Recommendation of curves for various security levels and performance requirements.

This talk:

a (strict) subset of the above.

As this is a	"retrospective	meeting"

	.let's	look	at	a	few	major	achievements
ove	r 2.5	years			•		

October 30, 2006.....

.....the first day of

"Computational challenges arising in algorithmic number theory and cryptography"

here at the Fields Institute:

 $2\frac{1}{2}$ years later.....

.....April 25, 2009:

On Pairing-Friendly Elliptic Curves

Edlyn Teske University of Waterloo

Toronto, 14 May 2009

Pairing-friendly:

An elliptic curve E/F_q with small *embedding* degree and large prime-order subgroup.

Embedding degree:

Let E/\mathbb{F}_q and assume $r|\#E(\mathbb{F}_q)$, where gcd(r,q)=1.

The embedding degree of E with respect to r is

- the smallest $k \in \mathbb{N}$ such that \mathbb{F}_{q^k} contains all r-th roots of unity;
- the smallest $k \in \mathbb{N}$ such that $r|(q^k 1)$.

Embedding degree – Comments

• If E/\mathbb{F}_q has embedding degree k with respect to r, then

$$E[r] \subseteq E(\mathbb{F}_{q^k}).$$

• Weil pairing:

$$e_r: E[r] \times E[r] \to \mu_r \subseteq \mathbb{F}_{q^k}^*$$
.

• If E/\mathbb{F}_q is supersingular $(\#E(\mathbb{F}_q) = q+1-t \text{ with } \gcd(q,t)>1)$: Then $1 \leq k \leq 6$.

(Frey-Rück attack,

Menezes-Okamoto-Vanstone attack).

Why?

- The Weil and Tate pairings are building blocks for a host of exciting public-key protocols, such as
 - short signatures,
 - ID-based cryptography,
 - group signatures,
 - certificateless cryptography,
 - **–**
- k needs to be small so that pairings are efficiently computable.
 - Recall: A pairing maps into \mathbb{F}_{q^k} , where q has 160 or more bits.

Small embedding degrees are rare!

- ullet We need $\mu_r\subset {\mathbb F}_{q^k}.$
- ullet For a random curve, expect $k \approx r$.

Balasubramanian and Koblitz (1998):

For a random curve E/\mathbb{F}_q (q a prime), having a prime number r of points, the probability that r divides q^k-1 for some

$$k \leq \log^2 q$$

is vanishingly small.

Illustration:

q 160-bit prime $\Longrightarrow \log^2 q \approx 12300$. $k \le 12300$ with probability less than 10^{-28} .

We'd like $k \le 50$. But we may allow $\#E(\mathbb{F}_q)$ to be composite.

Definition: pairing-friendly [FST]

Let E be an elliptic curve defined over a finite field \mathbb{F}_q . We say that E is pairing-friendly if

- 1. there is a prime $r \geq \sqrt{q}$ dividing $\#E(\mathbb{F}_q)$, and
- 2. the embedding degree of E with respect to r is less than $(\log_2 r)/8$.

Pairing-friendly – Comments:

1. $r|\#E(\mathbf{F}_q)$ where $r > \sqrt{q}$:

Curves with small embedding degree with respect to r are abundant if $r<\sqrt{q}$ and quite rare if $r>\sqrt{q}$ [Luca-Shparlinski, 2006].

Define:
$$\rho = \frac{\log q}{\log r}$$
.

So $1 - \varepsilon \le \rho \le 2$ for pairing-friendly curves.

2.
$$\mu_r \subseteq \mathbb{F}_{q^k}^*$$
 with $k < \frac{\log_2 r}{8}$:

Embedding degrees of practical interest in pairing-based applications depend on the desired security level. The bound $(\log_2 r)/8$ is chosen to *roughly* reflect the bounds on k given on the next slide.

Bit sizes of curve parameters and corresponding embedding degrees for commonly desired levels of security.

Security	Subgroup	Extension	Embedding	
level	size r	field size	degree k	
(in bits)	(in bits)	q^k (in bits)	hopprox 1	ho pprox 2
80	160	960 – 1280	6 – 8	3 – 4
112	224	2200 - 3600	10 - 16	5 – 8
128	256	3000 — 5000	12 – 20	6 - 10
192	384	8000 — 10000	20 – 26	10 – 13
256	512	14000 - 18000	28 – 36	14 – 18

(Matching the security levels of SKIPJACK, Triple-DES, AES-Small, AES-Medium, and AES-Large, respectively.)

Complex Multiplication (CM) Method

Assume q is prime.

Input: \mathbb{F}_q , N = q + 1 - t $(|t| \le 2\sqrt{q})$, D > 0 such that **(CM norm equation)**

$$4q - t^2 = Dy^2$$

where D squarefree (CM discriminant).

Output: E/\mathbb{F}_q with $\#E(\mathbb{F}_q) = N$ (and $\operatorname{End}(E) \cong \operatorname{order}$ in $\mathbb{Q}(\sqrt{-D})$).

Necessary:

D relatively small, e.g. $D < 10^{12} \approx 2^{40}$. (Very unlikely for 160-bit q and "random" t.)

Theorem:

An elliptic curve over \mathbb{F}_q of embedding degree k, with a subgroup of prime order r and with trace t can be constructed if and only if

- (1) q is prime or a prime power.
- (2) r is prime.
- (3) r divides q + 1 t.
- (4) r divides $q^k 1$, and r does not divide $q^i 1$ for $1 \le i < k$.
- (5) $4q t^2 = Dy^2$ for some sufficiently small positive integer D and some integer y.

If r does not divide k, then condition (4) is equivalent with

(4') r divides $\Phi_k(t-1)$.

Families of pairing-friendly curves: [FST] We say the triple

$$(r(x), t(x), q(x)) \in \mathbb{Q}[x]$$

is a **family** of pairing-friendly elliptic curves (with embedding degree k and discriminant D) if

- 1. $q(x) = p(x)^d$, and p(x) represents primes.
- 2. r(x) is non-constant, irreducible, and integer-valued, and has positive leading coefficient.
- 3. r(x) divides q(x) + 1 t(x).
- 4. r(x) divides $\Phi_k(t(x) 1)$.
- 5. $4q(x) t(x)^2 = Dy^2$ has **infinitely many** integer solutions (x, y).

The ρ -value of a family

Recall:
$$\rho = \frac{\log q}{\log r}$$
.

For a family:

$$\rho(r, t, q) = \lim_{x \to \infty} \frac{\log q(x)}{\log r(x)} = \frac{\deg q(x)}{\deg r(x)}.$$

Example of a family:

Barreto-Nährig curves [BN2005]

(r(x), t(x), q(x)) where

$$r(x) = 36x^4 + 36x^3 + 18x^2 + 6x + 1,$$

$$t(x) = 6x^2 + 1,$$

$$q(x) = 36x^4 + 36x^3 + 24x^2 + 6x + 1.$$

A family of curves with embedding degree k=12 and ρ -value 1.

BN curves have CM discriminant 3.

In fact:

$$4q(x) - t^2(x) = 3y^2(x)$$

where $y(x) = 6x^2 + 4x + 1$.

The BN family is a complete family.

A family (r, t, q) is **complete** if there is some

$$y(x) \in \mathbb{Q}[x]$$

such that

$$4q(x) - t(x)^2 = Dy(x)^2$$
.

Otherwise, we say that the family is **sparse**: The CM equation only has solutions for some set of (x,y) (that grows exponentially).

Example of a sparse family: MNT curves

(Miyaji, Nakabayashi and Takano, 2001).

Case k = 6:

(r(x), t(x), q(x)) where

$$r(x) = 4x^2 \mp 2x + 1,$$

 $t(x) = 1 \pm 2x,$
 $q(x) = 4x^2 + 1.$

Solving the CM equation $4q(x)-t(x)^2=Dy^2$ can be shown equivalent to solving the "MNT equation"

$$X^2 - 3DY^2 = -8,$$

a generalized Pell equation.

Back to complete families

A complete family (r,t,q) with k,D is **cyclotomic** if

- $r(x) = \Phi_l(x)$ for some l = sk, and
- and $\sqrt{-D} \in K := \mathbb{Q}[x]/(r(x))$.

(Brezing-Weng 2005; Barreto-Lynn-Scott 2002)

A complete family (r, t, q) with k, D is **sporadic** if

- $K = \mathbb{Q}[x]/(r(x))$ is a (perhaps trivial) extension of a cyclotomic field,
- \bullet r(x) is not a cyclotomic polynomial,
- $\sqrt{-D} \in K$.

Example: Barreto-Nährig curves form a sporadic family: $\Phi_{12}(6x^2) = r(x)r(-x)$.

(Also: Kachisa-Schaefer-Scott 2008)

We speak of a **Scott-Barreto** family if

- $K = \mathbb{Q}[x]/(r(x))$ is an extension of a cyclotomic field,
- $\sqrt{-D} \notin K$.

Classification of pairing-friendly elliptic curves

Cocks-Pinch curves (manuscript, 2001):

- Fix $k \ge 1$ and squarefree D > 0.
- Let r be a prime with k|(r-1) and $\left(\frac{-D}{r}\right)=1$. Let ζ_k be a primitive kth root of unity in $(\mathbb{Z}/r\mathbb{Z})^*$.

So,
$$\sqrt{-D}, \zeta_k \in (\mathbb{Z}/r\mathbb{Z})^*$$
.

- Let $t' = \zeta_k + 1$, let $y' = \frac{\zeta_k 1}{\sqrt{-D}} \bmod r$.
- Let $0 < t, y \le r$ such that $t \equiv t' \pmod{r}$ and $y \equiv y' \pmod{r}$.
- Let $q = \frac{1}{4}(t^2 + Dy^2)$.
- If q is an integer and prime, use CM method to construct curve E/\mathbb{F}_q with q+1-t points.

Cock-Pinch method – Discussion

- ullet Works for all embedding degrees k.
- ullet Relative freedom to choose r and D.
- Recall: $t = \zeta_k + 1 \mod r$ and $y = \frac{\zeta_k 1}{\sqrt{(-D)}} \mod r$ so $t, y \approx r$ and $q = \frac{1}{4}(t^2 + Dy^2) \approx r^2$. $\Longrightarrow \rho = \frac{\log q}{\log r} \approx 2.$
- CP is the **method of choice** if $\rho \approx 2$ is acceptable.

The CP construction has been generalized

- to produce complete (cyclotomic) families of curves with $\rho < 2$ [Brezing-Weng, 2005].
- to produce pairing-friendly abelian varieties of arbitrary dimension $g \ge 2$ [Freeman, 2007; Freeman-Stevenhagen-Streng, 2008].

Example of a cyclotomic family — Brezing-Weng construction.

Let k = 5. Let

$$r(x) = \Phi_{20}(x) = x^8 - x^6 + x^4 - x^2 + 1,$$

and $K = Q[x]/(\Phi_{20}(x))$. Then $\zeta_5, \sqrt{-1} \in K$.

So let's work with D = 1.

In K, ζ_5 represents as $-x^2$, so (use $t = \zeta_k + 1$)

$$t(x) = -x^2 + 1.$$

In K, $\sqrt{-1}$ represents as x^5 , so

(use
$$y = \frac{\zeta_k - 1}{\sqrt{-D}} = -(\zeta_k - 1)\sqrt{-D}$$
)

$$y(x) = x^7 + x^5,$$

and (use $q = \frac{1}{4}(t^2 + Dy^2)$)

$$q(x) = \frac{1}{4}(x^{14} + 2x^{12} + x^{10} + x^4 - 2x^2 + 1),$$

irreducible.

(r,t,q) is a complete family of elliptic curves of embedding degree k=5, with CM discriminant D=1, and with ρ -value 14/8=1.75.

The issue of small discriminants.....

- Barreto-Naehrig curves $(k = 12, \rho = 1)$ have discriminant D = 3.
- For complete families, D = 1,3 are the most common working choices.

Some people love such small D....:

• $D=3\Longrightarrow E/\mathbb{F}_q$ has sextic twist \longrightarrow great for implementing pairings if k is divisible by 6. (Evaluate pairing in $\mathbb{F}_{q^k/6}$ rather than \mathbb{F}_{q^k}).

.....but others may not like small D:

• Speed-up for Pollard's rho method for curves with D=1,3 (making use of automorphism groups of order 4,6 (respectively)

[Duursma-Gaudry-Morain, 1999].

→ decrease in security by a few bits.

By a few bits only. But: A warning sign?!

Koblitz (2002): Good and bad uses of elliptic curves in cryptography:

"All parameters for a cryptosystem must always be chosen with the maximal possible degree of randomness, because any extra structure or deviation from randomness might some day be used to attack the system."

Pairing-friendly curves with variable discriminant

Theorem: [FST]

Let (r, t, q) be a family of elliptic curves with embedding degree k and discriminant D.

Let
$$K = \mathbb{Q}[x]/(r(x))$$
.

Let $y(x) \mapsto (\zeta_k - 1)/\sqrt{-D}$ in K.

Suppose r, t, and q are even polynomials, and y is an odd polynomial.

Define
$$r' \in \mathbb{Z}[x]$$
 and $t', q', y' \in Q[x]$ such that $r(x) = r'(x^2)$, $t(x) = t'(x^2)$, $q(x) = q'(x^2)$, $y(x) = x \cdot y'(x^2)$.

Let $\alpha \in \mathbb{N}$ such that

- ullet αD is squarefree
- $r'(\alpha x^2)$ is irreducible
- $y'(\alpha x^2) \in \mathbb{Z}$ for some $x \in \mathbb{Z}$
- $q'(\alpha x^2)$ irreducible

Theorem: [FST]

Let (r, t, q) be a family of elliptic curves with embedding degree k and discriminant D.

Let
$$K = \mathbb{Q}[x]/(r(x))$$
.
Let $y(x) \mapsto (\zeta_k - 1)/\sqrt{-D}$ in K .

Suppose r, t, and q are even polynomials, and y is an odd polynomial.

Define
$$r' \in \mathbb{Z}[x]$$
 and $t', q' \in Q[x]$ such that $r(x) = r'(x^2)$, $t(x) = t'(x^2)$, $q(x) = q'(x^2)$, $y(x) = x \cdot y'(x^2)$.

Let $\alpha \in \mathbb{N}$ such that

- \bullet αD is squarefree
- $r'(\alpha x^2)$ is irreducible
- $y'(\alpha x^2) \in \mathbb{Z}$ for some $x \in \mathbb{Z}$
- $q'(\alpha x^2)$ irreducible

Then $(r'(\alpha x^2), t'(\alpha x^2), q'(\alpha x^2))$ is a complete family of elliptic curves with embedding degree k and discriminant αD , and the same ρ -value as the family (r, t, q).

Example: Our cyclotomic family with k = 5:

$$r(x) = \Phi_{20}(x) = x^8 - x^6 + x^4 - x^2 + 1,$$

$$t(x) = -x^2 + 1,$$

$$q(x) = \frac{1}{4}(x^{14} + 2x^{12} + x^{10} + x^4 - 2x^2 + 1),$$

$$y(x) = x^7 + x^5.$$

For any **odd** integer α , define

$$r'(\alpha x^{2}) = \alpha^{4}x^{8} - \alpha^{3}x^{6} + \alpha^{2}x^{4} - \alpha x^{2} + 1,$$

$$t'(\alpha x^{2}) = -\alpha x^{2} + 1,$$

$$q'(\alpha x^{2}) = \frac{1}{4}(\alpha^{7}x^{14} + 2\alpha^{6}x^{12} + \alpha^{5}x^{10} + \alpha^{2}x^{4} - 2\alpha x^{2} + 1).$$

Then $(r'(\alpha x^2), t'(\alpha x^2), q'(\alpha x^2))$ is a complete family with k=5 and $D=\alpha$, and $\rho=1.75$.

Hm.....

So,
$$r'(\alpha x^2) = \Phi_{10}(\alpha x^2)$$
.

We have seen in the case of BN curves, that $\Phi_{12}(6x^2)$ is reducible.....

So, how can we be sure that $r'(\alpha x^2)$ and $q'(\alpha x^2)$ are irreducible?

Theorem: [FST]

Let $k \in \mathbb{N}$, let α be a squarefree integer that does not divide k. Then $\Phi_k(\alpha x^2)$ is irreducible.

More generally:

Theorem: [FST]

Let $f(x) = \sum_{i=0}^{d} a_i x^i \in \mathbb{Z}[x]$ be irreducible. Let α be a square-free integer that does not divide $a_0 a_d$ disc(f). Then $f(\alpha x^2)$ is irreducible.

Our example:

 $r_{\alpha}(x) = \Phi_{10}(\alpha x^2)$ is irreducible if α is squarefree and does not divide 10.

Further, let

$$f(x) = 4q'(x) = x^7 + 2x^6 + x^5 + x^2 - 2x + 1.$$

Then disc(f) = $-9477104 = -2^4 \cdot 7 \cdot 13 \cdot 23 \cdot 283$.

So $q'(\alpha x^2)$ is irreducible if α is squarefree and does not divide 592319.

(Recall: We needed α to be odd as well.)

Remarks on variable discriminants:

 The variable-discriminant construction does not apply to BN curves.
 For example,

$$r(x) = 36x^4 + 36x^3 + 18x^2 + 6x + 1$$
 is not an even polynomial.

• The construction works for all k with $gcd(k, 24) \in \{1, 2, 3, 6, 12\}.$

That is, $k \not\equiv 0 \pmod{4}$ or k divisible by 3 but not divisible by 8.

It also works for k = 28,44 but not for k = 20.

- Given a complete family $(r'(\alpha x^2), t'(\alpha x^2), q'(\alpha x^2))$, find explicit pairing-friendly curves:
 - choose $\alpha < 10^{10}$ and vary x of the right size until $r'(\alpha x^2)$ and $q'(\alpha x^2)$ are both prime.
 - or: choose x and vary α of the right size [Comuta-Kawazoe-Takahashi, 2007]

Conclusion

- We presented a complete classification of pairing-friendly elliptic curves, with several explicit examples.
- We presented a construction to obtain complete families of pairing-friendly curves of variable discriminant.
- We did NOT cover implementation considerations such as: twists and compression, extension field arithmetic, low Hamming weight.
 See e.g. Michael Scott's *Pairing 2007* paper "Implementing cryptographic pairings"
- We did NOT cover our recommendations, on which construction to use for a given embedding degree.
 See Tables 8.1 and 8.2 of our paper "A

taxonomy of pairing-friendly elliptic curves".

