On

Pairing-Friendly
 Elliptic Curves

Edlyn Teske

University of Waterloo

Toronto, 14 May 2009

Reference:

David Freeman, Michael Scott and Edlyn Teske, A taxonomy of pairing-friendly elliptic curves.

52 pages, 2006-2009.

Cryptology ePrint Archive: Report 2006/372
(continuously updated)
To appear in Journal of Cryptology

Contents of the "taxonomy paper":

- Description of all constructions of pairingfriendly curves known to date (May 2009), and a coherent framework for them.
- Several new constructions with improved ρ-values for certain embedding degrees.
- Construction to obtain families with good ρ-value (<2) and variable CM discriminant.
- Recommendation of curves for various security levels and performance requirements.

This talk:
a (strict) subset of the above.

As this is a "retrospective meeting".........
......let's look at a few major achievements over 2.5 years..........

October 30, 2006......
........the first day of
"Computational challenges arising in algorithmic number theory and cryptography"
here at the Fields Institute:

$2 \frac{1}{2}$ years later.....
......April 25, 2009:

On

Pairing-Friendly
 Elliptic Curves

Edlyn Teske

University of Waterloo

Toronto, 14 May 2009

Pairing-friendly:

An elliptic curve E / F_{q} with small embedding degree and large prime-order subgroup.

Embedding degree:

Let E / \mathbb{F}_{q} and assume $r \mid \# E\left(\mathbb{F}_{q}\right)$,
where $\operatorname{gcd}(r, q)=1$.
The embedding degree of E with respect to r is

- the smallest $k \in \mathbb{N}$ such that $\boldsymbol{F}_{q^{k}}$ contains all r-th roots of unity;
- the smallest $k \in \mathbb{N}$ such that $r \mid\left(q^{k}-1\right)$.

Embedding degree - Comments

- If E / \mathbb{F}_{q} has embedding degree k with respect to r, then

$$
E[r] \subseteq E\left(\mathbb{F}_{q^{k}}\right) .
$$

- Weil pairing:

$$
e_{r}: E[r] \times E[r] \rightarrow \mu_{r} \subseteq \mathbb{F}_{q^{k}}^{*} .
$$

- If E / \mathbb{F}_{q} is supersingular
$\left(\# E\left(\mathbb{F}_{q}\right)=q+1-t\right.$ with $\left.\operatorname{gcd}(q, t)>1\right)$:
Then $1 \leq k \leq 6$.
(Frey-Rück attack,
Menezes-Okamoto-Vanstone attack).

Why?

- The Weil and Tate pairings are building blocks for a host of exciting public-key protocols, such as
- short signatures,
- ID-based cryptography,
- group signatures,
- certificateless cryptography,
- k needs to be small so that pairings are efficiently computable.
Recall: A pairing maps into $\boldsymbol{F}_{q^{k}}$, where q has 160 or more bits.

Small embedding degrees are rare!

- We need $\mu_{r} \subset \mathbb{F}_{q^{k}}$.
- For a random curve, expect $k \approx r$.

Balasubramanian and Koblitz (1998):

For a random curve E / \mathbb{F}_{q} (q a prime), having a prime number r of points, the probability that r divides $q^{k}-1$ for some

$$
k \leq \log ^{2} q
$$

is vanishingly small.
Illustration:
q 160-bit prime $\Longrightarrow \log ^{2} q \approx 12300$.
$k \leq 12300$ with probability less than 10^{-28}.

We'd like $k \leq 50$.
But we may allow $\# E\left(\mathbb{F}_{q}\right)$ to be composite.

Definition: pairing-friendly [FST]

Let E be an elliptic curve defined over a finite field \mathbb{F}_{q}. We say that E is pairing-friendly if

1. there is a prime $r \geq \sqrt{q}$ dividing $\# E\left(\mathbb{F}_{q}\right)$, and
2. the embedding degree of E with respect to r is less than $\left(\log _{2} r\right) / 8$.

Pairing-friendly - Comments:

1. $r \mid \# E\left(\mathbb{F}_{q}\right)$ where $r>\sqrt{q}$:

Curves with small embedding degree with respect to r are abundant if $r<\sqrt{q}$ and quite rare if $r>\sqrt{q} \quad$ [Luca-Shparlinski, 2006].

Define: $\rho=\frac{\log q}{\log r}$.
So $1-\varepsilon \leq \rho \leq 2$ for pairing-friendly curves.
2. $\mu_{r} \subseteq \mathbb{F}_{q^{k}}^{*}$ with $k<\frac{\log _{2} r}{8}$:

Embedding degrees of practical interest in pairing-based applications depend on the desired security level. The bound $\left(\log _{2} r\right) / 8$ is chosen to roughly reflect the bounds on k given on the next slide.

Bit sizes of curve parameters and corresponding embedding degrees for commonly desired levels of security.

Security level	Subgroup size r	Extension field size	Embedding degree k	
(in bits)	(in bits)	q^{k} (in bits)	$\rho \approx 1$	$\rho \approx 2$
80	160	960-1280	6-8	3-4
112	224	2200-3600	10-16	5-8
128	256	$3000-5000$	12-20	6-10
192	384	8000-10000	20-26	10-13
256	512	14000-18000	28-36	14-18

(Matching the security levels of SKIP JACK, TripleDES, AES-Small, AES-Medium, and AES-Large, respectively.)

Complex Multiplication (CM) Method
Assume q is prime.
Input: $\mathbb{F}_{q}, N=q+1-t \quad(|t| \leq 2 \sqrt{q})$,
$D>0$ such that (CM norm equation)

$$
4 q-t^{2}=D y^{2}
$$

where D squarefree ($C M$ discriminant).
Output: E / \mathbb{F}_{q} with $\# E\left(\mathbb{F}_{q}\right)=N$ (and End $(E) \cong$ order in $\mathbb{Q}(\sqrt{-D})$).

Necessary:
D relatively small, e.g. $D<10^{12} \approx 2^{40}$.
(Very unlikely for 160-bit q and "random" t.)

Theorem:

An elliptic curve over \mathbb{F}_{q} of embedding degree k, with a subgroup of prime order r and with trace t can be constructed if and only if
(1) q is prime or a prime power.
(2) r is prime.
(3) r divides $q+1-t$.
(4) r divides $q^{k}-1$, and r does not divide $q^{i}-1$ for $1 \leq i<k$.
(5) $4 q-t^{2}=D y^{2}$ for some sufficiently small positive integer D and some integer y.

If r does not divide k, then condition (4) is equivalent with
(4') r divides $\Phi_{k}(t-1)$.

Families of pairing-friendly curves: [FST] We say the triple

$$
(r(x), t(x), q(x)) \in \mathbb{Q}[x]
$$

is a family of pairing-friendly elliptic curves (with embedding degree k and discriminant D) if

1. $q(x)=p(x)^{d}$, and $p(x)$ represents primes.
2. $r(x)$ is non-constant, irreducible, and integervalued, and has positive leading coefficient.
3. $r(x)$ divides $q(x)+1-t(x)$.
4. $r(x)$ divides $\Phi_{k}(t(x)-1)$.
5. $4 q(x)-t(x)^{2}=D y^{2}$ has infinitely many integer solutions (x, y).

The ρ-value of a family

Recall: $\rho=\frac{\log q}{\log r}$.

For a family:

$$
\rho(r, t, q)=\lim _{x \rightarrow \infty} \frac{\log q(x)}{\log r(x)}=\frac{\operatorname{deg} q(x)}{\operatorname{deg} r(x)} .
$$

Example of a family:

Barreto-Nährig curves [BN2005]
($r(x), t(x), q(x)$) where

$$
\begin{aligned}
r(x) & =36 x^{4}+36 x^{3}+18 x^{2}+6 x+1 \\
t(x) & =6 x^{2}+1 \\
q(x) & =36 x^{4}+36 x^{3}+24 x^{2}+6 x+1
\end{aligned}
$$

A family of curves with embedding degree $k=12$ and ρ-value 1 .
BN curves have CM discriminant 3 .
In fact:

$$
4 q(x)-t^{2}(x)=3 y^{2}(x)
$$

where $y(x)=6 x^{2}+4 x+1$.
The BN family is a complete family.
A family (r, t, q) is complete if there is some

$$
y(x) \in \mathbb{Q}[x]
$$

such that

$$
4 q(x)-t(x)^{2}=D y(x)^{2} .
$$

Otherwise, we say that the family is sparse:
The CM equation only has solutions for some set of (x, y) (that grows exponentially).

Example of a sparse family: MNT curves (Miyaji, Nakabayashi and Takano, 2001).
Case $k=6$:
($r(x), t(x), q(x))$ where

$$
\begin{aligned}
r(x) & =4 x^{2} \mp 2 x+1 \\
t(x) & =1 \pm 2 x, \\
q(x) & =4 x^{2}+1 .
\end{aligned}
$$

Solving the CM equation $4 q(x)-t(x)^{2}=D y^{2}$ can be shown equivalent to solving the "MNT equation"

$$
X^{2}-3 D Y^{2}=-8
$$

a generalized Pell equation.

Back to complete families

A complete family (r, t, q) with k, D is cyclotomic if

- $r(x)=\Phi_{l}(x)$ for some $l=s k$, and
- and $\sqrt{-D} \in K:=\mathbb{Q}[x] /(r(x))$.
(Brezing-Weng 2005; Barreto-Lynn-Scott 2002)

A complete family (r, t, q) with k, D is sporadic if

- $K=\mathbb{Q}[x] /(r(x))$ is a (perhaps trivial) extension of a cyclotomic field,
- $r(x)$ is not a cyclotomic polynomial,
- $\sqrt{-D} \in K$.

Example: Barreto-Nährig curves form a sporadic family: $\Phi_{12}\left(6 x^{2}\right)=r(x) r(-x)$.
(Also: Kachisa-Schaefer-Scott 2008)

We speak of a Scott-Barreto family if

- $K=\mathbb{Q}[x] /(r(x))$ is an extension of a cyclotomic field,
- $\sqrt{-D} \notin K$.

Classification of pairing-friendly elliptic curves

Cocks-Pinch curves (manuscript, 2001):

- Fix $k \geq 1$ and squarefree $D>0$.
- Let r be a prime with $k \mid(r-1)$ and $\left(\frac{-D}{r}\right)=1$. Let ζ_{k} be a primitive k th root of unity in ($\mathbb{Z} / r \mathbb{Z})^{*}$.

So, $\sqrt{-D}, \zeta_{k} \in(\mathbb{Z} / r \mathbb{Z})^{*}$.

- Let $t^{\prime}=\zeta_{k}+1$, let $y^{\prime}=\frac{\zeta_{k}-1}{\sqrt{-D}} \bmod r$.
- Let $0<t, y \leq r$ such that $t \equiv t^{\prime} \quad(\bmod r)$ and $y \equiv y^{\prime}(\bmod r)$.
- Let $q=\frac{1}{4}\left(t^{2}+D y^{2}\right)$.
- If q is an integer and prime, use CM method to construct curve E / \mathbb{F}_{q} with $q+1-t$ points.

Cock-Pinch method - Discussion

- Works for all embedding degrees k.
- Relative freedom to choose r and D.
- Recall: $t=\zeta_{k}+1 \bmod r$ and $y=\frac{\zeta_{k}-1}{\sqrt{(-D)}} \bmod r$ so $t, y \approx r$ and $q=\frac{1}{4}\left(t^{2}+D y^{2}\right) \approx r^{2}$.
$\Longrightarrow \rho=\frac{\log q}{\log r} \approx 2$.
- CP is the method of choice if $\rho \approx 2$ is acceptable.

The CP construction has been generalized

- to produce complete (cyclotomic) families of curves with $\rho<2$ [Brezing-Weng, 2005].
- to produce pairing-friendly abelian varieties of arbitrary dimension $g \geq 2$ [Freeman, 2007;

Freeman-Stevenhagen-Streng, 2008].

Example of a cyclotomic family

- Brezing-Weng construction.

Let $k=5$. Let

$$
r(x)=\Phi_{20}(x)=x^{8}-x^{6}+x^{4}-x^{2}+1
$$

and $K=Q[x] /\left(\Phi_{20}(x)\right)$. Then $\zeta_{5}, \sqrt{-1} \in K$.
So let's work with $D=1$.
In K, ζ_{5} represents as $-x^{2}$, so (use $t=\zeta_{k}+1$)

$$
t(x)=-x^{2}+1
$$

In $K, \sqrt{-1}$ represents as x^{5}, so

$$
\begin{aligned}
& \left(\text { use } y=\frac{\zeta_{k}-1}{\sqrt{-D}}=-\left(\zeta_{k}-1\right) \sqrt{-D}\right) \\
& y(x)=x^{7}+x^{5}
\end{aligned}
$$

and (use $q=\frac{1}{4}\left(t^{2}+D y^{2}\right)$)

$$
q(x)=\frac{1}{4}\left(x^{14}+2 x^{12}+x^{10}+x^{4}-2 x^{2}+1\right)
$$

irreducible.
(r, t, q) is a complete family of elliptic curves of embedding degree $k=5$, with CM discriminant $D=1$, and with ρ-value $14 / 8=1.75$.

The issue of small discriminants......

- Barreto-Naehrig curves ($k=12, \rho=1$) have discriminant $D=3$.
- For complete families, $D=1,3$ are the most common working choices.

Some people love such small $D \ldots .$. :

- $D=3 \Longrightarrow E / \mathbb{F}_{q}$ has sextic twist \longrightarrow great for implementing pairings if k is divisible by 6 .
(Evaluate pairing in $\mathbb{F}_{q^{k / 6}}$ rather than $\mathbb{F}_{q^{k}}$).
but others may not like small D :
- Speed-up for Pollard's rho method for curves with $D=1$,3 (making use of automorphism groups of order 4,6 (respectively)
[Duursma-Gaudry-Morain,1999].
\longrightarrow decrease in security by a few bits. By a few bits only. But: A warning sign?!

Koblitz (2002): Good and bad uses of elliptic curves in cryptography:
"All parameters for a cryptosystem must always be chosen with the maximal possible degree of randomness, because any extra structure or deviation from randomness might some day be used to attack the system."

Pairing-friendly curves with variable discriminant

Theorem: [FST]

Let (r, t, q) be a family of elliptic curves with embedding degree k and discriminant D.
Let $K=\mathbb{Q}[x] /(r(x))$.
Let $y(x) \mapsto\left(\zeta_{k}-1\right) / \sqrt{-D}$ in K.
Suppose r, t, and q are even polynomials, and y is an odd polynomial.

Define $r^{\prime} \in \mathbb{Z}[x]$ and $t^{\prime}, q^{\prime}, y^{\prime} \in Q[x]$ such that $r(x)=r^{\prime}\left(x^{2}\right)$,

$$
t(x)=t^{\prime}\left(x^{2}\right)
$$

$$
q(x)=q^{\prime}\left(x^{2}\right),
$$

$$
y(x)=x \cdot y^{\prime}\left(x^{2}\right)
$$

Let $\alpha \in \mathbb{N}$ such that

- αD is squarefree
- $r^{\prime}\left(\alpha x^{2}\right)$ is irreducible
- $y^{\prime}\left(\alpha x^{2}\right) \in \mathbb{Z}$ for some $x \in \mathbb{Z}$
- $q^{\prime}\left(\alpha x^{2}\right)$ irreducible

Theorem: [FST]

Let (r, t, q) be a family of elliptic curves with embedding degree k and discriminant D.
Let $K=\mathbb{Q}[x] /(r(x))$.
Let $y(x) \mapsto\left(\zeta_{k}-1\right) / \sqrt{-D}$ in K.
Suppose r, t, and q are even polynomials, and y is an odd polynomial.
Define $r^{\prime} \in \mathbb{Z}[x]$ and $t^{\prime}, q^{\prime} \in Q[x]$ such that $r(x)=r^{\prime}\left(x^{2}\right)$,

$$
\begin{aligned}
& t(x)=t^{\prime}\left(x^{2}\right), q(x)=q^{\prime}\left(x^{2}\right), \\
& y(x)=x \cdot y^{\prime}\left(x^{2}\right) .
\end{aligned}
$$

Let $\alpha \in \mathbb{N}$ such that

- αD is squarefree
- $r^{\prime}\left(\alpha x^{2}\right)$ is irreducible
- $y^{\prime}\left(\alpha x^{2}\right) \in \mathbb{Z}$ for some $x \in \mathbb{Z}$
- $q^{\prime}\left(\alpha x^{2}\right)$ irreducible

Then $\left(r^{\prime}\left(\alpha x^{2}\right), t^{\prime}\left(\alpha x^{2}\right), q^{\prime}\left(\alpha x^{2}\right)\right)$ is a complete family of elliptic curves with embedding degree k and discriminant αD, and the same ρ-value as the family (r, t, q).

Example: Our cyclotomic family with $k=5$:

$$
\begin{aligned}
& r(x)=\Phi_{20}(x)=x^{8}-x^{6}+x^{4}-x^{2}+1, \\
& t(x)=-x^{2}+1, \\
& q(x)=\frac{1}{4}\left(x^{14}+2 x^{12}+x^{10}+x^{4}-2 x^{2}+1\right), \\
& y(x)=x^{7}+x^{5} .
\end{aligned}
$$

For any odd integer α, define $r^{\prime}\left(\alpha x^{2}\right)=\alpha^{4} x^{8}-\alpha^{3} x^{6}+\alpha^{2} x^{4}-\alpha x^{2}+1$, $t^{\prime}\left(\alpha x^{2}\right)=-\alpha x^{2}+1$, $q^{\prime}\left(\alpha x^{2}\right)=$
$\frac{1}{4}\left(\alpha^{7} x^{14}+2 \alpha^{6} x^{12}+\alpha^{5} x^{10}+\alpha^{2} x^{4}-2 \alpha x^{2}+1\right)$.

Then $\left(r^{\prime}\left(\alpha x^{2}\right), t^{\prime}\left(\alpha x^{2}\right), q^{\prime}\left(\alpha x^{2}\right)\right)$ is a complete family with $k=5$ and $D=\alpha$, and $\rho=1.75$.

Hm......
So, $r^{\prime}\left(\alpha x^{2}\right)=\Phi_{10}\left(\alpha x^{2}\right)$.

We have seen in the case of $B N$ curves, that $\Phi_{12}\left(6 x^{2}\right)$ is reducible.....

So, how can we be sure that $r^{\prime}\left(\alpha x^{2}\right)$ and $q^{\prime}\left(\alpha x^{2}\right)$ are irreducible?

Theorem: [FST]

Let $k \in \mathbb{N}$, let α be a squarefree integer that does not divide k. Then $\Phi_{k}\left(\alpha x^{2}\right)$ is irreducible.

More generally:

Theorem: [FST]

Let $f(x)=\sum_{i=0}^{d} a_{i} x^{i} \in \mathbb{Z}[x]$ be irreducible. Let α be a square-free integer that does not divide $a_{0} a_{d}$ disc(f). Then $f\left(\alpha x^{2}\right)$ is irreducible.

Our example:

$r_{\alpha}(x)=\Phi_{10}\left(\alpha x^{2}\right)$ is irreducible if α is squarefree and does not divide 10.

Further, let
$f(x)=4 q^{\prime}(x)=x^{7}+2 x^{6}+x^{5}+x^{2}-2 x+1$.
Then $\operatorname{disc}(f)=-9477104=-2^{4} \cdot 7 \cdot 13 \cdot 23 \cdot 283$.
So $q^{\prime}\left(\alpha x^{2}\right)$ is irreducible if α is squarefree and does not divide 592319.
(Recall: We needed α to be odd as well.)

Remarks on variable discriminants:

- The variable-discriminant construction does not apply to BN curves.
For example,

$$
r(x)=36 x^{4}+36 x^{3}+18 x^{2}+6 x+1
$$

is not an even polynomial.

- The construction works for all k with $\operatorname{gcd}(k, 24) \in\{1,2,3,6,12\}$.

That is, $k \not \equiv 0(\bmod 4)$ or k divisible by 3 but not divisible by 8 .
It also works for $k=28,44$ but not for $k=20$.

- Given a complete family $\left(r^{\prime}\left(\alpha x^{2}\right), t^{\prime}\left(\alpha x^{2}\right), q^{\prime}\left(\alpha x^{2}\right)\right)$, find explicit pairing-friendly curves:
- choose $\alpha<10^{10}$ and vary x of the right size until $r^{\prime}\left(\alpha x^{2}\right)$ and $q^{\prime}\left(\alpha x^{2}\right)$ are both prime.
- or: choose x and vary α of the right size [Comuta-Kawazoe-Takahashi, 2007]

Conclusion

- We presented a complete classification of pairing-friendly elliptic curves, with several explicit examples.
- We presented a construction to obtain complete families of pairing-friendly curves of variable discriminant.
- We did NOT cover implementation considerations such as:
twists and compression, extension field arithmetic, low Hamming weight.
See e.g. Michael Scott's Pairing 2007 paper "Implementing cryptographic pairings"
- We did NOT cover our recommendations, on which construction to use for a given embedding degree.
See Tables 8.1 and 8.2 of our paper "A taxonomy of pairing-friendly elliptic curves".

