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Elliptic Curves in Cryptography

I Suggested by Victor Miller and Neil Koblitz in 1985

I Now implemented many places; part of NSA’s Suite B
I Relies on Problem:

I Let E be an elliptic curve over a finite field K = Fq. Suppose one is
given points P,Q ∈ E(K) such that Q ∈ 〈P 〉. Determine k such that
Q = [k]P .

I Seems safe since no one can think of a good way to do it (in
subexponential time).

I So... it is in the interests of world security that we keep failing to
solve this problem in new and creative ways.
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Generic attacks

Attacks which work in any group where group operation is easy to
compute. This relies on the ‘birthday paradox’: selecting elements of a set
of size n randomly, we expect to see a repeat after O(

√
n) selections.

Q = [k]P ; find k?
Shanks baby-step-giant-step:

I Let N = d
√
ne.

I Create a list of elements P, [2]P, . . . , [N ]P .

I Create a list of elements Q+R,Q+ [2]R, . . . , Q+ [N ]R where
R = [−N ]P .

I Find a collision between the two sets.

Pollard rho:

I Iterate a sufficiently ‘mixing’ function f : G→ G (whose definition
depends on Q) and wait for f (i)(P ) = f (2i)(P )
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Some Attacks

I Pohlig-Hellman: a method to reduce ECDLP to the case of prime
order. Depends on the Chinese remainder theorem.

I ‘anomalous’: curve has p points over Fp; Samaev, Satoh-Araki,
Smart, and Shipsey all give polynomial algorithms for discrete log in
these cases. (These work via an isomorphism to the group F+

p .)

I Weil descent attacks are also isomorphism attacks over binary fields,
this time to the Jacobian of a hyperelliptic curve.

I Weil and Tate pairing attacks: more on this later.

I Many (mostly) failed attempts to do an index calculus for elliptic
curves.

I Recent success by Claus Diem: curves over a family of finite fields
Fqn where n = O(

√
log q).
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Division polynomials

Consider a point P = (x, y) and its multiples on an elliptic curve
E : y2 = x3 +Ax+B. Then

[n]P =
(
φn(P )

Ψn(P )2
,
ωn(P )

Ψn(P )3

)

where

Ψ1 = 1, Ψ2 = 2y,

Ψ3 = 3x4 + 6Ax2 + 12Bx−A2,

Ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 −A3),

Ψm+nΨm−nΨ2
1 = Ψm+1Ψm−1Ψ2

n −Ψn+1Ψn−1Ψ2
m .

Anything satsifying this recurrence relation I’ll call an elliptic divisibility
sequence. In particular, if we evaluate at P , we get the elliptic divisibility
sequence associated to E and P .
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Division polynomials and sequences over finite fields

I The point P will always have finite order, say n. The associated
sequence will have Wn = 0.

Example

E : y2 + y = x3 + x2 − 2x over F5.
P = (0, 0) has order 9.
The associated sequence is
0, 1, 1, 2, 1, 3, 4, 3, 2, 0, 3, 2, 1, 2, 4, 3, 4, 4, 0, 1, 1, 2, 1, 3, 4, . . .
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Translation properties

Theorem (Ward / Swart / Ayad)

Let W be an elliptic divisibility sequence such that
W (1) = 1,W (2)W (3) 6= 0. Let r ∈ Z be such that W (r) = 0. Then there
exist a, b such that

W (n+ kr) = W (n)ankbk
2
.

Example (E : y2 + y = x3 + x2 − 2x, P = (0, 0) over F5)

0, 1, 1, 2, 1, 3, 4, 3, 2, 0, 3, 2, 1, 2, 4, 3, 4, 4, 0, 1, 1, 2, 1, 3, 4, . . .
W (9k + n) ≡W (n)4nk2k2

mod 5
W (10) ≡ 3W (1) mod 5
k = 2 : W (18 + n) ≡W (n)42n24 ≡W (n) mod 5
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Perfect periodicity

I An elliptic divisibility sequence which is periodic with respect to its
rank of apparition is perfectly periodic.

Theorem (Lauter,S.)

Suppose (q − 1, ord(P )) = 1. Define φ : E → Fq by

φ(P ) =
(

WE,P (q − 1)
WE,P (q − 1 + ord(P ))

) 1
ord(P )2

.

Then W (n) = φ([n]P ) is a perfectly periodic elliptic divisibility sequence,
and furthermore,

φ([n]P ) = φ(P )n2
WE,P (n).
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Example of perfect periodicity

E : y2 + y = x3 + x2 − 2x, P = (0, 0) over F5

The usual elliptic divisibility sequence WE,P (n) is...

0, 1, 1, 2, 1, 3, 4, 3, 2, 0, 3, 2, 1, 2, 4, 3, 4, 4, 0, 1, 1, 1, 2, 1, 3, 4, . . .

From the theorem,

φ(P ) =
(

1
2

)1

= 3.

Then the sequence φ([n]P ) is... (φ([n]P ) = 3n2
WE,P (n))

0, 3, 1, 1, 1, 4, 4, 4, 2, 0, 3, 1, 1, 1, 4, 4, 4, 2, 0, 3, 1, 1, 1, 4, 4, . . .
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Discrete logarithm problem

Problem
Let E be an elliptic curve over a finite field K = Fq. Suppose one is given
points P,Q ∈ E(K) such that Q ∈ 〈P 〉. Determine k such that Q = [k]P .

K. Stange and K. Lauter — ECDLP and hard problems for sequences Elliptic curve discrete logarithm problem 10/39



EDS Discrete Log

Problem (Width s EDS Discrete Log)

Given an elliptic divisibility sequence W and terms W (k), W (k + 1), . . .,
W (k + s− 1), determine k.

First posed by Rachel Shipsey:

I Reduced it to F∗q discrete logarithm problem.

I Used the solution to give an attack on ECDLP in case
ord(P ) = q − 1.

I Gave algorithms for computing a block of seven terms at position
a+ b from blocks at position a and b.
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Hard problems for EDS

Let E be an elliptic curve over a finite field K = Fq. Suppose one is given
points P,Q ∈ E(K) such that Q ∈ 〈P 〉, Q 6= O, and ord(P ) ≥ 4.

Problem (EDS Association)

Determine WE,P (k) for the value of 0 < k < ord(P ) such that Q = [k]P .

Problem (EDS Residue)

Determine the quadratic residuosity of WE,P (k) for the value of
0 < k < ord(P ) such that Q = [k]P .

I The smallest positive value of k such that [k]P = Q will be called the
minimal multiplier.
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Relating hard problems
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[k]P → {φ([i]P )}k+2
i=k

[k]P

v~v~
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z: z: z:

%%KKKK
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{φ([i]P )}k+2
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::ttttttt
{WE,P (i)}k+2

i=k
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k
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I Perfectly periodic
case.

I Use

φ(P ) =
(

WE,P (q − 1)
WE,P (q − 1 + ord(P ))

) 1
ord(P )2

.

I Use Shipsey algorithms to calculate W to distance q.

I (log q)3 time.
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I Perfectly periodic
case.

I Use

x(P )− x([k]P ) =
φ([k + 1]P )φ([k − 1]P )

φ([k]P )2

I (log q)2 time.
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I Non-perfectly
periodic case.

I Use Shipsey algorithms to calculate terms.

I (log q)3 time.
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I Non-perfectly
periodic case.

I Use
φ([k + 1]P )
φ([k]P )

= φ(P )2k+1WE,P (k + 1)
WE,P (k)

.

(which is from φ([k]P ) = φ(P )k2
WE,P (k) with k, k + 1).

I This F∗q discrete log can be solved in sub-exponential time.

I (This is a different method than Shipsey; similar result.)
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Relating hard problems II
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It is enough to know parity of k

Suppose ord(P ) is odd.
An algorithm for finding k such that [k]P = Q and 0 < k < ord(P ).

1. If P = Q, stop.

2. Find parity of smallest positive k such that [k]P = Q.

3. If k is even, find Q′ such that [2]Q′ = Q. If k is odd, find Q′ such
that [2]Q′ = Q− P .

4. Set Q = Q′ and return to step 1.

I When we return to step 1, the new k′ is k/2 or (k − 1)/2 depending
on parity in step 2.

I To find k when the algorithm ends, count up the sequence of parities
– gives binary expansion of k.
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EDS Residue

I Suppose we could calculate the residuosity of WE,P (k)
(non-perfectly-periodic case).

I Assume φ(P ) is a non-residue.

I We have the F∗q discrete logarithm equation:

φ([k]P ) = φ(P )k2
WE,P (k).

I The parity of k can be calculated from the residuosity in polynomial
time.
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Can we solve EDS Residue?

No. Interestingly, we can calculate the residuosity of ratios of terms

WE,P (k + 1)
WE,P (k)

but this doesn’t help.
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Equivalence of problems

Theorem (Lauter, S.)

Let E be an elliptic curve over a finite field Fq. If any one of the following
problems is solvable in sub-exponential time, then all of them are:

1. ECDLP

2. EDS Association for non-perfectly periodic sequences

3. Width 3 EDS Discrete Log for perfectly periodic sequences

If |E(Fq)| is odd and char(Fq) 6= 2, we can also include

4. EDS Residue for non-perfectly periodic sequences
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Division polynomials of higher rank?

The n-th division polynomial is associated to the vanishing of [n]P on the
curve.

[n]P ↔ Ψn

We might dream of . . .

[n]P + [m]Q↔ Ψn,m

Or even . . .

[n]P + [m]Q+ [t]R↔ Ψn,m,t

etc.
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Definition of an elliptic net

Definition (S)

Let K be a field. An elliptic net is a map W : A→ K such that the
following recurrence holds for all p, q, r, s ∈ Zn.

W (p+ q + s)W (p− q)W (r + s)W (r)
+W (q + r + s)W (q − r)W (p+ s)W (p)

+W (r + p+ s)W (r − p)W (q + s)W (q) = 0

I Elliptic divisibility sequences are a special case (n = 1)

I In this talk, we will mostly discuss rank n = 2.

I The recurrence generates the net from finitely many initial values.
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I The recurrence generates the net from finitely many initial values.
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Net polynomial examples

Ψ−1,1 = x1 − x2 ,

Ψ2,1 = 2x1 + x2 −
(
y2 − y1

x2 − x1

)2

,

Ψ2,−1 = (y1 + y2)2 − (2x1 + x2)(x1 − x2)2 ,

Ψ1,1,1 =
y1(x2 − x3) + y2(x3 − x1) + y3(x1 − x2)

(x1 − x2)(x1 − x3)(x2 − x3)
,

Can calculate more via the recurrence...

Ψ3,1 = (x2 − x1)−3(4x6
1 − 12x2x

5
1 + 9x2

2x
4
1 + 4x3

2x
3
1

− 4y2
2x

3
1 + 8y2

1x
3
1 − 6x4

2x
2
1 + 6y2

2x2x
2
1 − 18y2

1x2x
2
1

+ 12y2
1x

2
2x1 + x6

2 − 2y2
2x

3
2 − 2y2

1x
3
2 + y4

2 − 6y2
1y

2
2

+ 8y3
1y2 − 3y4

1) .
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Curve-net bijection

Theorem (S.)

There is a bijection of partially ordered sets:
elliptic net
W : Zn → K
modulo scale
equivalence

 ↔


cubic Weierstrass curve C over K
together with m points in C(K)

modulo change of variables
x′ = x+ r, y′ = y + sx+ t



I n = m and W (v) = Ψv(P1, . . . , Pm, C)
I explicit equations to go back and forth!
I singular cubics correspond to Lucas sequences or integers
I scale equivalence: W ∼ W ′ ⇐⇒ W (v) = f(v)W ′(v) for f : Zn → K∗ quadratic

I on left, remove nets with zeroes too close to the origin

I on right, remove cases with small torsion points or pairs which are equal or inverses

I consider only nets with W (v) = 1 for v = ei or v = ei + ej
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Example over Q

E : y2 + y = x3 + x2 − 2x;P = (0, 0), Q = (1, 0)

↑
Q

4335 5959 12016 −55287 23921 1587077
94 479 919 − 2591 13751 68428
− 31 53 −33 −350 493 6627

−5 8 −19

− 41 − 151 989

1 3 −1

− 13 −36 181

1 1 2

−5 7 89

0 1 1

−3 11 38

P →
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Example over F5

E : y2 + y = x3 + x2 − 2x;P = (0, 0), Q = (1, 0)

↑
Q

0 4 4 3 1 2 4
4 4 4 4 1 3 0
4 3 2 0 3 2 1
0 3 1 4 4 4 4
1 3 4 2 4 1 0
1 1 2 0 2 4 1
0 1 1 2 1 3 4
P →

I The polynomial Ψv(P) = 0 if and only if v ·P = 0.

I These zeroes lie in a lattice: the lattice of apparition associated to
prime (here, 5).
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Periodicity property with respect to lattice of apparition

↑
Q

0 4 4 3 1 2 4
4 4 4 4 1 3 0
4 3 2 0 3 2 1
0 3 1 4 4 4 4
1 3 4 2 4 1 0
1 1 2 0 2 4 1
0 1 1 2 1 3 4
P →

I The elliptic net is not periodic
modulo the lattice of apparition.

I The appropriate translation
property should tell how to
obtain the green values from the
blue values.

I There are such translation properties.
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Translation properties

Let Γ be the lattice of apparition for an elliptic net W . Define
g : Γ× Zn → K∗ by

g(r,m) =
W (m + r)
W (m)

.

Theorem (Ward n = 1; S., n > 1)

The function g is quadratic and affine linear in 2nd variable.

Example

If n = 1, W (r) = 0, then

g(kr,m) = amkbk
2
,

for all k ∈ Z.
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About F∗q discrete logarithm equations

Other ways to find them: combine partial periodicity relations.

• ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ •
◦ ◦ ◦ •

ujjTTTTTTTT ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦
◦ • ◦ ◦ ◦ ◦ •

ujjTTTTTTTT ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ •

ujjTTTTTTTT ◦ ◦ ◦ ◦ • ◦
◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ •

ujjTTTTTTTT ◦ ◦ ◦
•

t

OO

◦ ◦ ◦ ◦ •
s

oo ◦ ◦ ◦ ◦ •
s

oo ◦ ◦ ◦ ◦ •
s

oo
ujjTTTTTTTT

giving (where m = ord(P )):(
W (m+ 1, 0)W (2, 0)

W (m+ 2, 0)

)k

=
(
WE,P (k − 1)
WE,P (k)

)m(
− W (1,m)W (2, 0)
W (2,m)W (1,−1)m

)
.

This is similar to Shipsey’s equation.
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Shipsey’s discrete logarithm

From previous slide:(
W (m+ 1, 0)W (2, 0)

W (m+ 2, 0)

)k

=
(
WE,P (k − 1)
WE,P (k)

)m(
− W (1,m)W (2, 0)
W (2,m)W (1,−1)m

)
.

Compare to Shipsey’s:

WE,P,Q(m+ 1,m+ 1)
WE,P,Q(0,m+ 1)

(
WE,P (k + 1)
WE,P (k)

)m(m+2)

= WE,P (m+ 1)2k+1.

Both can be explained as Tate pairing values.
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WE,P,Q(0,m+ 1)

(
WE,P (k + 1)
WE,P (k)

)m(m+2)

= WE,P (m+ 1)2k+1.

Both can be explained as Tate pairing values.
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Tate pairing

m ≥ 1

P ∈ E(K)[m]

E/K an elliptic curve

Q ∈ E(K)/mE(K)

fP with divisor m(P )−m(O)
DQ ∼ (Q)− (O) with support disjoint from div(fP )

Define
τm : E(K)[m]× E(K)/mE(K)→ K∗/(K∗)m

by
τm(P,Q) = fP (DQ) .

It is well-defined, bilinear and Galois invariant.
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Weil pairing

For P,Q ∈ E(K)[m], the more well-known Weil pairing can be computed
via two Tate pairings:

em(P,Q) = τm(P,Q)τm(Q,P )−1 .

It is bilinear, alternating, and non-degenerate.
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Weil and Tate pairing attacks

These are isomorphism attacks:
Elliptic curve E defined over Fq (prime order, say), Q = [k]P .

I Menezes-Okamoto-Vanstone:
For any auxiliary point T ,

em(Q,T ) = em(P, T )k

and so we transfer the question of finding k to a discrete log in Fqt

for some t which is usually infeasibly large.

I Frey-Rück:
τm(P,Q) = τm(P, P )k

is an equation in Fqt where again t is usually infeasibly large.
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Pairing from Elliptic Nets

m ≥ 1 P ∈ E(K)[m]
E/K an elliptic curve Q ∈ E(K)/mE(K)

Theorem (S)

Choose S ∈ E(K) such that S /∈ {O,−Q}. Let W be an elliptic net with
basis T such that p ·T = P , q ·T = Q and s ·T = S. Then the quantity

τm(P,Q) =
W (s+mp+ q)W (s)
W (s+mp)W (s+ q)

is the Tate pairing.
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The F∗q DLP equation

From older slide:(
W (m+ 1, 0)W (2, 0)

W (m+ 2, 0)

)k

=
(
WE,P (k − 1)
WE,P (k)

)m(
− W (1,m)W (2, 0)
W (2,m)W (1,−1)m

)
.

Becomes...

τm(P,−P )k = τm(Q,−P ).
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Shipsey’s F∗q DLP equation

WE,P,Q(m+ 1,m+ 1)
WE,P,Q(0,m+ 1)

(
WE,P (k + 1)
WE,P (k)

)m(m+2)

= WE,P (m+ 1)2k+1.

Becomes...

τm(P,Q)τm(Q,P ) = τm(P, P )2k.
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