
Fast arithmetics for Artin-Schreier extensions

Luca De Feo Éric Schost

Tanc project ORCCA

École polytechnique UWO

Artin-Schreier

Artin-Schreier polynomials

• if K a finite field of characteristic p and α is in K,

Xp −X − α

is an Artin-Schreier polynomial.

Artin-Schreier extensions

• if P an irreducible Artin-Schreier polynomial and

L = K[X]/P,

L/K is an Artin-Schreier extension.

Artin-Schreier towers

Starting from U0 = Fp[X0]/Q(X0) deg(Q) = d

• take a1 in U0 and let

P1 = Xp
1 −X1 − a1, U1 = U0[X1]/P1

• take a2 in U1 and let

P2 = Xp
2 −X2 − a2, U2 = U1[X2]/P2

• continuing up to k, we get the tower (U0, . . . ,Uk).

Artin-Schreier towers

Starting from U0 = Fp[X0]/Q(X0) deg(Q) = d

• take a1 in U0 and let

P1 = Xp
1 −X1 − a1, U1 = U0[X1]/P1

• take a2 in U1 and let

P2 = Xp
2 −X2 − a2, U2 = U1[X2]/P2

• continuing up to k, we get the tower (U0, . . . ,Uk).

Needed

• basic algorithms

• culminating with an isomorphism algorithm (Couveignes 00)

Motivation

• p-torsion points of elliptic curves,

• for isogeny computation (Couveignes 96).

Complexity issues

Questions:

• Fp-basis for Ui?

• cost of arithmetic operations in this basis?

• cost of going up and down between Ui and Ui+1?

Size of the problem

• dimFp
(Ui) = δi, with δi = pid

• we want algorithms of cost linear in δi.

We almost achieve this, using the ideas of (Couveignes 00).

Choosing a basis

Multivariate basis

One can see Ui as
Ui = Fp[X0, . . . , Xi]/I,

with I generated by ∣∣∣∣∣∣∣∣∣∣∣∣

Pi = Xp
i −Xi −Ai−1(X0, . . . , Xi−1)

...

P1 = Xp
1 −X1 −A0(X0)

Q0(X0)

Consequence: multivariate basis for Ui

{Xe0
0 Xe1

1 · · ·X
ei
i | e0 < d, e1 < p, . . . , ei < p}.

Pros and cons

Pros: going up /down is easy

• insert zeros / remove zeros

Cons: multiplication is slow

• direct approach: expand and reduce

– after expansion, we have the monomials

{Xe0
0 Xe1

1 · · ·X
ei
i | e0 < 2d− 1, e1 < 2p− 1, . . . , ei < 2p− 1}

– so roughly d(2p− 1)i coefficients, e.g. p = 2, d = 1: 2i → 3i

– not linear in δi

• indirect approach (Bostan et al.)

– homotopy techniques and evaluation / interpolation

– successful on some patterns

– but not on this one: the cost is d(2p− 1)i as well

Univariate bases

At level i

• if we find a generator yi of Ui/Fp

• then 1, yi, . . . , yδi−1
i is a basis of Ui

Pros: arithmetic is fast

• let M(n) be a multiplication time

Schönhage-Strassen’s FFT M(n) ∈ O(n log(n) log log(n))

• multiplication in Ui O(M(δi))

• inversion in Ui O(M(δi) log(δi))

Cons:

• going up /down is not obvious anymore

Primitive towers

Primitive towers

Primitive tower

• a tower is primitive if Ui = Fp[xi]

• in this case, Qi is its minimal polynomial over Fp deg(Qi) = δi

Remark: not always the case

• P1 = Xp
1 −X1 − 1.

Theorem (extends a result in (Cantor ’89))
If TrU0/Fp

(x0) 6= 0, the tower defined by∣∣∣∣∣∣ P1 = Xp
1 −X1 −X0

Pi = Xp
i −Xi −X2p−1

i−1 i > 1

is primitive.

From now on, we work in this specific tower

Setup: finding Qi

Algorithm essentially in (Cantor ’89)

Low levels

• Q0 = Q easy

• Q1 = Q0(Xp −X) easy

Higher levels: ω is a 2p− 1-th root of unity

• qi(X2p−1) =
∏2p−2
j=0 Qi−1(ωjX) not too hard

• Qi = qi(Xp −X) easy

Cost

• O
(
M(pi+1d) log p

)
• Up to logs, this is O(pi+1d)

Univariate and bivariate

Univariate basis

• the basis 1, xi, . . . , xδi−1
i

• computations done modulo Qi(Xi)

• v a Ui indicates that v is written on this basis

Bivariate basis

• if we see Ui as Ui−1[Xi]/Pi, any v in Ui can be written as

v = v0(xi−1) + · · ·+ vp−1(xi−1)xp−1
i ,

with vi a Ui−1.

• computations done modulo∣∣∣∣∣∣ Pi(Xi−1, Xi) = Xp
i −Xi −X2p−1

i−1

Qi−1(Xi−1)

Push-down and Lift-up

Push-down

• Input: v a Ui

• Output: v0, . . . , vp−1 a Ui−1 such that v = v0 + · · ·+ vp−1x
p−1
i

Lift-up

• Input: v0, . . . , vp−1 a Ui−1

• Output v a Ui such that v = v0 + · · ·+ vp−1x
p−1
i

Theorem

• Both operations can be done in time

L(i) = O
(
pM(pid) + pi+1d logp(p

id)2
)

• Up to logs, this is O(pi+1d).

Easy direction: push-down

We want to reduce v(Xi) modulo∣∣∣∣∣∣ Pi(Xi−1, Xi) = Xp
i −Xi −X2p−1

i−1

Qi−1(Xi−1)

Algorithm: reduction modulo Pi

Example with p = 2, we work modulo X2
i −Xi −X3

i−1

• assume deg(v) < 2n

• write v = v0(Xi) +X2n−1

i v1(Xi)

• process recursively v0 and v1, getting w0 and w1

• remark that X2n−1

i = Xi +X3
i−1 +X6

i−1 + · · ·+X3·2n−2

i−1 mod Pi

• return w0 + (Xi +X3
i−1 +X6

i−1 + · · ·+X3·2n−2

i−1)w1 mod Pi

Easy direction: push-down

We want to reduce v(Xi) modulo∣∣∣∣∣∣ Pi(Xi−1, Xi) = Xp
i −Xi −X2p−1

i−1

Qi−1(Xi−1)

Algorithm: reduction modulo Pi

hi

low

mul

add

v

w

v1

v0

w1

w0

push

push

Harder direction: lift-up

Using trace formulas

Given w(Xi−1, Xi), we want to find v(Xi) such that w = v modulo∣∣∣∣∣∣ Pi(Xi−1, Xi) = Xp
i −Xi −X2p−1

i−1

Qi−1(Xi−1)

Trace formulas: (Rouillier 99)

• let Tr′ be the linear form a 7→ Tr(aw),

• then given the values of Tr′ on the univariate basis 1, xi, . . . , xδi−1
i ,

• one can recover v using a few more operations.

How: the generating series ∑
j>0

Tr′(xji)X
j
i

is rational; its denominator is (essentially) Qi and its numerator is (essentially) v.

Duality

Multiplication-by-w

• from the bivariate basis to itself

Transposed multiplication-by-w

• From the dual-bivariate basis to itself

• concretely:

– input: the values of a linear form ` on the bivariate basis,

– output: the values of `′ on the univariate basis, with `′ : a 7→ `(aw).

Starting from Tr, this gives us the values of Tr′ on the bivariate basis.

Duality, cont.

Push-down

• change-of-basis from univariate to bivariate

Transposed push-down

• change-of-basis from dual-bivariate to dual-univariate

• concretely:

– input: the values of a linear form ` on the bivariate basis,

– output: the values of ` on the univariate basis.

Starting from Tr′ on the bivariate basis, this gives us Tr′ on the univariate basis.

Transposition principle

Given a linear algorithm computing a linear application, we can deduce another linear

algorithm computing the transpose application in the same cost.

Fiduccia, Kaminski et al., Shoup-Kaltofen, . . .

Reverse the “flow” of the program

• order of the iterations are reversed

• basic subroutine: transposed multiplication

hi

low

mul

add

v

w

v1

v0

w1

w0

push

push

Transposition principle

Given a linear algorithm computing a linear application, we can deduce another linear

algorithm computing the transpose application in the same cost.

Fiduccia, Kaminski et al., Shoup-Kaltofen, . . .

Reverse the “flow” of the program

• order of the iterations are reversed

• basic subroutine: transposed multiplication

hi

low

mult

copy

v

w

v1

v0

w1

w0

pusht

pusht

Experiments and applications

Speeding up more operations

Divide and conquer

• push-down the operands;

• recursively solve p instances in Ui−1;

• combine the results;

• lift-up.

Where it works (Couveignes 00)

• trace, p-th roots, inverse, iterated Frobenius, . . .

• isomorphism

Theorem

• One can apply an isomorphism (and its inverse) between any Artin-Schreier
towers of height i in time O(pi+1d) (up to logs).

Example: iterated Frobenius

Wanted: v 7→ vp
pjd

• v ∈ Uj ⇒ vp
pjd

= v,

• xp
pjd

i = xi + βi−1,j where βi−1,j =
∑pjd−1
h=0 (x2p−1

i−1)p
h

,

• vppjd

=
∑p−1
h=0 v

ppjd

h (xi + βi−1,j)h

IterFrobenius

Input: v, i, j with v a Ui and j > 0.

Output: vp
pjd a Ui.

• If i ≤ j, return v

• Let v0 + v1xi + · · ·+ vp−1x
p−1
i = Push-down(v),

• for h ∈ [0, . . . , p− 1], let th = IterFrobenius(vh, i− 1, j)

• let w =
∑p−1
h=0 th(xi + βi−1,j)h

• return Lift-up(w)

Implementation

Implementation in NTL

• GF2: p = 2, FFT, bit optimisations (gf2x Brent et al.)

• zz_p: p < 253, FFT, no bit-tricks,

• ZZ_p: generic p, like zz_p but slower.

Comparison to Magma

1. quo<U|P>: quotient of polynomial ring

2. ext<k|P>: field extension by Xp −X − α

3. ext<k|p>: field extension of degree p

Benchmarks (AMD Opteron 2500)

• p = 2, d = 1, height varying,

Benchmark: building the tower

0.00098

0.031

1

32

1e+03

3.3e+04

1e+06

 5 10 15 20 25

se
co

n
d

s

height

zz_p
GF2

magma(1)
magma(2)
magma(3)

Benchmark: constructing an isomorphism

0.00098

0.031

1

32

1e+03

3.3e+04

1e+06

 5 10 15 20 25

se
co

n
d

s

height

zz_p
GF2

magma(2)

Couveignes’ isogeny algorithm

In a nutshell

• to find an `-isogeny between elliptic curves E and E ′

• build pk-torsion for E and E ′

– two Artin-Schreier towers

– pk ' `

• set-up an isomorphism between them

• find the isogeny by interpolation, by trial-and-error

Improvements by De Feo.

Benchmark: isogenies

 0.0625

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 2 4 8 16 32 64 128 256 512

se
co

n
d

s

isogeny degree

zzp
GF2

