Fast arithmetics for Artin-Schreier extensions

Luca De Feo Eric Schost
Tanc project ORCCA
Ecole polytechnique UWO

Artin-Schreier
Artin-Schreier polynomials

e if K a finite field of characteristic p and « is in K,
XP—X —«

is an Artin-Schreier polynomial.

Artin-Schreier extensions

e if P an irreducible Artin-Schreier polynomial and
L = K[X]/P,

L/K is an Artin-Schreier extension.

Artin-Schreier towers
Starting from Uy = F,[Xo]/Q(Xo)

e take a; in Uy and let
PlzXf—Xl—CLh Ul :UO[Xl]/Pl
e take as in U; and let

PQZXS—XQ—CLQ, UQZUl[XQ]/PQ

e continuing up to k, we get the tower (Ug, ..., Ug).

deg(Q) = d

Artin-Schreier towers
Starting from Uy = F,[Xo]/Q(Xo)
e take a; in Uy and let
P =X — X1 —a, U =0UX4]/P,
e take as in U; and let

PQZXg_XQ—CLQ, UQZUl[XQ]/PQ

e continuing up to k, we get the tower (Ug, ..., Ug).
Needed
e basic algorithms

e culminating with an isomorphism algorithm (Couveignes 00)

Motivation
e p-torsion points of elliptic curves,

e for isogeny computation (Couveignes 96).

deg(Q) = d

Complexity issues
Questions:
e [, -basis for U;”
e cost of arithmetic operations in this basis?

e cost of going up and down between U; and U; 17

Size of the problem
® dim]pp (Uz) — 51', with (52 = pid

e we want algorithms of cost linear in 9;.

We almost achieve this, using the ideas of (Couveignes 00).

Choosing a basis

Multivariate basis

One can see U; as
U; =F,[Xo,...,Xi|/1,

with I generated by

P=X—X,—A_1(Xo,...,Xi—1)

P = Xf — X7 — Ap(Xo)
Qo(Xo)

Consequence: multivariate basis for U;

(Xgoxp o X

eo <d, e1<p, ..., e <Dp}.

Pros and cons
Pros: going up /down is easy

e insert zeros / remove zeros

Cons: multiplication is slow

e direct approach: expand and reduce

— after expansion, we have the monomials
{Xo° X7t X |eg<2d—1,e1<2p—1, ..., ¢, <2p—1}

— so roughly d(2p — 1)* coefficients, e.g. p =2, d = 1: 2" — 3
— not linear in 9;
e indirect approach (Bostan et al.)
— homotopy techniques and evaluation / interpolation
— successful on some patterns

— but not on this one: the cost is d(2p — 1) as well

Univariate bases

At level 7
e if we find a generator y; of U;/F,

1

e then 1,y;,... ,y?i_ is a basis of U;

Pros: arithmetic is fast

e let M(n) be a multiplication time

Schonhage-Strassen’s FF'T
e multiplication in U;

e inversion in U,

Cons:

e going up /down is not obvious anymore

M(n) € O(nlog(n)loglog(n))
O(M(d:))
O(M(9;) log(d:))

Primitive towers

Primitive towers
Primitive tower
e a tower is primitive if U; = F,[z;]

e in this case, (); is its minimal polynomial over [,

Remark: not always the case

® Plinj—Xl—l.

Theorem (extends a result in (Cantor ’89))
If Try, /r, (7o) # 0, the tower defined by

P = XP-X,-X,
P = XP_Xx,—Xx?' i>1

1s primitive.

From now on, we work in this specific tower

deg(Q;)

0

Setup: finding Q);

Algorithm essentially in (Cantor '89)

Low levels
o (o =0 easy
¢ Q1 = Qo(X? - X) easy

Higher levels: w is a 2p — 1-th root of unity

® C]z‘(XQp_l) = H?if Qz‘—l(ij) not too hard
e Q; = q;(X? - X) easy
Cost

e O (M(p'ttd)logp)

e Up to logs, this is O(p*T1d)

Univariate and bivariate

Univariate basis

d;,—1

e the basis 1,x;,...,x;

e computations done modulo Q;(X;)

e v -1 U, indicates that v is written on this basis

Bivariate basis
o if we see U; as U;_1[X;]/P;, any v in U; can be written as
v=wo(Ti-1) + -+ vp-1(@i-1)z;
with v; 1 U,;_1.
e computations done modulo
Pi(X;_1,X;) = XP — X; — X271
Qi—1(Xi-1)

1

Y

Push-down and Lift-up
Push-down
e Input: v 1U;

e Output: vp,...,v,_1 1U;_; such that v =vg +--- + vp_lxp_l

Lift-up
o Input: U0y .-y Up—1 - Ui—l

e Output v 41U, such that v =vg+---+ vp_le_l

Theorem

e Both operations can be done in time
L(i) = O (pM(p'd) +p''dlog,(p'd)?)

e Up to logs, this is O(p'*1d).

Easy direction: push-down

We want to reduce v(X;) modulo

Pi(Xi—1,Xs) =X — X; — Xz'zfl_l
Qi—1(Xi-1)

Algorithm: reduction modulo P;

Example with p = 2, we work modulo X? — X; — X? |
e assume deg(v) < 2"
o write v =vo(X;) + X2 v (X;)
e process recursively vg and vy, getting wg and w,

e remark that X,L-Qn_1 = X; + XZ-3_1 + X,L-G_1 + -+ X,L?’;an_2 mod F;

2’)’L—2

e return wo + (X; + X7 [+ X%, +---+ X?% ")w; mod P,

Easy direction: push-down

We want to reduce v(X;) modulo

Pi(Xi—1,Xs) =X — X; — Xz'zfl_l
Qi—1(Xi-1)

Algorithm: reduction modulo P;

U1
Y G
hi push Wi mul

)

Harder direction: lift-up

Using trace formulas
Given w(X;_1, X;), we want to find v(X;) such that w = v modulo
Pi(Xi1, Xi) = X7 — X, — X7
Qi-1(Xi-1)

Trace formulas: (Rouillier 99)

e let Tr' be the linear form a — Tr(aw),

d;—1

. / . . .
e then given the values of Tr" on the univariate basis 1,z;,...,x;" ~,

e one can recover v using a few more operations.

How: the generating series
> T(@!) X!
720

is rational; its denominator is (essentially) @); and its numerator is (essentially) v.

Duality
Multiplication-by-w

e from the bivariate basis to itself

Transposed multiplication-by-w
e From the dual-bivariate basis to itself

e concretely:
— input: the values of a linear form ¢ on the bivariate basis,

— output: the values of ¢/ on the univariate basis, with ¢’ : a — £(aw).

Starting from Tr, this gives us the values of Tr’ on the bivariate basis.

Duality, cont.
Push-down

e change-of-basis from univariate to bivariate

Transposed push-down
e change-of-basis from dual-bivariate to dual-univariate

e concretely:
— input: the values of a linear form ¢ on the bivariate basis,

— output: the values of £ on the univariate basis.

Starting from Tr’ on the bivariate basis, this gives us Tr’ on the univariate basis.

Transposition principle

Given a linear algorithm computing a linear application, we can deduce another linear

algorithm computing the transpose application in the same cost.

Fiduccia, Kaminski et al., Shoup-Kaltofen, ...

Reverse the “flow” of the program
e order of the iterations are reversed

e basic subroutine: transposed multiplication

U1
) Y ;
hi | [pushL mul

]

>
- — add—

| lowl pusi=;7

Transposition principle

Given a linear algorithm computing a linear application, we can deduce another linear

algorithm computing the transpose application in the same cost.

Fiduccia, Kaminski et al., Shoup-Kaltofen, ...

Reverse the “flow” of the program
e order of the iterations are reversed

e basic subroutine: transposed multiplication

U1
) Y GE ;
hi [|pushZ@i mul’

]

>—<
« | | COPY

| low pusir7;”

Experiments and applications

Speeding up more operations

Divide and conquer

e push-down the operands;

e recursively solve p instances in U;_q;

e combine the results;

o lift-up.
Where it works (Couveignes 00)

e trace, p-th roots, inverse, iterated Frobenius, ...

e isomorphism
Theorem

e One can apply an isomorphism (and its inverse) between any Artin-Schreier

towers of height 7 in time O(p'*1d) (up to logs).

Example: iterated Frobenius

pjd
Wanted: v — 0P

pJd
® VU EC UJ = vP = U,
pp’d p’d—1, 2p—1\ph
e x; =x;+Bi1,; where B =3 (z;21)7,
Jd 1 pJd
pPd _ N1 p , b
® v = 2 _h=0"Un (2 ‘|‘5z—1,3)

lterFrobenius
Input: v, ¢, j with v 1 U; and 5 > 0.
Output: " S U;.

o If ¢+ < j, return v

o Let vo+viz; + -+ vp_12P " = Push-down(v),

e for h €[0,...,p— 1], let t;, = lterFrobenius(vy,i — 1, j)
o let w = Zz;(l) th(z; + Bi—1.4)"

e return Lift-up(w)

Implementation
Implementation in NTL
e GF2: p =2, FFT, bit optimisations (gf2x Brent et al.)
o zz_p: p < 2%, FFT, no bit-tricks,

e ZZ_p: generic p, like zz_p but slower.

Comparison to Magma
1. quo<U|P>: quotient of polynomial ring
2. ext<k|P>: field extension by X? — X — «

3. ext<k|p>: field extension of degree p

Benchmarks (AMD Opteron 2500)

e p =2, d=1, height varying,

Benchmark: building the tower

1e+06 |

3.3e+04 | .]

le+03 .

32

seconds

0.031

0.00098

Benchmark: constructing an isomorphism

1e+06
3.3e+04 | E

- 5 R ’0 B
- $ ** 4
§ o*
le+03]
F s Q) 4
5 o
L 5 o 4

seconds
(U9
[\ @]
T
1

o
<2

0.031 | 27 p —— 1

0.00098 = ' ' ' '

Couveignes’ isogeny algorithm
In a nutshell

e to find an f-isogeny between elliptic curves & and &’

e build p*-torsion for & and &’
— two Artin-Schreier towers
— pF
e set-up an isomorphism between them

e find the isogeny by interpolation, by trial-and-error

Improvements by De Feo.

65536

16384 |

4096

1024 |

256

seconds

Benchmark: isogenies

64 |

isogeny degree

