Fast arithmetics for Artin-Schreier extensions

Luca De Feo Éric Schost

Tanc project ORCCA

École polytechnique UWO

Artin-Schreier

Artin-Schreier polynomials

• if \mathbb{K} a finite field of characteristic p and α is in \mathbb{K} ,

$$X^p - X - \alpha$$

is an Artin-Schreier polynomial.

Artin-Schreier extensions

• if P an irreducible Artin-Schreier polynomial and

$$\mathbb{L} = \mathbb{K}[X]/P,$$

 \mathbb{L}/\mathbb{K} is an Artin-Schreier extension.

Artin-Schreier towers

Starting from $\mathbb{U}_0 = \mathbb{F}_p[X_0]/Q(X_0)$

 $\deg(Q) = d$

• take a_1 in \mathbb{U}_0 and let

$$P_1 = X_1^p - X_1 - a_1, \quad \mathbb{U}_1 = \mathbb{U}_0[X_1]/P_1$$

• take a_2 in \mathbb{U}_1 and let

$$P_2 = X_2^p - X_2 - a_2, \quad \mathbb{U}_2 = \mathbb{U}_1[X_2]/P_2$$

• continuing up to k, we get the tower $(\mathbb{U}_0, \dots, \mathbb{U}_k)$.

Artin-Schreier towers

Starting from $\mathbb{U}_0 = \mathbb{F}_p[X_0]/Q(X_0)$

 $\deg(Q) = d$

• take a_1 in \mathbb{U}_0 and let

$$P_1 = X_1^p - X_1 - a_1, \quad \mathbb{U}_1 = \mathbb{U}_0[X_1]/P_1$$

• take a_2 in \mathbb{U}_1 and let

$$P_2 = X_2^p - X_2 - a_2, \quad \mathbb{U}_2 = \mathbb{U}_1[X_2]/P_2$$

• continuing up to k, we get the tower $(\mathbb{U}_0, \dots, \mathbb{U}_k)$.

Needed

- basic algorithms
- culminating with an isomorphism algorithm (Couveignes 00)

Motivation

- p-torsion points of elliptic curves,
- for isogeny computation (Couveignes 96).

Complexity issues

Questions:

- \mathbb{F}_p -basis for \mathbb{U}_i ?
- cost of arithmetic operations in this basis?
- cost of going up and down between \mathbb{U}_i and \mathbb{U}_{i+1} ?

Size of the problem

- $\dim_{\mathbb{F}_p}(\mathbb{U}_i) = \delta_i$, with $\delta_i = p^i d$
- we want algorithms of cost linear in δ_i .

We almost achieve this, using the ideas of (Couveignes 00).

Choosing a basis

Multivariate basis

One can see \mathbb{U}_i as

$$\mathbb{U}_i = \mathbb{F}_p[X_0, \dots, X_i]/I,$$

with I generated by

$$P_{i} = X_{i}^{p} - X_{i} - A_{i-1}(X_{0}, \dots, X_{i-1})$$

$$\vdots$$

$$P_{1} = X_{1}^{p} - X_{1} - A_{0}(X_{0})$$

$$Q_{0}(X_{0})$$

Consequence: multivariate basis for \mathbb{U}_i

$$\{X_0^{e_0} X_1^{e_1} \cdots X_i^{e_i} \mid e_0 < d, e_1 < p, \dots, e_i < p\}.$$

Pros and cons

Pros: going up /down is easy

• insert zeros / remove zeros

Cons: multiplication is slow

- direct approach: expand and reduce
 - after expansion, we have the monomials

$$\{X_0^{e_0}X_1^{e_1}\cdots X_i^{e_i} \mid e_0 < 2d-1, \ e_1 < 2p-1, \ \dots, \ e_i < 2p-1\}$$

- so roughly $d(2p-1)^i$ coefficients, e.g. $p=2, d=1: 2^i \rightarrow 3^i$
- not linear in δ_i
- indirect approach

(Bostan et al.)

- homotopy techniques and evaluation / interpolation
- successful on some patterns
- but not on this one: the cost is $d(2p-1)^i$ as well

Univariate bases

At level i

- if we find a generator y_i of $\mathbb{U}_i/\mathbb{F}_p$
- then $1, y_i, \dots, y_i^{\delta_i 1}$ is a basis of \mathbb{U}_i

Pros: arithmetic is fast

- let M(n) be a multiplication time Schönhage-Strassen's FFT
- ullet multiplication in \mathbb{U}_i
- inversion in \mathbb{U}_i

Cons:

• going up /down is not obvious anymore

$$\mathsf{M}(n) \in O(n\log(n)\log\log(n))$$

$$O(\mathsf{M}(\delta_i))$$

$$O(\mathsf{M}(\delta_i)\log(\delta_i))$$

Primitive towers

Primitive towers

Primitive tower

- a tower is primitive if $\mathbb{U}_i = \mathbb{F}_p[x_i]$
- in this case, Q_i is its minimal polynomial over \mathbb{F}_p

 $\deg(Q_i) = \delta_i$

Remark: not always the case

•
$$P_1 = X_1^p - X_1 - 1$$
.

Theorem (extends a result in (Cantor '89))

If $\operatorname{Tr}_{\mathbb{U}_0/\mathbb{F}_p}(x_0) \neq 0$, the tower defined by

$$P_1 = X_1^p - X_1 - X_0$$

$$P_i = X_i^p - X_i - X_{i-1}^{2p-1} \quad i > 1$$

is primitive.

From now on, we work in this specific tower

Setup: finding Q_i

Algorithm essentially in (Cantor '89)

Low levels

- $\bullet \ Q_0 = Q$
- $\bullet \ Q_1 = Q_0(X^p X)$

Higher levels: ω is a 2p-1-th root of unity

- $q_i(X^{2p-1}) = \prod_{j=0}^{2p-2} Q_{i-1}(\omega^j X)$
- $\bullet \ Q_i = q_i(X^p X)$

Cost

- $O\left(\mathsf{M}(p^{i+1}d)\log p\right)$
- Up to logs, this is $O(p^{i+1}d)$

easy

easy

not too hard

easy

Univariate and bivariate

Univariate basis

- the basis $1, x_i, \ldots, x_i^{\delta_i 1}$
- computations done modulo $Q_i(X_i)$
- $v \dashv U_i$ indicates that v is written on this basis

Bivariate basis

• if we see \mathbb{U}_i as $\mathbb{U}_{i-1}[X_i]/P_i$, any v in \mathbb{U}_i can be written as

$$v = v_0(x_{i-1}) + \dots + v_{p-1}(x_{i-1})x_i^{p-1},$$

with $v_i \dashv \mathbb{U}_{i-1}$.

• computations done modulo

$$P_i(X_{i-1}, X_i) = X_i^p - X_i - X_{i-1}^{2p-1}$$

$$Q_{i-1}(X_{i-1})$$

Push-down and Lift-up

Push-down

• Input: $v \dashv \mathbb{U}_i$

• Output: $v_0, \ldots, v_{p-1} \dashv \mathbb{U}_{i-1}$ such that $v = v_0 + \cdots + v_{p-1} x_i^{p-1}$

Lift-up

• Input: $v_0, \ldots, v_{p-1} \dashv \mathbb{U}_{i-1}$

• Output $v \dashv \mathbb{U}_i$ such that $v = v_0 + \cdots + v_{p-1}x_i^{p-1}$

Theorem

• Both operations can be done in time

$$L(i) = O\left(pM(p^{i}d) + p^{i+1}d\log_{p}(p^{i}d)^{2}\right)$$

• Up to logs, this is $O(p^{i+1}d)$.

Easy direction: push-down

We want to reduce $v(X_i)$ modulo

$$P_i(X_{i-1}, X_i) = X_i^p - X_i - X_{i-1}^{2p-1}$$

$$Q_{i-1}(X_{i-1})$$

Algorithm: reduction modulo P_i

Example with p = 2, we work modulo $X_i^2 - X_i - X_{i-1}^3$

- assume $\deg(v) < 2^n$
- write $v = v_0(X_i) + X_i^{2^{n-1}} v_1(X_i)$
- process recursively v_0 and v_1 , getting w_0 and w_1
- remark that $X_i^{2^{n-1}} = X_i + X_{i-1}^3 + X_{i-1}^6 + \dots + X_{i-1}^{3 \cdot 2^{n-2}} \mod P_i$
- return $w_0 + (X_i + X_{i-1}^3 + X_{i-1}^6 + \dots + X_{i-1}^{3 \cdot 2^{n-2}}) w_1 \mod P_i$

Easy direction: push-down

We want to reduce $v(X_i)$ modulo

$$P_i(X_{i-1}, X_i) = X_i^p - X_i - X_{i-1}^{2p-1}$$

$$Q_{i-1}(X_{i-1})$$

Algorithm: reduction modulo P_i

Harder direction: lift-up

Using trace formulas

Given $w(X_{i-1}, X_i)$, we want to find $v(X_i)$ such that w = v modulo

$$P_i(X_{i-1}, X_i) = X_i^p - X_i - X_{i-1}^{2p-1}$$

$$Q_{i-1}(X_{i-1})$$

Trace formulas: (Rouillier 99)

- let Tr' be the linear form $a \mapsto \operatorname{Tr}(aw)$,
- then given the values of Tr' on the univariate basis $1, x_i, \ldots, x_i^{\delta_i 1}$,
- \bullet one can recover v using a few more operations.

How: the generating series

$$\sum_{i\geqslant 0} \operatorname{Tr}'(x_i^j) X_i^j$$

is rational; its denominator is (essentially) Q_i and its numerator is (essentially) v.

Duality

Multiplication-by-w

• from the bivariate basis to itself

Transposed multiplication-by-w

- From the dual-bivariate basis to itself
- concretely:
 - input: the values of a linear form ℓ on the bivariate basis,
 - **output:** the values of ℓ' on the univariate basis, with $\ell': a \mapsto \ell(aw)$.

Starting from Tr, this gives us the values of Tr' on the bivariate basis.

Duality, cont.

Push-down

• change-of-basis from univariate to bivariate

Transposed push-down

- change-of-basis from dual-bivariate to dual-univariate
- concretely:
 - input: the values of a linear form ℓ on the bivariate basis,
 - **output:** the values of ℓ on the univariate basis.

Starting from Tr' on the bivariate basis, this gives us Tr' on the univariate basis.

Transposition principle

Given a linear algorithm computing a linear application, we can deduce another linear algorithm computing the transpose application in the same cost.

Fiduccia, Kaminski et al., Shoup-Kaltofen, . . .

Reverse the "flow" of the program

- order of the iterations are reversed
- basic subroutine: transposed multiplication

Transposition principle

Given a linear algorithm computing a linear application, we can deduce another linear algorithm computing the transpose application in the same cost.

Fiduccia, Kaminski et al., Shoup-Kaltofen, . . .

Reverse the "flow" of the program

- order of the iterations are reversed
- basic subroutine: transposed multiplication

Experiments and applications

Speeding up more operations

Divide and conquer

- push-down the operands;
- recursively solve p instances in \mathbb{U}_{i-1} ;
- combine the results;
- lift-up.

Where it works (Couveignes 00)

- trace, p-th roots, inverse, iterated Frobenius, ...
- isomorphism

Theorem

• One can apply an isomorphism (and its inverse) between any Artin-Schreier towers of height i in time $O(p^{i+1}d)$ (up to logs).

Example: iterated Frobenius

Wanted: $v \mapsto v^{p^{p^j}d}$

$$\bullet \ v \in \mathbb{U}_j \ \Rightarrow \ v^{p^{p^j d}} = v,$$

•
$$x_i^{p^{p^j d}} = x_i + \beta_{i-1,j}$$
 where $\beta_{i-1,j} = \sum_{h=0}^{p^j d-1} (x_{i-1}^{2p-1})^{p^h}$,

•
$$v^{p^{p^j d}} = \sum_{h=0}^{p-1} v_h^{p^{p^j d}} (x_i + \beta_{i-1,j})^h$$

IterFrobenius

Input: v, i, j with $v \dashv \mathbb{U}_i$ and $j \geqslant 0$.

Output: $v^{p^{p^j}d} \dashv \mathbb{U}_i$.

- If $i \leq j$, return v
- Let $v_0 + v_1 x_i + \dots + v_{p-1} x_i^{p-1} = \mathsf{Push-down}(v)$,
- for $h \in [0, ..., p-1]$, let $t_h = \mathsf{IterFrobenius}(v_h, i-1, j)$
- let $w = \sum_{h=0}^{p-1} t_h (x_i + \beta_{i-1,j})^h$
- return Lift-up(w)

Implementation

Implementation in NTL

- GF2: p = 2, FFT, bit optimisations (gf2x Brent et al.)
- zz_p: $p < 2^{53}$, FFT, no bit-tricks,
- ZZ_p: generic p, like zz_p but slower.

Comparison to Magma

- 1. quo<U|P>: quotient of polynomial ring
- 2. ext<k|P>: field extension by $X^p X \alpha$
- 3. $ext < k \mid p >$: field extension of degree p

Benchmarks (AMD Opteron 2500)

• p = 2, d = 1, height varying,

Benchmark: building the tower

Benchmark: constructing an isomorphism

Couveignes' isogeny algorithm

In a nutshell

- \bullet to find an $\ell\text{-isogeny}$ between elliptic curves $\mathcal E$ and $\mathcal E'$
- build p^k -torsion for \mathscr{E} and \mathscr{E}'
 - two Artin-Schreier towers
 - $-p^k \simeq \ell$
- set-up an isomorphism between them
- find the isogeny by interpolation, by trial-and-error

Improvements by De Feo.

Benchmark: isogenies

