# Fast arithmetics for Artin-Schreier extensions 

Luca De Feo<br>Tanc project<br>École polytechnique UWO<br>Éric Schost<br>ORCCA

## Artin-Schreier

Artin-Schreier polynomials

- if $\mathbb{K}$ a finite field of characteristic $p$ and $\alpha$ is in $\mathbb{K}$,

$$
X^{p}-X-\alpha
$$

is an Artin-Schreier polynomial.
Artin-Schreier extensions

- if $P$ an irreducible Artin-Schreier polynomial and

$$
\mathbb{L}=\mathbb{K}[X] / P
$$

$\mathbb{L} / \mathbb{K}$ is an Artin-Schreier extension.

## Artin-Schreier towers

Starting from $\mathbb{U}_{0}=\mathbb{F}_{p}\left[X_{0}\right] / Q\left(X_{0}\right)$

$$
\operatorname{deg}(Q)=d
$$

- take $a_{1}$ in $\mathbb{U}_{0}$ and let

$$
P_{1}=X_{1}^{p}-X_{1}-a_{1}, \quad \mathbb{U}_{1}=\mathbb{U}_{0}\left[X_{1}\right] / P_{1}
$$

- take $a_{2}$ in $\mathbb{U}_{1}$ and let

$$
P_{2}=X_{2}^{p}-X_{2}-a_{2}, \quad \mathbb{U}_{2}=\mathbb{U}_{1}\left[X_{2}\right] / P_{2}
$$

- continuing up to $k$, we get the tower $\left(\mathbb{U}_{0}, \ldots, \mathbb{U}_{k}\right)$.


## Artin-Schreier towers

Starting from $\mathbb{U}_{0}=\mathbb{F}_{p}\left[X_{0}\right] / Q\left(X_{0}\right)$

$$
\operatorname{deg}(Q)=d
$$

- take $a_{1}$ in $\mathbb{U}_{0}$ and let

$$
P_{1}=X_{1}^{p}-X_{1}-a_{1}, \quad \mathbb{U}_{1}=\mathbb{U}_{0}\left[X_{1}\right] / P_{1}
$$

- take $a_{2}$ in $\mathbb{U}_{1}$ and let

$$
P_{2}=X_{2}^{p}-X_{2}-a_{2}, \quad \mathbb{U}_{2}=\mathbb{U}_{1}\left[X_{2}\right] / P_{2}
$$

- continuing up to $k$, we get the tower $\left(\mathbb{U}_{0}, \ldots, \mathbb{U}_{k}\right)$.


## Needed

- basic algorithms
- culminating with an isomorphism algorithm (Couveignes 00)

Motivation

- $p$-torsion points of elliptic curves,
- for isogeny computation (Couveignes 96).


## Complexity issues

## Questions:

- $\mathbb{F}_{p}$-basis for $\mathbb{U}_{i}$ ?
- cost of arithmetic operations in this basis?
- cost of going up and down between $\mathbb{U}_{i}$ and $\mathbb{U}_{i+1}$ ?

Size of the problem

- $\operatorname{dim}_{\mathbb{F}_{p}}\left(\mathbb{U}_{i}\right)=\delta_{i}$, with $\delta_{i}=p^{i} d$
- we want algorithms of cost linear in $\delta_{i}$.

We almost achieve this, using the ideas of (Couveignes 00).

## Choosing a basis

## Multivariate basis

One can see $\mathbb{U}_{i}$ as

$$
\mathbb{U}_{i}=\mathbb{F}_{p}\left[X_{0}, \ldots, X_{i}\right] / I
$$

with $I$ generated by

$$
\begin{aligned}
& P_{i}=X_{i}^{p}-X_{i}-A_{i-1}\left(X_{0}, \ldots, X_{i-1}\right) \\
& \quad \vdots \\
& P_{1}=X_{1}^{p}-X_{1}-A_{0}\left(X_{0}\right) \\
& Q_{0}\left(X_{0}\right)
\end{aligned}
$$

Consequence: multivariate basis for $\mathbb{U}_{i}$

$$
\left\{X_{0}^{e_{0}} X_{1}^{e_{1}} \cdots X_{i}^{e_{i}} \mid e_{0}<d, e_{1}<p, \ldots, e_{i}<p\right\}
$$

## Pros and cons

Pros: going up /down is easy

- insert zeros / remove zeros

Cons: multiplication is slow

- direct approach: expand and reduce
- after expansion, we have the monomials

$$
\left\{X_{0}^{e_{0}} X_{1}^{e_{1}} \cdots X_{i}^{e_{i}} \quad \mid e_{0}<2 d-1, e_{1}<2 p-1, \ldots, e_{i}<2 p-1\right\}
$$

- so roughly $d(2 p-1)^{i}$ coefficients, e.g. $p=2, d=1: 2^{i} \rightarrow 3^{i}$
- not linear in $\delta_{i}$
- indirect approach
(Bostan et al.)
- homotopy techniques and evaluation / interpolation
- successful on some patterns
- but not on this one: the cost is $d(2 p-1)^{i}$ as well


## Univariate bases

At level $i$

- if we find a generator $y_{i}$ of $\mathbb{U}_{i} / \mathbb{F}_{p}$
- then $1, y_{i}, \ldots, y_{i}^{\delta_{i}-1}$ is a basis of $\mathbb{U}_{i}$

Pros: arithmetic is fast

- let $\mathrm{M}(n)$ be a multiplication time Schönhage-Strassen's FFT

$$
\mathrm{M}(n) \in O(n \log (n) \log \log (n))
$$

- multiplication in $\mathbb{U}_{i}$
- inversion in $\mathbb{U}_{i}$

$$
O\left(\mathrm{M}\left(\delta_{i}\right) \log \left(\delta_{i}\right)\right)
$$

Cons:

- going up / down is not obvious anymore


## Primitive towers

## Primitive towers

## Primitive tower

- a tower is primitive if $\mathbb{U}_{i}=\mathbb{F}_{p}\left[x_{i}\right]$
- in this case, $Q_{i}$ is its minimal polynomial over $\mathbb{F}_{p}$

$$
\operatorname{deg}\left(Q_{i}\right)=\delta_{i}
$$

Remark: not always the case

- $P_{1}=X_{1}^{p}-X_{1}-1$.

Theorem (extends a result in (Cantor '89))
If $\operatorname{Tr}_{\mathbb{U}_{0} / \mathbb{F}_{p}}\left(x_{0}\right) \neq 0$, the tower defined by

$$
\begin{aligned}
P_{1} & =X_{1}^{p}-X_{1}-X_{0} \\
P_{i} & =X_{i}^{p}-X_{i}-X_{i-1}^{2 p-1} \quad i>1
\end{aligned}
$$

is primitive.
From now on, we work in this specific tower

## Setup: finding $Q_{i}$

Algorithm essentially in (Cantor '89)
Low levels

- $Q_{0}=Q$
easy
easy
- $Q_{1}=Q_{0}\left(X^{p}-X\right)$

Higher levels: $\omega$ is a $2 p-1$-th root of unity

- $q_{i}\left(X^{2 p-1}\right)=\prod_{j=0}^{2 p-2} Q_{i-1}\left(\omega^{j} X\right)$
- $Q_{i}=q_{i}\left(X^{p}-X\right)$

Cost

- $O\left(\mathrm{M}\left(p^{i+1} d\right) \log p\right)$
- Up to logs, this is $O\left(p^{i+1} d\right)$


## Univariate and bivariate

Univariate basis

- the basis $1, x_{i}, \ldots, x_{i}^{\delta_{i}-1}$
- computations done modulo $Q_{i}\left(X_{i}\right)$
- $v \dashv \mathbb{U}_{i}$ indicates that $v$ is written on this basis

Bivariate basis

- if we see $\mathbb{U}_{i}$ as $\mathbb{U}_{i-1}\left[X_{i}\right] / P_{i}$, any $v$ in $\mathbb{U}_{i}$ can be written as

$$
v=v_{0}\left(x_{i-1}\right)+\cdots+v_{p-1}\left(x_{i-1}\right) x_{i}^{p-1}
$$

with $v_{i} \dashv \mathbb{U}_{i-1}$.

- computations done modulo

$$
\begin{aligned}
& P_{i}\left(X_{i-1}, X_{i}\right)=X_{i}^{p}-X_{i}-X_{i-1}^{2 p-1} \\
& Q_{i-1}\left(X_{i-1}\right)
\end{aligned}
$$

## Push-down and Lift-up

Push-down

- Input: $v \dashv \mathbb{U}_{i}$
- Output: $v_{0}, \ldots, v_{p-1} \dashv \mathbb{U}_{i-1}$ such that $v=v_{0}+\cdots+v_{p-1} x_{i}^{p-1}$

Lift-up

- Input: $v_{0}, \ldots, v_{p-1} \dashv \mathbb{U}_{i-1}$
- Output $v \dashv \mathbb{U}_{i}$ such that $v=v_{0}+\cdots+v_{p-1} x_{i}^{p-1}$


## Theorem

- Both operations can be done in time

$$
\mathrm{L}(i)=O\left(p \mathrm{M}\left(p^{i} d\right)+p^{i+1} d \log _{p}\left(p^{i} d\right)^{2}\right)
$$

- Up to logs, this is $O\left(p^{i+1} d\right)$.


## Easy direction: push-down

We want to reduce $v\left(X_{i}\right)$ modulo

$$
\begin{aligned}
& P_{i}\left(X_{i-1}, X_{i}\right)=X_{i}^{p}-X_{i}-X_{i-1}^{2 p-1} \\
& Q_{i-1}\left(X_{i-1}\right)
\end{aligned}
$$

Algorithm: reduction modulo $P_{i}$
Example with $p=2$, we work modulo $X_{i}^{2}-X_{i}-X_{i-1}^{3}$

- assume $\operatorname{deg}(v)<2^{n}$
- write $v=v_{0}\left(X_{i}\right)+X_{i}^{2^{n-1}} v_{1}\left(X_{i}\right)$
- process recursively $v_{0}$ and $v_{1}$, getting $w_{0}$ and $w_{1}$
- remark that $X_{i}^{2^{n-1}}=X_{i}+X_{i-1}^{3}+X_{i-1}^{6}+\cdots+X_{i-1}^{3 \cdot 2^{n-2}} \bmod P_{i}$
- return $w_{0}+\left(X_{i}+X_{i-1}^{3}+X_{i-1}^{6}+\cdots+X_{i-1}^{3 \cdot 2^{n-2}}\right) w_{1} \bmod P_{i}$


## Easy direction: push-down

We want to reduce $v\left(X_{i}\right)$ modulo

$$
\begin{aligned}
& P_{i}\left(X_{i-1}, X_{i}\right)=X_{i}^{p}-X_{i}-X_{i-1}^{2 p-1} \\
& Q_{i-1}\left(X_{i-1}\right)
\end{aligned}
$$

Algorithm: reduction modulo $P_{i}$


## Harder direction: lift-up

## Using trace formulas

Given $w\left(X_{i-1}, X_{i}\right)$, we want to find $v\left(X_{i}\right)$ such that $w=v$ modulo

$$
\begin{aligned}
& P_{i}\left(X_{i-1}, X_{i}\right)=X_{i}^{p}-X_{i}-X_{i-1}^{2 p-1} \\
& Q_{i-1}\left(X_{i-1}\right)
\end{aligned}
$$

Trace formulas: (Rouillier 99)

- let $\operatorname{Tr}^{\prime}$ be the linear form $a \mapsto \operatorname{Tr}(a w)$,
- then given the values of $\operatorname{Tr}^{\prime}$ on the univariate basis $1, x_{i}, \ldots, x_{i}^{\delta_{i}-1}$,
- one can recover $v$ using a few more operations.

How: the generating series

$$
\sum_{j \geqslant 0} \operatorname{Tr}^{\prime}\left(x_{i}^{j}\right) X_{i}^{j}
$$

is rational; its denominator is (essentially) $Q_{i}$ and its numerator is (essentially) $v$.

## Duality

Multiplication-by-w

- from the bivariate basis to itself

Transposed multiplication-by-w

- From the dual-bivariate basis to itself
- concretely:
- input: the values of a linear form $\ell$ on the bivariate basis,
- output: the values of $\ell^{\prime}$ on the univariate basis, with $\ell^{\prime}: a \mapsto \ell(a w)$.

Starting from $\operatorname{Tr}$, this gives us the values of $\operatorname{Tr}^{\prime}$ on the bivariate basis.

## Duality, cont.

Push-down

- change-of-basis from univariate to bivariate

Transposed push-down

- change-of-basis from dual-bivariate to dual-univariate
- concretely:
- input: the values of a linear form $\ell$ on the bivariate basis,
- output: the values of $\ell$ on the univariate basis.

Starting from $\operatorname{Tr}^{\prime}$ on the bivariate basis, this gives us $\operatorname{Tr}^{\prime}$ on the univariate basis.

## Transposition principle

Given a linear algorithm computing a linear application, we can deduce another linear algorithm computing the transpose application in the same cost.

Fiduccia, Kaminski et al., Shoup-Kaltofen, ...
Reverse the "flow" of the program

- order of the iterations are reversed
- basic subroutine: transposed multiplication



## Transposition principle

Given a linear algorithm computing a linear application, we can deduce another linear algorithm computing the transpose application in the same cost.

Fiduccia, Kaminski et al., Shoup-Kaltofen, ...
Reverse the "flow" of the program

- order of the iterations are reversed
- basic subroutine: transposed multiplication



## Experiments and applications

## Speeding up more operations

## Divide and conquer

- push-down the operands;
- recursively solve $p$ instances in $\mathbb{U}_{i-1}$;
- combine the results;
- lift-up.

Where it works (Couveignes 00)

- trace, $p$-th roots, inverse, iterated Frobenius, ...
- isomorphism

Theorem

- One can apply an isomorphism (and its inverse) between any Artin-Schreier towers of height $i$ in time $O\left(p^{i+1} d\right)$ (up to logs).


## Example: iterated Frobenius

Wanted: $v \mapsto v^{p^{p^{j} d}}$

- $v \in \mathbb{U}_{j} \Rightarrow v^{p^{p^{j} d}}=v$,
- $x_{i}^{p^{p^{j} d}}=x_{i}+\beta_{i-1, j}$ where $\beta_{i-1, j}=\sum_{h=0}^{p^{j} d-1}\left(x_{i-1}^{2 p-1}\right)^{p^{h}}$,
- $v^{p^{p^{j} d}}=\sum_{h=0}^{p-1} v_{h}^{p^{p^{j} d}}\left(x_{i}+\beta_{i-1, j}\right)^{h}$

IterFrobenius
Input: $v, i, j$ with $v \dashv \mathbb{U}_{i}$ and $j \geqslant 0$.
Output: $v^{p^{p^{j} d}} \dashv \mathbb{U}_{i}$.

- If $i \leq j$, return $v$
- Let $v_{0}+v_{1} x_{i}+\cdots+v_{p-1} x_{i}^{p-1}=\operatorname{Push}-\operatorname{down}(v)$,
- for $h \in[0, \ldots, p-1]$, let $t_{h}=\operatorname{IterFrobenius}\left(v_{h}, i-1, j\right)$
- let $w=\sum_{h=0}^{p-1} t_{h}\left(x_{i}+\beta_{i-1, j}\right)^{h}$
- return Lift-up $(w)$


## Implementation

Implementation in NTL

- GF2: $p=2$, FFT, bit optimisations (gf2x Brent et al.)
- zz_p: $p<2^{53}$, FFT, no bit-tricks,
- ZZ_p: generic $p$, like $z z \_p$ but slower.

Comparison to Magma

1. quo<U|P>: quotient of polynomial ring
2. ext<k|P>: field extension by $X^{p}-X-\alpha$
3. ext $\langle k \mid p\rangle$ : field extension of degree $p$

Benchmarks (AMD Opteron 2500)

- $p=2, d=1$, height varying,


## Benchmark: building the tower



## Benchmark: constructing an isomorphism



## Couveignes' isogeny algorithm

In a nutshell

- to find an $\ell$-isogeny between elliptic curves $\mathscr{E}$ and $\mathscr{E}^{\prime}$
- build $p^{k}$-torsion for $\mathscr{E}$ and $\mathscr{E}^{\prime}$
- two Artin-Schreier towers
$-p^{k} \simeq \ell$
- set-up an isomorphism between them
- find the isogeny by interpolation, by trial-and-error

Improvements by De Feo.

## Benchmark: isogenies



