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Overview of this Talk

• Identity-based public key cryptography (ID-PKC)

• ID-based non-interactive key distribution (ID-NIKD)

• Revisiting Maurer-Yacobi and Sakai-Ohgishi-Kasahara

ID-NIKD schemes

• From ID-NIKDS to identity-based encryption (IBE)

• ID-NIKDS and IBE from trapdoor discrete log groups

• Open problems and concluding remarks

Information Security Group Royal Holloway, University of London
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1 Identity-Based Public Key

Cryptography (ID-PKC)

• Traditional public-key cryptography: users can generate

public/private key pairs and have them certified by a CA.

• User of public key needs to find key, check certificate chain,

and check revocation list before using key.

• Shamir (1984) introduced ID-PKC as an alternative approach:

– Now Trusted Authority (TA) computes private key as a

function of its master secret and the user’s system identity.

– TA distributes private keys to users over secure channel.

– User of key only needs identity and TA’s master public key

(no certificates).

• IBE = Identity-Based Encryption.

Information Security Group Royal Holloway, University of London
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ID-PKC From Pairings

• Weil and Tate pairings:

– Bilinear maps associated with elliptic curves, originally used

destructively in cryptography in MOV/Frey-Rück attack.

– Transfer DLP on supersingular elliptic curve to DLP in

finite field, where sub-exponential algorithm can be applied.

• 2000/2001: Papers by Sakai-Ohgishi-Kasahara, Joux and

Boneh-Franklin showing how to use pairings constructively.

– Leading to the rapid development of identity-based and

pairing-based cryptography.

– Boneh-Franklin paper gave the first truly practical and

provably secure IBE scheme; now has over 2000 citations on

Google Scholar.

Information Security Group Royal Holloway, University of London
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Pairing-free ID-PKC?

• Security of pairing-based ID-PKC schemes is based on

relatively untested computational problems.

– The pairing-based zoo.

• Implementation can be complex – many choices of parameters,

families of curves, implementation tricks.

• Efficiency considerations: computing pairings still relatively

expensive.

• Also of great theoretical interest to find alternative

constructions.

Information Security Group Royal Holloway, University of London
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2 ID-based Non-interactive Key

Distribution (ID-NIKD)

• Allows 2 users equipped with ID-based private keys and who

know each other’s identities to set up a shared (symmetric) key

without any interaction/communication.

• Concept seems to date from paper by Maurer and Yacobi at

Eurocrypt91.

• Also possible in traditional public key setting, but there users

need to know each other’s public keys (so less attractive than

ID-based approach).

• Applications in interactive key exchange, secret handshakes,

designated verifier signatures,...

Information Security Group Royal Holloway, University of London
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Formal Definition of ID-NIKD

An ID-NIKD scheme can be formally defined in terms of 3

algorithms:

Setup: On input 1k, outputs a master public key mpk and master

secret key msk.

Extract: On input mpk, msk and identifier ID ∈ {0, 1}∗, returns a

private key dID from some space of private keys SK.

SharedKey: On input mpk, a private key dIDA
and an identifier

IDB ∈ {0, 1}
∗, where IDB 6= IDA, this algorithm returns a key

KA,B from some space of shared keys SHK specified in mpk.

Correctness: for any pair of identities IDA, IDB, and

corresponding private keys dIDA
, dIDB

:

SharedKey(mpk, dIDA
, IDB) = SharedKey(mpk, dIDB

, IDA).

Information Security Group Royal Holloway, University of London
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Example: Sakai-Ohgishi-Kasahara ID-NIKD

Sakai-Ohgishi-Kasahara (SOK, SCIS 2000):

Setup: On input 1k, this algorithm:

– runs PairingGen to obtain a tuple (G, GT , e, q, P ) with

e : G×G→ GT being a bilinear map on groups of order q and

P a generator of G;

– selects s←R Zq;

– outputs mpk = (G, GT , e, q, P, P0 = sP, H1, H2, n) where

H1 : {0, 1}∗ → G and H2 : GT → {0, 1}
n are hash functions,

and SHK = {0, 1}n;

– outputs msk = s.

Information Security Group Royal Holloway, University of London
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Sakai-Ohgishi-Kasahara ID-NIKD (ctd)

Extract: On input mpk, msk and identifier ID ∈ {0, 1}∗, output

dID = sH1(ID).

SharedKey: On input mpk, a private key dIDA
and an identifier

IDB ∈ {0, 1}
∗, where IDB 6= IDA, this algorithm outputs

H2(e(dIDA
, H1(IDB))) ∈ {0, 1}n.

Information Security Group Royal Holloway, University of London
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Sakai-Ohgishi-Kasahara ID-NIKD (ctd)

• Correctness of the scheme follows from bilinearity of the map e:

e(dIDA
, H1(IDB)) = e(H1(IDA), H1(IDB))s = e(H1(IDA), dIDB

).

• Notice that Setup and Extract are identical to the same pair

of algorithms in the Boneh-Franklin IBE scheme.

– In fact, P and P0 are not needed for SOK ID-NIKD scheme.

• Dupont and Enge (eprint Archive 2002/136) have presented a

version of the SOK ID-NIKD scheme in the more general

setting e : G1 ×G2 → GT .

Information Security Group Royal Holloway, University of London
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Security for ID-NIKD

• Our security model for ID-NIKD is inspired by the

Bellare-Rogaway and Canetti-Krawczyk models for interactive

key exchange.

• Model defined via a game between adversary A and a

challenger C.

• A gets mpk from C and has access to Extract(ID),

Reveal(IDA, IDB) and Test(IDA, IDB) oracles.

• A’s task is to decide whether result of query to Test(IDA, IDB)

oracle is the key shared between IDA, IDB or a random key.

• Some limitations must be placed on A:

– no Extract query for either identity involved in Test query;

– no Reveal query for the pair of identities involved in Test

query.

Information Security Group Royal Holloway, University of London



Fields Cryptography Retrospective Meeting 2009 12

Security for ID-NIKD

A’s advantage in this IND-SK (indistinguishability of shared key)

security game is defined to be

AdvIND-SK
A (k) = |Pr[b = b′]− 1/2|

where b is the challenger’s hidden bit in the Test query and b′ is

A’s guess for the bit b.

We say that an ID-NIKD scheme is IND-SK secure if, for any

polynomial time adversary A, the function AdvIND-SK
A (k) is

negligible.

Information Security Group Royal Holloway, University of London
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Comments on Security Modeling for ID-NIKD

• Can allow multiple Test queries or just a single Test query –

models are equivalent via a security reduction using a hybrid

argument.

• Earlier model of Dupont and Enge (eprint Archive 2002/136)

omitted Reveal queries.

– Unnatural, since we want to model that an adversary who

learns many shared keys cannot learn any more shared keys.

– Differentiating between Reveal and Extract queries also

better reflects how keys may be used/exposed in practice.

– Can simulate Reveal via Extract giving non-tight

reduction between models with and without Reveal queries.

• Dupont and Enge also require the adversary to compute the

shared key, rather than distinguish it from a random key.

Information Security Group Royal Holloway, University of London
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Security of SOK ID-NIKD Scheme

Theorem 1 The SOK ID-NIKD scheme is IND-SK secure

assuming the hardness of the BDH problem in groups (G, GT )

produced by the pairing-friendly group generator PairingGen.

For any IND-SK adversary A against the SOK ID-NIKD scheme

that makes qi queries to hash function Hi for i = 1, 2, there is an

algorithm B that solves the BDH problem in groups (G, GT )

produced by PairingGen with

AdvBDH
B (k) ≥ AdvIND-SK

A (k)/q2
1q2.

Moreover, B runs in time O(time(A)).

The proof is in the random oracle model.

Information Security Group Royal Holloway, University of London
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Maurer-Yacobi ID-NIKD (informal)

Maurer and Yacobi (Eurocrypt ’91, DCC ’96):

• ID-NIKD in an RSA setting.

• Special RSA modulus N chosen so that solving DLP is easier

with factorisation N = pq than without it.

• Identities are encoded as elements of a cyclic subgroup 〈g〉 of

ZN .

• TA can solve ID = gdID mod N .

• Then (IDA)dIDB = (IDB)dIDA mod N can be used as a shared

key between A and B.

Information Security Group Royal Holloway, University of London
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Maurer-Yacobi ID-NIKD (ctd)

• No formal security analysis was given in the original papers by

Maurer and Yacobi.

• In fact, the Maurer-Yacobi ID-NIKD scheme and several later

variants of it are vulnerable to square root attacks and collusion

attacks.

– These arise from the way in which identities are encoded as

elements of ZN .

• The scheme also has efficiency problems – it’s hard to create a

strong asymmetry between the hardness of DLP with and

without the factorisation.

• The Maurer-Yacobi ID-NIKD scheme has fallen into neglect,

partly for these reasons, and partly because of the pairing

“gold-rush”.

Information Security Group Royal Holloway, University of London
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3 IBE from ID-NIKD

• The similarity of the SOK ID-NIKD scheme to the

Boneh-Franklin IBE scheme suggests that a general connection

might exist between ID-NIKD and IBE schemes.

• We now explore this connection, giving a (semi-)generic

conversion from ID-NIKD to IBE.

• First, we need to formally define IBE schemes and their

security.

Information Security Group Royal Holloway, University of London
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Identity-Based Encryption (IBE)

An IBE scheme is formally defined in terms of 4 algorithms:

Setup: On input some security parameter k, produces master

public key mpk and master secret key msk.

Extract: On input msk and an identity ID ∈ {0, 1}∗, produces a

private key dID.

Encrypt: On input mpk, identity ID, and plaintext message m,

outputs ciphertext c.

Decrypt: On input c and private key dID, outputs either a plaintext

m or a failure symbol ⊥.

Information Security Group Royal Holloway, University of London
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Security for IBE

• Various security notion for IBE have been defined.

• IND-ID-CCA security:

– Adversary is given access to Extract and Decrypt oracles.

– Adversary selects two plaintexts m0, m1 and an identity ID∗

and is given challenge ciphertext c∗, the encryption of mb to

identity ID∗ for b ∈R {0, 1}
∗.

– Adversary is given further access to Extract and Decrypt

oracles (with some natural limitations).

– Adversary outputs a bit b′, and wins if b′ = b.

• IND-ID-CPA security: as above, but no access to Decrypt

oracle.

Information Security Group Royal Holloway, University of London
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A Conversion From ID-NIKD to IBE

Main idea:

• Encryptor generates for himself a valid private key for the

ID-NIKD scheme for a randomly chosen identity IDA, and

calculates the corresponding shared key KA,B.

• Encryptor uses KA,B as a one-time encryption key to encrypt

message to IDB.

• B can also generate KA,B from identity IDA and private key

dIDB
.

Information Security Group Royal Holloway, University of London
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A Conversion From ID-NIKD to IBE

But only TA should be able to generate private keys for chosen

identities, so this approach apparently cannot work!

Information Security Group Royal Holloway, University of London
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A Conversion From ID-NIKD to IBE (ctd)

Extra technical conditions on the ID-NIKD scheme:

1. The Extract and SharedKey algorithms of the ID-NIKD

scheme should, as a first step, hash the input identifier ID using

a one-way hash function h to produce a public key UID in some

set PK, with all further computations in the Extract and

SharedKey algorithms depending only on UID and not on ID.

2. There should exist a randomized algorithm Sample that on

input mpk, outputs pairs (d, U) ∈ SK × PK with d being a

private key corresponding to public key U and U ←R PK.

Information Security Group Royal Holloway, University of London
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A Conversion From ID-NIKD to IBE (ctd)

• From the algorithm SharedKey with inputs (mpk, dIDA
, IDB) we

can construct a new algorithm SharedKey′ with inputs

(mpk, dIDA
, UIDB

= h(IDB)) that has the same output as

SharedKey.

• The two conditions are satisfied for the TDL-based and the

SOK ID-NIKD schemes, e.g. for SOK, we can define Sample as

setting b←R Zq, d = bP0 and U = bP .

• An identity corresponding to U will not be obtainable from U

when it is generated using Sample without inverting the

one-way hash function h.

Information Security Group Royal Holloway, University of London
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A Conversion From ID-NIKD to IBE (ctd)

Suppose S is an ID-NIKD scheme meeting the two conditions. We

construct an IBE scheme IBE(S) as follows:

Setup: Identical to Setup in S.

Extract: Identical to Extract in S.

Encrypt: Let the input be (mpk, ID, m ∈ {0, 1}n). Run Sample to

obtain a pair (d, U). Then run SharedKey on input (mpk, d, ID)

to obtain a key K ∈ {0, 1}n. Output C = (U, V ) where

V = m⊕K.

Decrypt: Let the input be (mpk, dID, C) with C = (U, V ). Run

SharedKey′ (derived from SharedKey of S) on input

(mpk, dID, U) to obtain a key K. Output m′ = V ⊕K.

Information Security Group Royal Holloway, University of London
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Security of the Conversion

Theorem 2 Suppose the ID-NIKD scheme S is IND-SK secure

and satisfies the two conditions above. Suppose also that (hk)k∈N is

a one-way function family. Then the IBE scheme IBE(S) is

IND-ID-CPA secure.

For any adversary A against IBE(S), there are adversaries B1

against the one-wayness of h ∈ (hk) and B2 against the IND-SK

security of S such that:

AdvIND-ID-CPA
A (k) ≤ AdvOW

B1
(k) + 2 ·AdvIND-SK

B2
(k).

Here, B1, B2 have running time roughly the same as A.

Information Security Group Royal Holloway, University of London
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Applying the Conversion

• The ID-NIKD-to-IBE conversion can be applied to the SOK

ID-NIKD scheme.

• Recall Sample: b←R Zq, d = bP0, U = bP .

• Resulting IBE scheme has encryption algorithm:

C = (U, V ) where U = bP, V = m⊕H2(e(bP0, H1(ID))).

• This “new” IBE scheme is just the BasicIdent encryption

scheme of Boneh and Franklin.

• So our conversion shows how the Boneh-Franklin scheme can

be seen as arising from the SOK ID-NIKD scheme.

Information Security Group Royal Holloway, University of London
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4 ID-NIKD and IBE From TDL Groups

A Trapdoor Discrete Log group generator (TDL group generator)

is defined by a pair of algorithms TDLGen and SolveDL:

• TDLGen: An algorithm that takes a security parameter k as

input and outputs (G, r, g, T ) where G is a cyclic group of some

order r with generator g and T denotes trapdoor information.

• SolveDL: An algorithm which takes as input (G, r, g, T ) and a

group element h and outputs a ∈ Zr such that h = ga.

Information Security Group Royal Holloway, University of London
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ID-NIKD and IBE From TDL Groups

• The group order r need not be prime (this allows us to handle

different computational settings).

• In the RSA setting, r must be kept secret by the party running

the TDLGen algorithm.

– We assume instead that a suitable bound R on the group

order is available as part of the description of G.

• We do not insist that SolveDL runs in time polynomial in k.

• We will require CDH to still be hard in G without knowledge

of T .

Information Security Group Royal Holloway, University of London
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ID-NIKD From TDL Groups

Setup: On input k, this algorithm runs TDLGen to obtain

(G, r, g, T ). It outputs mpk = (G, g, H1, H2, n) where

H1 : {0, 1}∗ → G and H2 : G→ {0, 1}n are hash functions and n is

the message size. It also outputs msk = T .

Extract: On input msk and identifier ID ∈ {0, 1}∗, run SolveDL

on input H1(ID) to obtain a value dID ∈ Zr such that

gdID = H1(ID).

The algorithm then outputs dID.

SharedKey: On input mpk, a private key dIDA
and an identifier

IDB ∈ {0, 1}
∗, this algorithm outputs

H2(H1(IDB)dIDA ).

Information Security Group Royal Holloway, University of London
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Security of ID-NIKD From TDL Groups

Theorem 3 The TDL-based ID-NIKD scheme is secure assuming

the hardness of the CDH problem in groups G produced by the TDL

group generator.

For any IND-SK adversary A against the TDL-based ID-NIKD

scheme that makes qi queries to hash function Hi for i = 1, 2, there

is an algorithm B that solves the CDH problem in groups G

produced by the TDL group generator with

AdvCDH
B (k) ≥ AdvIND-SK

A (k)/q2
1q2.

Moreover, B runs in time O(time(A)).

The proof is in the random oracle model.

Information Security Group Royal Holloway, University of London
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IBE From TDL Groups

Applying the ID-NIKD-to-IBE conversion:

Setup, Extract: As for TDL-based ID-NIKD.

Encrypt: On input mpk, identifier ID ∈ {0, 1}∗ and message m,

this algorithm returns C = (U, V ) where:

U = gs, V = m⊕H2(H1(ID)s), where s ∈R Zr.

Decrypt: On input mpk, a private key dID and a ciphertext

C = (U, V ), this algorithm outputs m = V ⊕H2(U
dID).

Information Security Group Royal Holloway, University of London
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IBE From TDL Groups

• Essentially, we have an ID-based version of Elgamal encryption.

• We have the key pair (dID, H(ID) = gdID) in place of the usual

(x, gx).

• From the security theorem for our conversion, IND-ID-CPA

security of the TDL-based IBE scheme follows from the

hardness of CDH in G.

• IND-ID-CCA security can be obtained by applying a

Fujisaki-Okamoto-style conversion (Yang et al., ACISP2006).

So: do we have any trapdoor discrete log groups G for which we

can construct a function H1 hashing onto G?

Information Security Group Royal Holloway, University of London
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An RSA-based Instantiation

• Set N = pq where p = 3 mod 4, q = 1 mod 4, and

gcd(p− 1, q − 1) = 2.

• Let g ∈ ZN be such that gp = g mod p is primitive in Zp and

gq = g mod q is primitive in Zq.

• Then g has maximal order (p− 1)(q − 1)/2 and
(

g
N

)

= 1.

• Let G = 〈g〉. Then G = JN .

• Hashing onto G:

– We have
(

−1
N

)

= −1.

– Let H : {0, 1}∗ → ZN be a hash function.

– Then define

H1(ID) =

(

H(ID)

N

)

·H(ID).

Information Security Group Royal Holloway, University of London
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An RSA-based Instantiation

• Now we assume that, for some fixed B to be determined, both

p− 1 and q − 1 are B-smooth.

• We can use Pollard’s ρ algorithm and Pohlig-Hellman

algorithm to find discrete logs in Zp and Zq in time O(ℓB1/2),

where ℓ is the number of prime factors of p− 1 and q − 1.

• So, given trapdoor (p, q), we can solve DLP in G in time

O(ℓB1/2).

Information Security Group Royal Holloway, University of London
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An RSA-based Instantiation

• Without the trapdoor, solving the CDH problem in G = JN is

known to be equivalent to factoring N .

• Best (known) algorithm is NFS (with running time LN (1/3, c))

or Pollard’s p− 1 algorithm (running time O(B log N/ log B)).

• By appropriate choice of N , we can achieve an asymmetry in

the time needed to solve DLP in G with and without the

trapdoor.

• For B = 280 and N ≈ 21024, the times are (roughly) 240 and

280, respectively.

Information Security Group Royal Holloway, University of London
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An RSA-based Instantiation

• Resulting IBE scheme has efficient encryption (two exps mod

N) and decryption (one exp mod N), compact ciphertexts and

master public key, and small private keys.

• IND-ID-CPA/CCA security in the ROM, assuming the

hardness of factoring integers of the form N = pq with p− 1

and q − 1 that are B-smooth.

• Drawback is the 240 effort needed by the TA to find each dID.

• This scheme can be seen as a secure IBE variant of the

Maurer-Yacobi ID-NIKD scheme.

– Recall that Maurer-Yacobi actually gave an ID-NIKD

scheme, not an IBE scheme.

– Their scheme (and later variants) omitted hashing, leading

to security problems.

Information Security Group Royal Holloway, University of London
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An Instantiation from Elliptic Curves

• Galbraith-Hess-Smart (Eurocrypt 2002) and Teske (JoC, 2004)

proposed the use of Weil descent to build a trapdoor discrete

log for the elliptic curve setting.

• Main idea is to build a special curve E(Fqk) and an explicit

homomorphism Φ : E(Fqk)→ JC(Fq) where C is a hyperelliptic

curve of high genus.

• DLP in JC(Fq) (and hence in E(Fqk)) can be solved in

sub-exponential time using an index-calculus approach.

• E(Fqk) can be “disguised” using a random walk of isogenies to

create a seemingly random curve E′(Fqk).

• So DLP in E′(Fqk) should take time O(qk/2) using generic

algorithms, but sub-exponential time via mapping to JC(Fq).

Information Security Group Royal Holloway, University of London
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An Instantiation from Elliptic Curves

• This gives us a trapdoor for the discrete log problem in a cyclic

subgroup 〈P ′〉 of E′(Fqk):

– Use inverse of random walk of isogenies to map DLP from

E′(Fqk) to E(Fqk).

– Then use Φ to map DLP to JC(Fq).

– Solve DLP in JC(Fq).

• Example parameters: q = 223, k = 7, giving (conjectured) 80

bits of security for DLP on E′(F27·23) , but estimated 248

operations to solve DLP with trapdoor.

Information Security Group Royal Holloway, University of London
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An Instantiation from Elliptic Curves

• Resulting IBE scheme requires 2 (resp. 1) scalar multiplications

on E′(F2161) for encryption (resp. decryption).

• Fast hashing onto subgroup of E′ using standard techniques.

• Hence extremely fast encryption and decryption, with compact

ciphertexts, master public key and private keys.

• Index calculus techniques make finding many discrete logs

almost as easy as finding one.

– So cost of roughly 226 bit operations per private key

extraction after large one-time setup cost of 248 operations.

Information Security Group Royal Holloway, University of London



Fields Cryptography Retrospective Meeting 2009 40

TDL Groups: Final Remarks

• Neither of our instantiations is completely satisfactory from a

practical perspective.

• We have very efficient schemes (in terms of encryption and

decryption), but:

– RSA setting: relatively high cost of extracting individual

discrete logs even with trapdoor.

– ECC setting: uncertainty over effectiveness of using

isogenies to disguise E, and scalability problem for higher

security levels.

• Positive interpretation: the schemes are pairing-free and allow

new trade-offs between key performance indicators for IBE.

Information Security Group Royal Holloway, University of London
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5 Some Open Problems

• Find a truly efficient trapdoor for the DLP in some class of

cryptographically interesting groups.

• Find ID-NIKD schemes having a tight security reduction to

some underlying hard problem.

• Construct secure ID-NIKD schemes without random oracles.

• Are there ID-NIKD schemes which produce the other

well-known IBE schemes via our generic construction?

• Construct efficient hierarchical ID-NIKD schemes.

Information Security Group Royal Holloway, University of London
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6 Concluding Remarks

• ID-NIKD is an often-overlooked cryptographic primitive with

many interesting applications.

• The relationship between ID-NIKD and IBE “explains” the

Boneh-Franklin IBE scheme in terms of an underlying

ID-NIKD scheme.

• Revisiting Maurer-Yacobi using modern security techniques

yields new, provably secure, pairing-free IBE schemes with

interesting trade-offs between the cost of encryption/decryption

and the cost of private key extraction.

• Full details in Designs, Codes and Cryptography, Vol.52(2), pp.

219-242, 2009.
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