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|. Motivations

Context: use elliptic curves of known cardinality when
Schoof’s algorithm is inedaquate.

Fundamental theorem: (Hasse, Deuring, ...) if
4p = U? — DV?, there exists an elliptic curve E/F, of cardinality

m=p+1-U.

A short list of applications:

» Primality proving: ECPP (Atkin 1986, M.); EAKS
(Couveignes/Ezome/Lercier);

» Building cyclic elliptic curves (M. 1991);

» E of given cardinality (but varying p —
Broker/Stevenhagen);

» Pairing friendly curves (see Freeman/Scott/Teske
taxonomy paper).

Rem. For ease of presentation, stick to I, with p (large) prime; results generalize to any finite field.



ECPP in one slide

function ECPP(N)
e if N is small enough, prove its primality directly.

e repeat
find D €  s.t. 4N = U? — DV? (Cornacchia)
until m =N+ 1— U = ¢N' with ¢ > 1 small, N’ probable prime;

e use the CM method to build E and find P of order m;
e return ECPP(N').

Variants differ in the choice of 2; fastest leads to heuristic
O((logN)*); record still at 20,000 dd.



Two slightly different contexts
» ECPP:

>

>

| 2

probable prime N ~ 23090;

N to be proven prime, so more checks are necessary and
some tricks cannot be used (Montgomery form only if
Bernstein in some cases?);

numerous D’s available, happy with 3 | D;

#E proven by the succesful termination of the algorithm on
subsequent numbers;

(very) few verifications of the certificate?

> Cryptography

>

>

>

>

» prime p ~ 2°%;

any parametrization of E possible;

few D’s available, perhaps D =5 mod 8, and perhaps no
point of order 4 at all. . . ;

#E often prime or almost prime;

many verifications of the certificate?

In both cases, potentially large D’s or h’s (see later for large in
ECPP; pairing friendly curves have large requirements).



Il. Defining the CM methods

Notations: D = m*Dg where Dy is the discriminant of an
imaginary quadratic field K; D is the discriminant of
O = [1,mo] where Zg = [1,0]; h(O) =#CI(0).

Ex. D=—12-4,K=Q(i), Zg = [1,i], h=1, Cl = {(1,0,1)}.

Thm. 4p = U? — DV? iff p splits in the ring class field Kp (m = 1
corresponds to the Hilbert Class Field of K).

Thm. K, = K(j(mw)) where j is the modular invariant

1
Jj(z) = 5+744+ Z cnq"

n>0

with ¢ = exp(2inz).



Algebraic theory

Write a = [0, ] and a = a; / o; define j(a) = j(a).

Thm. K /K is Galois, with group ~ CI(&) and therefore
[Kp : K] = h(0). Moreover:

(@)Y =j(i"a).

Thm. Hp(X) = [Ticcio)(X —J(i)) € Z[X].

Fundamental Thm. 4p = U — DV? iff (D/p) = +1 and Hp(X)
has k(&) roots modulo p.

Ex. 4p = U?>+4V?ifand only if p =2 or p =1 mod 4.

References: LNM 21, Serre, Cox.



“Computing” Kp

Computation of Hj(X): write each class of CI(0) as
i=lay, ] and evaluate j(oy /op) as a multiprecision number.

EX. H_ 3(X) =X, H_4(X) = X — 1728;
H_53(X) = X> +3491750X> — 5151296875 X + 12771880859375;

H_3,.(X) = X%+ 654403829760X + 5209253090426880.
= p=x>+y?iff (—4/p) = +1;
dp = x> +3 x 5%? iff (—75/p) = +1 and H_5,.s(X) factors
modulo p.

More on this later!



The CM method

INPUT:

> p(org=p");

» D < 0 (fundamental or not);

» Uand VinZs.t. p= (U?>—-DV?)/4.
OUTPUT:

» E/F,st. m=#EF,)=p+1-U,

» a proof of correctness.



The CM method

INPUT:

> p(org=p");

» D < 0 (fundamental or not);

» Uand VinZs.t. p= (U?>—-DV?)/4.
OUTPUT:

» E/F,st. m=#EF,)=p+1-U,

» a proof of correctness.

Rem.

» if U and V are not known, compute them using
Cornacchia’s algorithm;

» proof of correctness: might involve factoring m and
exhibiting generators of E/F,; soft proof could be P s.t.
[m]P = Og but [m'|P = Og (m' =p+1+ U is the cardinality
of a twist E’ of E); in ECPP, proof is recursive.



The CM method (more precise)

INPUT:

> p(org=p");

» D < 0 (fundamental or not);

» Uand VinZs.t. p= (U?>—DV?) /4.
OuTPUT:

» E having CM by the order of discriminant D; as a
consequence E/F, s.t. m=#E(F,) =p+1-U,

» a proof of correctness.

Rem. The proof of correctness could involve volcanoes.



Let’s open drawers
function CM(p, D, U, V)
1. Compute Hp[j](X).

2. Find a root jo of Hp[j](X) mod p.

3. Find E of invariant jy:
3 .
o2y 2jo 3
1728 — jo 1728 — jo
where ¢ accounts for twists of E.

E:Y’=X+

4. Prove that E has cardinality m=p+1—U.


http://arxiv.org/abs/0904.2243

Let’s open drawers
function CM(p, D, U, V)
1. Compute Hp[j](X).
= three methods for this! all in O(D'*¢): complex, p-adic, CRT.

2. Find a root jy of Hplj](X) mod p.
= use Galois theory + classical tricks from computer algebra

3. Find E of invariant jy:
3 .
o2y 2jo 3
1728 — jo 1728 — jo
where ¢ accounts for twists of E.

= Try to try only one curve (see recent Rubin/Silverberg, cf.
part IV.)

E:Y’=X+

4. Prove that E has cardinality m=p+1—U.

= Use adequate parametrizations to check [m|P = O,
sometimes Edwards/Montgomery curves — see
http://arxiv.org/abs/0904.2243.


http://arxiv.org/abs/0904.2243

lll. Replacing j: class invariants
Q. How do we find smaller defining polynomials for Kp?
Two cases:

» construct Kp;
» build a CM curve (need some relation between f and j).

From j(v/—2) = 8000, one solves
. (X+16)°
(x) J="%
to get X = 26.

Key remark: equation (x) is a modular equation for Xy(2) =
generalize to Xy(N) or X°(N) for any N > 1.

<= replace j(«) by class invariants f(c) for some modular
function f.

Rem. The classical Weber functions are §, {1, f» s.t. —f(a)%*,
f1(a)?* and f,(a)?* are roots of ().



A) Modular functions for I'°(N)

w(8)-(: 2}

y(N)=[:T'N)] =N +1/p)

pIN

Def. f on H* is a modular function for I°(N) if and only if
VM € TO(N),z e H*, (fo M) (z) = f(Mz) = f(z)
(+ some technical conditions).

Thm. Let f be a function for T°(N), I'/T°(N) = {% }1<v<yv)

Put
)

y(N
Q[f)(X) = HIX —for)= ZR

where R, (J) € C(J). Then ®[f|(X,J) =0 is called a modular
equation for TO(N).



Why do class invariants exist?

Thm. If f =Y a,q" has integer coefficients, ®[f](X,J) € Z[X,J].
Coro. If j(7) is an algebraic integer, so is f(7).

= if f(z) € Kp and we know its conjugates, we are done!
Shimura’s reciprocity law tells us when f(z) is in Kp.

Use Schertz’s simplified formulation that also gives conjugates

of f(z).



What is a small invariant?

Def. 77 (P = ¥ (a; + b;w)X") = log(max{|a;|,|b:|}).
Prop. (Hindry & Silverman)

H(f(z)) _ deg,(P[f])

G denyep) ! T =D O

= we have a measure for the size of f(z) w.r.t. j(z).

= favor invariants with small deg, ®[f], e.g., deg, = 1 (i.e.,
g(X°(N)) = 0); degy ® = y(N).



B) Finding functions on I'Y(N): Newman’s lemma

Lemma. If N > 1 and (r,) is a sequence of integers such that

Zrd:()a

dN

N
Y dry=0mod24, Y — r;=0mod 24,
d|N d|N d

Hd}’d — t2

dN

with ¢ € Q*, then the function

g@) =[In(z/a)"

d|N
is @ modular function on I°(N).

nz) =q"* 11 —-qm.

m>1



Some studied (sub)families

Enge/Schertz:

c (nGnG)Y
mPlﬁpz(Z) (n(}jf[)Z)T](Z)) )

24

where ¢ = ged(24,(pi —1)(p2—1)) "

Generalized Weber functions (Enge+M.):

oty = (L0

n(z)

where ¢ =24/gcd(24,N — 1), s =2t if t is odd and not a square,
s =t otherwise; N = 2 classical, w, = f;, N =3 by A. Gee.



The genus 0 case
My =¢"N(1+...)and deg, = 1, (M) = 1/y(N).

Two cases:
» use generalized Weber for N — 1 | 24:

®[3*(X,J) = (X +16)° — JX,
®[l(X,J) = (X +27)(X +3)* -
®[d](X,J) = (X2+ 16X +16)% — JX(X + 16),

» Klein, Fricke (with nx = n(z/K)):
N | Sy ()
6| mgn; 'man;” 1/12
8 | ngn, *n3n, 1/12
10 | njons 'm2m; 1/18
12 | miyng ny maman | 1/24
16 | nigng 'man; 1/24
18 | nisn 'ng 'msman® | 1/36




Generalized Weber functions (Enge + M.)

Thm. If f is a Newman function for (V) and
B?> =D mod (4N), then f((—B++/D)/2) is a class invariant. Its
conjugates are given by a N-system a la Schertz.

A glimpse at our winter work: find all cases where {§,w¢ is
a class invariant for e | s. Needs: classification of N mod 12 +
extension of Schertz’s results.

Prop. (a) If N =5 mod 12 and 31D, then w3 is a class
invariant.

(b) If N =7 mod 12 and 21 D, then w% is a class invariant.

(c) If N =7 mod 12 and D = 88 mod 112, then {4w% is a class
invariant.

H nulld] =X+ (0 - 1)X-20-5;



Generalized Weber functions (2/2)

N =3 (compare Gee): use wj for

B D mod 36
0:1 0,12 1
0:1 | 9,21
1.3 |24

2:3 | 4,16,28
1:3 | 33

2:3 | 1,13,25

[N S R AN S

N =4:if D=1 mod 8, use 4 (c = 1/48).
N =25: for D a square mod 20, use toys (¢ = 1/30).

Much more results in our preprint.



Comparing the invariants

f c(f) deg;
e e({—1) s(N—1)
oy 24(0+1) 2
e(f— 21 .
L (54;) Gife>3
10¢ e(pr—1) s(p2=1)(p1—1)
p1p2 24(pa+1) 24
0° e(N—1+S(N)) | s(N—1+S(N))
N 24y(N) 24
e e(0—1)? o(¢-1)?
Wy N0+ 1) 1
fo¢ e(pi=D(p2=1) | opi=D(p2—1)
pur2 | T2(pi+1) (patl) 2

Rem. w, for prime ¢ > 3 is often better than w¢.




What is the smallest invariant?
Extension of Enge+M. of ANTSV:

? 0, oy 10273 102,97 g __ !

9%, = 7201 = 481 ° 376 = 147/4,8 > 361 = 361
_ e _ Wi _ My 16 1025 w313 MWy
— 36,1 T 36,1 T~ 36.1 > 32,6 > 30,1 > 28,2 T 282

g 0,2 W2 w2 w337 Wy 0361
> 27,12 > 132/5,5 > 26,7 > 51/2,12 > 76/3,6 — 76/3,15 > 124/5,10
S Ws7 Wy _ wp w3 w3

242 24.1 24,6 24,1 241

12 » J
> 317 21 7 1

j=1n="7-+1728.

t: Ramanujan (Konstantinou/Kontogeorgis 08, Enge 08) for
D=1 mod 12.



Looking for 1/96

Selberg+Abramovich+Bréker/Stevenhagen: for all f for
O(N), c(f) > 1/96.

Generalized Weber:
o 8 N—1+S(N)

Best value so far: 1/72 obtained with c(toy) = c(v},)!/* for
N=2,5s=24.

Enge/Schertz:

s oS (=D —1)
C(mplvpz) 12 (p1+1)(p2+1)

Rem. g(Xo(N)) ~ y(N)/12 and deg; > g(Xo(N)) + 1, so that



Looking for 1/96 (cont'd)

For prime N = ¢:

go(6) /) = EXEEL 2O =y (v

= ¢(f) =~ 1/12, since deg; > 2(g(X;(¢) +1).

Best values for Atkin’s minimal functions for X;(¢) (for
£ <2000):

14 71 | 131 | 191
c(f) || 1/36|1/33|1/32
deg; | 2 4 6
g 0 2 3

a1 = (02,19 —0435)/Mn71 (also obtainable by Atkin’s laundry
method). Usable as soon as (D/71) # —1.

Going further: use composite values of N (work in progress).



Using class invariants

procedure BUILDCMCURVE(p, D)
0. Compute Hp[u|(X) and ®[u|(X,J) (precomputation).
1. Compute a root uy of Hp[u|(X) =0 mod p.

2. Compute the set _# of all roots of ®[u](u,J) =0 mod p
and find one elliptic curve having j-invariant in _# which
has cardinality p+1—U.

Rem.
» Most favorable case when X, (N) is of genus 0.

» Some j can be discarded if we know that j — 1728 must be
a square, orj a cube.

» No need to compute ®[tvys], use P[w¢] together with
resultants.



IV. Finding the correct twist
Pb. Given p = (U> —DV?) /4, j, find an equation of

3j 2
E.:Y?=X? 2x 3
¢ T T s ¢

st #E.(F,) =p+1—U.

The actual Frobenius of the curve is # = (U + Vv/D) /2, and
w.l.o.g. |[U| = |U], so we need fix the sign.

Why bother? find a point P, check [m|P = Og (or even & — 1P
using rational CM formulas to get some speedup) and if not try
the twist.

» 1.5 curves tried on average; can be tricky to distinguish E
from E’ (cf. Mestre’s algorithm).

» If solving the problem can be done at no cost, do it! And it
involves nice mathematics (character sums, etc.).



A short history

» D= —4, D= —-3: many variants, starting with Gauss (of
course!).

» h=1: Rajwade et alii, Joux+M., Leprévost + M.,
Padma+Venkataraman, Ishii, etc.

» Stark (1996): ged(D,6) = 1, but needs y, and ;.

» M. (2007): use small torsion points; e.g., use to3 to get a
3-torsion point P; and compute action of 7 on Ps.

» Rubin & Silverberg (2009): all cases for D fundamental,
but use costly invariants (j or y3v/D); ok for small |D|’s

(precomputations), probably not for large |D|’s and on the
fly computations.



Rubin/Silverberg: the case |D|/4 =1 mod 4

With d = |D| /4, write
Hp[j](X) = fi(X) + Vd f5(X)

where deg(fi) = deg(f») = h/2. This is possible since 4 || D
implies D = (—4)q1---q-(—¢q,+1)---(—¢:) and

Vd=+/-D/\-1/2 € Ky.

Algorithm: fix § = v/d mod p and proceed with easy formulas
(cost ~ one modular exponentiation over F,).

To make this more efficient:

» replace j with any real invariant (using complex invariants
does not seem straightforward);

» factor HD[M] over K; = Q(\/ ’qi‘)lgl‘g;;
» use Galois theory over K.



Rubin/Silverberg: other cases

Solve the problem completely using minimal polynomial of
VEDy; (remember that y3()? = j(a) — 1728).

A particular case: in some cases, \/Dmf\{2 is a real class
invariant. Then use ws = w3(a)% or w; = w7 ()2, since

_ w3 18w —27  wh+ 14w§+67wg +70w3 —7
w3 w7

v(a)

see Weber; these are the only equations with wy and y; only.
Now rewrite
VDy(a) =D———.
VD)/?

Rem. The case /|D|y; seems more difficult.



V. Benchmarks

N; = 2072644824759 - 233333 L 5 N, = 59056921173 - 234030 1 7,
N3 = §(—4305)/(—1), Ny = Cycloazo12(10)

N N N N N
#dd 10047 10255 10342 10081
#steps 921 960 937 917
fime (d)| 86+ 32 44116 49+15 49113
mmod 4| (376+247)/286 (395+258)/288 (401+230)/288 (401+209)/284
954271591/14272 339174836/14400
D,h 3997096072]12080 ?ggéig%g?g 1 gg}{g Aol 108601428] 13520
91 10313 75 103 13 78 toys 80 tuys
69 f1/V2 | 81 1o 66 0315 | 58 o33
new 63 10337 48 149 59 Nig 56 1049
W] 39 §(=4D) | 41 1(=4D) | 45 w 50 Ny
" | 38 sy 37 Nig 40 §(—4D) | 43 §(—4D)
25 to3 6 34 2/V2 38 337 36 1337
19 2/v2 | 29 w33y 36 2/vV2 | 25 wg

D = 679224920: .43 + Galois needed 8869 s;

2+2+2+2+2+2+229 roots mod p33450, to0k 51097 s; [m]P 300 s.




More statistics

Nip: Luhn; N»: Jordan; N;: Broadhurst; Ns: Broadhurst2.

what Ny Ny N3 Ny

# steps 921 | 960 | 937 | 917
VD 255|155 | 159 | 14.8
find (D, h) 50 | 43 | 6.0 | 5.2
Cornacchia| 3.2 | 1.3 | 25 | 1.8
FKW 9.1 44 | 52 | 5.9
PRP 43.1 | 25,5 | 26.6 | 22.9
Hp 08 | 0.6 | 0.7 | 0.7
root Hp 279 | 14.0 | 13.0 | 11.5
Step 1 85.9 | 50.2 | 56.4 | 48.8
Step 2 31.8 | 16.1 | 15.2 | 134
Check 08 | 05| 06 | 0.6

Timings are in cumulated days on some AMD Athlon(tm) 64 Processor 3400+ (2.4 GHz).



Conclusions

» ECPP vs. crypto-CM: the present talk was biased
towards ECPP; different optimizations are claimed for by
crypto-CM.

» New invariants are being used in practice. Some more to
come (1/9677?). Wait for CRT method to be operational for
all of these.

» Some unsolved problems in ECPP: compute /(D) for a
batch of D € &; even more faster root finding?

» My programs: in the process of cleaning, new 13.8.7
arriving soon (SAGE?) —— yet another attempt at having
them survive without me (?).

Rem. More references on my web page.



IV. Can we use Montgomery/Edwards curves?

Twisted Edwards curve: ax?> +y?> =1 +dx%y?, ad #0
Unified and fast addition laws, complete if d is not a square

Montgomery form: E : By> = x> + Ax> +x,A # +2,B#0



IV. Can we use Montgomery/Edwards curves?

E(K) has a point of order 4
{ BeBiJoLaPe08
Twisted Edwards curve: ax?> +y?> =1 +dx?y?, ad #0
{ BeBiJoLaPe08

Montgomery form: E : By> = x> + Ax> +x,A # +2,B#0



IV. Can we use Montgomery/Edwards curves?

Kubert's view of X((4): Y = (X —4b) (X*+X —4b)
)
E(K) has a point of order 4
{ BeBiJoLaPe08
Twisted Edwards curve: ax?> +y?> =1 +dx?y?, ad #0
{ BeBiJoLaPe08

Montgomery form: E : By> = x> + Ax> +x,A # +2,B#0



Kubert (cont'd)

EHp: Y= (X —4b) (X>+X—4b).
&, has a point of order 2, (4b,0,1),
f1(X) =X (X —8b) (X* +2X° —24bX* + 128b°X — 2561°) .

Two rational roots: 0, which leads to two rational points
(0,+4b,1) and 8b, for which Y2 = 16b*(16b+ 1).

Rem. When 1+ 16b # 0, the corresponding Edwards curve is
complete (a unique rational 2-torsion point).

(1667 +16b+1)°
b*(16b+1)
Writing w = 1/b leads to
. (w2+ 16w+ 16)3
1= w(16+w)



Answering the question using the 2-volcano

2-torsion point < 2-isogeny; use Kohel’s thesis, Fouquet + M.

< ) 1, 0]
S
l 1,20]
/\ )
S S > [1,2%0]
//// Yoo Y o\ TTeo :
l\ A\ ) 1,2
\\\‘~‘_.~___. ___________ —_”’//,

Thm. A curve can be of complete Edwards type only if it is at
the floor of the volcano.

Rem. We can classify all D’s admitting a twisted Edwards
form.



Using complex multiplication formulas

Key equation for ECPP: [ — 1|P = O where 1 = A + Bo,
p = Norm(x) and [Al, |B| = \/p.
We can use

[t —1]P=[A—1]P&® B (|w]P)

If [0]P is easy to evaluate, we might gain a factor of 2.

-5 (2)

where deg(F) = deg(G) + 1 = Norm(®) = O(D).

We can use Stark’s method to compute F and G (over Ky or
F,). Complexity is O(DM(D)) for building F and G, evaluating
[@]P is O(D) multiplications plus one inversion. TODO: check
Usable if D is small and/or with precomputations.




