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Fast point scalar multiplication

Elliptic curve scalar multiplication

Elliptic curve over a finite fields: K a characteristic p field (with p > 3),
E (K) the set of points (x , y) ∈ K2 satisfying y2 = x3 + ax + b, with
a, b ∈ K.

Point scalar multiplication: P a point on E and k > 0, compute
[k]P = P + · · ·+ P (k times).

How to perform this operation as fast as possible?
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Fast point scalar multiplication

Scalar multiplication algorithms

Double-and-Add

k =
∑n−1

i=0 ki 2
i , n − 1 doublings and n/2 additions (on average)

k = 29 = 24 + 23 + 22 + 20 = 111012

P → 2P → 3P → 6P → 7P → 14P → 28P → 29P

Non-Adjacent Form (NAF)

k =
∑n−1

i=0 ki 2
i , ki ∈ {−1, 0, 1}, n doublings and n/3 additions (on

average)
NAF (29) = 25 − 22 + 20 = 1001012

P → 2P → 4P → 8P → 7P → 14P → 28P → 29P

wNAF

k =
∑n−1

i=0 ki 2
i , |ki | < 2w−1 n doublings , n/(w + 1) additions (on

average) and precomputations
3NAF (29) = 25 − 3× 20 = 1000032

P → 2P → 4P → 8P → 16P → 32P → 29P
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Yao’s exponentiation algorithm

Yao’s algorithm

Let k = kn−12n−1 + · · ·+ k12 + k0 with ki ∈ {0, 1, 3, . . . , 2w − 1}

Compute 2iP ∀i ≤ n − 1

d(1)P, . . . , d(2w − 1)P, where d(j) is the sum of the 2i such that
ki = j

kP is obtained as d(1)P + 3d(3)P + · · ·+ (2w − 1)d(2w − 1)P

It is equivalent to rewrite k as:

k = 1×
∑
ki =1

2i

︸ ︷︷ ︸
d(1)

+3×
∑
ki =3

2i

︸ ︷︷ ︸
d(3)

+ · · ·+ (2w − 1)×
∑

ki =2w−1

2i

︸ ︷︷ ︸
d(2w−1)
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Yao’s exponentiation algorithm

Yao’s algorithm

Example

Let k = 314159 = 100 0300 1003 0000 5007, n = 19 and 2w − 1 = 7.
k = 1× 218 + 3× (214 + 28) + 5× 23 + 7× 20

Compute

P . . . 23P . . . 28P . . . 211P . . . 214P . . . 218P

d(1)P =

211P + 218P

d(3)P =

28P + 214P

d(5)P =

23P

d(7)P =

P

kP = 7d(7)P + 5d(5)P + 3d(3)P + d(1)P

Same number of operations as the previous methods.
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The double-base number system

Double-base number system

Definition

k ≥ 0, k =
∑n

i=1 2bi 3ti

Properties

Such a representation always exists

It is highly redundant: 127 has 783 representations!

Some of them are very sparse (canonical representation)

Example

127 = 2233 + 2132 + 2030 = 108 + 18 + 1

431 is the smallest integer requiring four summands

18431, 3448733 and 1441896119 are the smallest integers requiring,
respectively, five, six and seven summands

Considered as not really efficient for scalar multiplication purposes.
N. Méloni (ECE, University of Waterloo) 05/12/09 7 / 18



The double-base number system

Double-base chains

Definition

Given k > 0, a sequence (Ci )i > 0 of positive integers satisfying:
C1 = 1, Ci+1 = 2bi 3ti Ci + di , with di ∈ {−1, 1}
for some bi , ti ≥ 0 and such that Cn = k for some n is called a
double-base chain computing k .

Example

k = 1717 = 2633 + 223 + 1

kP = 223(2432P + P) + P

2432P → 2432P + P → 2633P + 223P → 2633P + 223P + P

6 doublings and 3 triplings

N. Méloni (ECE, University of Waterloo) 05/12/09 8 / 18



A Yao-DBNS algorithm

Yao’s algorithm adapted to double-base number system

k = 2bn 3tn + · · ·+ 2b13t1

Compute 2iP ∀i ≤ bmax = maxi (bi )

For all j ≤ tmax , compute d(0)P, d(1)P, . . . , d(tmax )P, where d(j) is
the sum of the 2i such that ti = j

kP is obtained as: d(0)P + 3d(1)P + 32d(2)P + · · ·+ 3tmax d(tmax )P

It is equivalent to rewrite k as:

k =
∑
ti =0

2i

︸ ︷︷ ︸
d(0)

+3×
∑
ti =1

2i

︸ ︷︷ ︸
d(1)

+32 ×
∑
ti =2

2i

︸ ︷︷ ︸
d(2)

+ · · ·+ 3tmax ×
∑

ti =tmax

2i

︸ ︷︷ ︸
d(tmax )
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A Yao-DBNS algorithm

Yao’s algorithm adapted to double-base number system

Let k = 314159 = 21035 + 2835 + 21031 + 2232 + 32 + 2130

max(ai ) = 10 and max(bi ) = 5:

Compute

P . . . 2P . . . 22P . . . 28P . . . 210P

d(0)P =

2P

d(1)P =

210P

d(2)P =

P + 22P

d(5) =

28P + 210P

kP = 35d(5)P + 32d(2)P + 3d(1)P + d(0)P

= 3(3(33d(5]P + d(2)P) + d(1)P) + d(0)P

N. Méloni (ECE, University of Waterloo) 05/12/09 10 / 18
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A Yao-DBNS algorithm

Yao’s algorithm adapted to double-base number system

Remarks

We choose some bound over bmax and tmax so that 2bmax 3tmax ∼ k

Less restrictive than double-base chain approach

Comparison with double-base chains

Same number of doublings and triplings (because of the bounds)

Lower number of additions

N. Méloni (ECE, University of Waterloo) 05/12/09 11 / 18



Comparisons

Caching strategies

A point P is represented as (X : Y : Z ).

After an addition

A point addition involving P requires the computation of Z 2 and Z 3, one
usually caches those data to decrease the cost a new addition involving P
(from 11M+5S to 10M+4S).

After an doubling

Doubling P requires the computation of Z 2, One can caches those data to
decrease the cost a new addition involving P (from 11M+5S to 11M+4S).

The second case never happens chain based algorithms, a point is never
reused after being duplicated.
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Comparisons

Caching strategies

addition after doubling (dADD): addition of a point that has
already been doubled before

double addition after doubling (2dADD): addition of two points
that have already been doubled before

addition after doubling + readdition (dreADD): addition of a
point that has already been doubled before to a point that has been
added before

addition after doubling + mixed addition dmADD: addition of a
point that has already been doubled before to a point in affine
coordinate (i.e. Z = 1)
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Comparisons

Caching strategies

Curve shape ADD dADD 2dADD dreADD dmADD

3DIK 11M+6S 11M+6S 11M+6S 10M+6 7M+4S
Edwards 10M+1S 10M+1S 10M+1S 10M+1S 9M+1S

ExtJQuartic 7M+4S 7M+3S 7M+2S 7M+2S 6M+2S
Hessian 6M+6S 6M+6S 6M+6S 6M+6M 5M+6S

InvEdwards 9M+1S 9M+1S 9M+1S 9M+1S 8M+1S
JacIntersect 11M+1S 11M+1S 11M+1S 11M+1S 10M+1S

Jacobian 11M+5S 11M+4S 11M+3S 10M+3S 7M+3S
Jacobian-3 11M+5S 11M+4S 11M+3S 10M+3S 7M+3S

Table: New elliptic curve operations cost
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Comparisons

Performing tests

Methodology

For 160-bit scalars and all values of bmax and tmax such that 2bmax 3tmax is
160-bit integer.
For each curve and each set of parameters, we have:

generated 1000 pseudo random integers in {0, . . . , 2160 − 1},
converted each integer into DBNS using the corresponding
parameters,

counted all the operations involved in the point scalar multiplication
process.
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Comparisons

Performing tests
Curve shape DBL TPL ADD reADD dADD 2dADD

3DIK 43.50 73.43 1.20 0.64 16.10 3.49
Edwards 139.12 12.84 1.68 1.55 18.48 0.97

ExtJQuartic 139.12 12.84 1.68 1.55 18.48 0.97
Hessian 112.22 29.73 1.26 1.07 17.40 1.63

InvEdwards 139.12 12.84 1.68 1.55 18.48 0.97
JacIntersect 142.19 10.94 2.40 1.64 17.71 0.81

Jacobian 130.10 18.71 1.43 1.09 18.36 1.11
Jacobian-3 130.10 18.71 1.43 1.09 18.36 1.11

2reADD dreADD mADD dmADD mreADD

0.01 0.29 0.66 0.45 0.01
0 0.01 1.59 0.22 0.01
0 0.01 1.59 0.22 0.01

0.01 0.17 1.07 0.28 0.03
0 0.01 1.59 0.22 0.01
0 0.13 2.22 0.29 0.03
0 0.14 1.31 0.25 0.03
0 0.14 1.31 0.25 0.03

Table: Detailed operation count for the Yao-DBNS scalar multiplication using
160-bit scalar
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Comparisons

Curve shape Method bmax tmax # group operations

3DIK
DB chain1 80 51 1502.4
Yao-DBNS 44 74 1477.3

Edwards
DB chain 156 3 1322.9
Yao-DBNS 140 13 1283.3

ExtJQuartic
DB chain 156 3 1311.0

(2,3,5)NAF2 131 12 1226.0
Yao-DBNS 140 13 1210.9

InvEdwards
DB chain 156 3 1290.3

(2,3,5)NAF 142 9 1273.8
Yao-DBNS 140 13 1258.6

Jacobian-3
DB chain 100 38 1504.3

(2,3,5)NAF 131 12 1426.8
Yao-DBNS 131 19 1475.3

Table: Optimal parameters and operation count for 160-bit scalars

1D. J. Bernstein and P. Birkner and T. Lange and C. Peters, Optimizing Double-Base
Elliptic-Curve Single-Scalar Multiplication , 2007

2P. Longa and C. Gebotys, Setting Speed Records with the (Fractional) Multibase
Non-Adjacent Form Method for Efficient Elliptic Curve Scalar Multiplication, 2009
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Conclusions

Conclusions

Yao-DBNS algorithm is less restrictive than double-base chains and
faster

Works with any other double base system

What about multi-base number systems ...

... and multi-scalar multiplication ?

Thanks
nmeloni@vlsi.uwaterloo.ca

http://www.vlsi.uwaterloo.ca/~nmeloni/
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