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Do you know how to add on a circle?

-

Let K be a field with 2 £ 0. Yy
Circle: {(z,y) € K x K|2* +y* =1}
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Do you know how to add on a circle?

-

Let K be a field with 2 £ 0. Yy T

Circle: {(z,y) € K x Kl|a? + 4% =1}
T; = Sln(Oé@'), Y; = COS(&i) P2 — (x27y2)
a2
Pl — (xlvg
€I
P3 = (x3,y:
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Do you know how to add on a circle?

-

Let K be a field with 2 £ 0. Yy T

Circle: {(z,y) € K x K|2* +y* =1}
xi = sin(a;), y; = cos(a) Py = (x2,149)
. sz |
r3 = SlIl(CVl + 042) Py = (3717@
= sin(aq) cos(ag) 4 cos(aq) sin(as) Z
ys = cos(a] + ag) Py = (w3, u:

(
= cos(aq) cos(ag) — sin(aq ) sin(as)

Addition of angles defines commutative group law
(z1,91) + (22, y2) = (x3,y3), Where

L T3 = T1Y2 + Y122 and Ys = Y1y — r1I2.

|
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Cryptography on thecircle

e (0,1)isata=0.Then (0,1) +Q =Q+(0,1) = Q. -
® R=(0,—1)Iis atangle 180°. Then 2|R =
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Cryptography on thecircle

e (0,1)isata=0.Then (0,1) +Q =Q+(0,1) = Q. -
® R=(0,—1)is at angle 180°. Then [2]R =(0, 1).
# What is the order of (1,0)?
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Cryptography on thecircle

e (0,1)isata=0.Then (0,1) +Q =Q+(0,1) = Q. -
® R=(0,—1)is at angle 180°. Then [2]R =(0, 1).
o What is the order of (1,0)? [2](1,0) = (0, —1).
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Cryptography on thecircle

(0,1)is ata = 0. Then (0,1) + Q = Q + (0,1) = Q. ]
R =(0,—1) is at angle 180°. Then [2]R =(0, 1).

What is the order of (1,0)? [2](1,0) = (0, —1).

Negative of (z,y) is (—z,y).

These observations are clear from the angles on the

circle, e.g. (f f) IS at 45° and has order 8.

How about S = (2, 3)?

|
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Cryptography on thecircle
(0,1)isata = 0. Then (0,1) + Q = Q + (0,1) = Q. -

o
® R=(0,—1)is at angle 180°. Then [2]R =(0, 1).
o What is the order of (1,0)? [2](1,0) = (0, —1).
o Negative of (z,y) IS (—x,y).
#® These observations are clear from the angles on the
circle, e.g. (f f) IS at 45° and has order 8.
» How about S = (£,2)? Compute [2]5:
24 __ 414 33 _ 7
L3 = 55+55 250 43 — 55 7 55 — 25

__ 244 | 73 103 __ 74 243 _ =54
3] = [2]5 + St 3 —255+255—125,y3—255 555 — 195 -
S
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Now add on an €liptic curve

. Let K be a field with 2 £ 0. Let d € K with d #0,1. ¥ o
Edwards curve (nice form of elliptic curve):

{(z,y) € K x K[2® +y* = 1 +da*y?}

Harold M. Edwards,
(Bulletin of the AMS, 44, 393-422, 2007)
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Now add on an €liptic curve

. Let K be a field with 2 £ 0. Let d € K with d #0,1. ¥ o
Edwards curve (nice form of elliptic curve):

{(z,y) € K x K[2® +y* = 1 +da*y?}

Harold M. Edwards,
(Bulletin of the AMS, 44, 393-422, 2007)

Associative operation on points

(z1,91) + (72, y2) = (23,93)
defined by Edwards addition law

Y1y2 — 12
1 — drizoy1ye

_ 21y + Y122
1 + dz122y192

T3 and y3 =
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Now add on an €liptic curve

. Let K be a field with 2 £ 0. Let d € K with d #0,1. ¥ o
Edwards curve (nice form of elliptic curve):

{(z,y) € K x K[2® +y* = 1 +da*y?}

Harold M. Edwards,
(Bulletin of the AMS, 44, 393-422, 2007)

Associative operation on points

(z1,91) + (72, y2) = (23,93)
defined by Edwards addition law

Y1y2 — 12
1 — drizoy1ye

_ 21y + Y122
1 + dz122y192

T3 and y3 =

# Neutral element is
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Now add on an €liptic curve

. Let K be a field with 2 £ 0. Let d € K with d #0,1. ¥ o
Edwards curve (nice form of elliptic curve):

{(z,y) € K x K[2® +y* = 1 +da*y?}

Harold M. Edwards,
(Bulletin of the AMS, 44, 393-422, 2007)

Associative operation on points

(z1,91) + (72, y2) = (23,93)
defined by Edwards addition law

Y1y2 — 12
1 — drizoy1ye

_ 21y + Y122
1 + dz122y192

o Neutral elementis (0, 1) (like on circle).
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Now add on an €liptic curve

. Let K be a field with 2 £ 0. Let d € K with d #0,1. ¥ o
Edwards curve (nice form of elliptic curve):

{(z,y) € K x K[2® +y* = 1 +da*y?}

Harold M. Edwards,
(Bulletin of the AMS, 44, 393-422, 2007)

Associative operation on points

(z1,91) + (72, y2) = (23,93)
defined by Edwards addition law

Y1y2 — 12
1 — drizoy1ye

_ 21y + Y122
1 + dz122y192

o Neutral elementis (0, 1) (like on circle).

\—" —(x1,y1) — J
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Now add on an €liptic curve

. Let K be a field with 2 £ 0. Let d € K with d #0,1. ¥ o
Edwards curve (nice form of elliptic curve):

{(z,y) € K x K[2® +y* = 1 +da*y?}

Harold M. Edwards,
(Bulletin of the AMS, 44, 393-422, 2007)

Associative operation on points

(z1,91) + (72, y2) = (23,93)
defined by Edwards addition law

Y1y2 — 12
1 — drizoy1ye

_ 21y + Y122
1 + dz122y192

o Neutral elementis (0, 1) (like on circle).

T3 and y3 =

L’ —(z1,y1) =(—z1,v1) (like on circle). J
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Nice features of the addition law

~» Neutral element of addition law is affine point, this
avoids special routines (for (0, 1) one of the inputs or the

result).
# Addition law is symmetric in both inputs.

T1Yo + Y102 Y1Y2 — T1T2 )
1 4+ drizoyiye’ 1 — drizoy1ys

o P+Q—<

| |
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Nice features of the addition law

~» Neutral element of addition law is affine point, this
avoids special routines (for (0, 1) one of the inputs or the

result).
# Addition law is symmetric in both inputs.

T1Yo + Y102 Y1Y2 — T1T2 )
1 4+ drizoyiye’ 1 — drizoy1ys

o P+Q—<

o (2P ( T1Y1 + Y121 | Y1y1 — 121 >
1 +driziyiyn 1 — dririyin
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Nice features of the addition law

~» Neutral element of addition law is affine point, this
avoids special routines (for (0, 1) one of the inputs or the

result).
# Addition law is symmetric in both inputs.

T1Y2 + Y1T2  Y1y2 — T1T2 )

®» P+(Q= :
¢ <1 + driroy1ye 1 — dr1Toy1Y9

- [2] _ ( T1Y1 + Y121 Yyi1yis — xri1x1 >
1 +driziyiyr 1 —driziyiyn )

# If dis not a square in K the denominators 1 + dzizoy1yo
and 1 — dzi1xoy1y2 are never 0; addition law is complete.
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Explicit formulas; addition

T1Y2 + Y12 Y1y2 — T1T2 > T
1 +drizoyiya’ 1 —drizayiye )

# Avoid inversions: Use (X; : Yy : Z7) with Z; #£01to
represent (z1,y1) = (X1/21,Y1/21), 1. e.,
(X1 YT Zl) = ()\Xl T AYT )\Zl) for A ;é 0.

# Addition formulas in projective coordinates:
A = Z1-Zy; B=A% C=X,-Xy; D=Y] - Yo:

® (r1,91) + (22,92) = (

F = d-C-D; F=B—-—FE, G=B+FE;
Xs = A-F-(X14+Y) (Xo+Ys)—C—D);
Ys = A-G-(D—-C);
Z3 = F.G.
# Needs 10M + 1S + 1D + 7A.

|
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Faster dedicated doubling

T1Y1 +Y1T1 Y1yl — T1T1 > T
1 +driziyiyr’ 1 — dziziyi

_ ( 22191 ye — >
L+ d(ziyn)? 1 —d(z1y1)?

® (r1,91) + (T1,91) = (

| |
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Faster dedicated doubling

T1Y1 +Y1T1 Y1yl — T1T1 > T
1 +driziyiyr’ 1 — dziziyi

_ ( 22191 ye — >
L+ d(ziyn)? 1 —d(z1y1)?

Use curve equation z2 + y? = 1 + dz?y>.

® (r1,91) + (T1,91) = (
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Faster dedicated doubling

T1Y1 +Y1T1 Y1yl — T1T1 > T
1 +driziyiyr’ 1 — dziziyi

_ ( 22191 ye — >
L+ d(ziyn)? 1 —d(z1y1)?

_ ( 2211 yi — 2 )
vi+yi 2 - (a1 +u7)

® (r1,91) + (T1,91) = (
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Faster dedicated doubling

T1Y1 +Y1T1 Y1yl — T1T1 > T
1 +driziyiyr’ 1 — dziziyi

_ ( 22191 ye — >
L+ d(ziyn)? 1 —d(z1y1)?

_ ( 2211 yi — 2 )
vi+yi 2 - (a1 +u7)

# Doubling formulas in projective coordinates:
B = (X1+%1)% C=X{; D=Y{;
E = C+D; H=7% J=FE—2H;
X3 = (B=—E)-J;Ys=FE-(C—-D); Z3=F-J.
L’ Needs 3M + 4S + 6A. J

® (r1,91) + (T1,91) = (
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Fast addition law

Very fast point addition 10M + 1S + 1D. Even faster withj
Inverted Edwards coordinates (9M+1S+1D) and
Extended Edwards coordinates (8M+1S+1D).

Dedicated doubling formulas need only 3M + 4S.
Fastest scalar multiplication in the literature.

For comparison: IEEE standard P1363 provides “the
fastest arithmetic on elliptic curves” by using Jacobian
coordinates on Weierstrass curves.

s Point addition 12M + 4S.
s Doubling formulas need only 4M + 4S.

For more curve shapes, better algorithms (even for
Welerstrass curves) and many more operations (mixed
addition, re-addition, tripling, scaling,...) see

www. hyperel |1 ptic. org/ EFD. J
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Relationship to elliptic curves

Every elliptic curve with point of order 4 is birationally
equivalent to an Edwards curve.

Let Py = (uq,vq) have order 4 and shift v s.t. 2P, = (0,0).
Then Weierstrass form:

v? = u’ + (vFJui — 2ug)u® + udu.
Define d = 1 — (4uy/vy).

The coordinates x = vqu/(uqv), y = (v — uq)/(u + uyg)
satisfy

2 4+ y* =1+ do?y°.
Inverse map v = us(1+y)/(1 —y), v=v4u/(usz).

Finitely many exceptional points. Exceptional points
have v(u + uq) = 0.

Addition on Edwards and Welerstrass corresponds. J
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Exceptional points of the map

Points with v(u + us) = 0 on Weierstrass curve mapto
points at infinity on desingularization of Edwards curve.

Reminder: d = 1 — (4uj /v3).

u = —uy IS u-coordinate of a point iff

(—us)® + (vf fuf — 2uq)(ug)? + uj(ug)
= vj —4duy = vid
IS a square, I. e., Iff d is a square.

v = 0 corresponds to (0,0) which maps to (0,—1) on
Edwards curve and to solutions of
u? + (v /uf — 2ug)u + uf = 0. Discriminant is

(Ui/ui — 2u4)2 — 42& — vflld,

i. e., points defined over K iff d is a square. -
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Complete addition law

Previous slide shows that for d # O in K all points of thej
Welerstrass curve map to the affine part of the Edwards
curve; where we extend the map by P,, — (0,1) and

(0,0) — (0,—1).

Geometric description: The other missing points from
the Welerstrass curve correspond to the blow-ups of
(1:0:0)and (0:1:0)onthe Edwards curve. They
blow up to two points each on the desingularization of
the curve. On both the Welerstrass and the Edwards
side these points are defined over K (v/d).

Attention: Having no K-rational points at infinity does
not guarantee that the formulas are complete:

(23,43) = ((m1y1 + 2y2) /(T122 + Y192), (T1Y1 — T2y2)/(T1Y2 — Y172))

|

IS addition on Edwards curve ... and fails for doublings. J
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Twisted Edwards curves

Eoa: ax’ + y2 =1+ aleyQ7 T

with a,d € K*, a # d.

K

>

°

Isomorphic to plain Edwards curve Eq 4/, for a = [J.

Set of twisted Edwards curves invariant under quadratic
twists.

Addition formulas very similar to Edwards curves

_ T1y2 + Y122
1 + dz12211902

Y1y2 — axr1x
1 — drizoy1ye

xs3 and Y3 =

Arithmetic complete only for « = [, d # .

Operation count same as Edwards (except for 1A in
DBL and ADD). J
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Generality of twisted Edwards curves

f.o Edwards curves require point of order 4; this happens T

for about 1/3 of all isomorphism classes if p = 1 mod 4
and for about 3/8 if p = 3 mod 4

Twisted Edwards curves have order divisible by 4.

For p = 1 mod 4 twisted Edwards curves cover all
curves with order divisible by 4, i.e. curves with
subgroups isomorphic to Z/2 x Z /2 or Z /4.

For p = 3 mod 4 twisted Edwards curves cover exactly
the same as Edwards curves, i.e. they require Z /4.

Montgomery curves are birationally equivalent to
twisted Edwards curves.

Use 2-isogenies to cover all curves with 4 | #E(IF,).
(Upcoming preprint: complete addition for all curves.) J
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Understanding Edwar ds addition

~» The Gauss/Euler example (d = —1) B
IS mentioned in some books.

# Edwards generalized this single
example to whole class of curves;

# showed how to do arithmetic
on this curve;

# gives several proofs of the
addition law, e.g. algebraically;
via holomorphic differentials;
via algebraic variations.

# does not give any
geometric interpretation.

® But does have much more! Bulletin of the AMS, 44,

. 393-422, 2007 L
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Geometric addition law

f.o Would like to find function g p depending Y T
on two input points P, R such that

diV(gR,p) — ;1 =R+P—-0 —

where O = (0,1) and R + P is the
Edwards sum of R + P.

| |
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Geometric addition law

Would like to find function g p depending Y T
on two input points P, R such that

div(grp) =% =R+ P -0~ (R+P),
where O = (0,1) and R + P is the
Edwards sum of R + P.

Equation has degree 4, so expect
4 deg( f) Intersection points by intersection
with function f.

Functions f; cannot be linear generically (would have 4
Intersection points; need to eliminate 2 out of each).

Quadratic functions f; could offer enough freedom of
cancellation (8 intersection points).

Problem: conic is determined by 5 points; not enough J

control over intersection points.
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Conic sections

Solution: observe that points at infinity €2 = (1:0: 0) T
and Q2 = (0 : 1:0) are singular and have multiplicity 2.

Conic determined by passing through the 5 points

R, P, (0,—1),Q1, and Q5 has only one more intersection

point Q; then Q@ = —(R + P).

Use f> to “replace” (0, —1) by (0,1) and —(R + P) by

R+ P = (X3 Y3 Zg), l.e. put
f2 K lz, with 1 =23 — Y37 and [o = X.

Conic through (0, —1), Q;, and Qs has shape
C:cpnp(Z*+Y2)+cexy XY +exzXZ =0,

where (CZ2 I CXY - CXZ) c PQ(K). J
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Theorem

@) fP £ Py, P+ 0 and P, # O, then ]

Cy2 = XlXQ(Y1Z2 — YQZl),
cxy = Z1Z2(X122 — XoZ1+ X1Ys — XoY7),
Cxy = X2Y2Z12 — X1Y1222 —+ Y1Y2(X2Z1 — Xlzz).

(b) If P, # P, = O, then
Cpz = —X1, Cxy = 41, Cxz = £1.
(c) If P, = P, then

Cyz2 = X1Z1(Zl—Y1),
cxy = dX#Y, - 73,

B cxz = ZU(Z1Y) —aX?). o
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Pictures|

LAddition and doubling over R for d < 0. J
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Pictures ||

LAddition and doubling over R for d > 1. J
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Pictures |||

LAddition and doubling over R for 0 < d < 1.
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What isthis good for?

f # Understanding the addition law. T
o Efficient arithmetic

| |
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What isthis good for?

f # Understanding the addition law. T
o Efficient arithmetic — not really.

| |
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What isthis good for?

f # Understanding the addition law. T
o Efficient arithmetic — not really.

# Addition procedures are not complete. (Conic for
addition is independent of curve while that for doubling
needs tangent.)

| |
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What isthis good for?

Understanding the addition law. T
Efficient arithmetic — not really.

Addition procedures are not complete. (Conic for
addition is independent of curve while that for doubling
needs tangent.)

Pairings! Tate pairing:

(P,Q) — fp(@)® /",
where P ¢ E(IF,)|r|, £ has embedding degree k with
respect to r, and div(fp) = rP — rQO.
Miller’s algorithm computes fp(Q)) iteratively using gr p.

All sorts of tricks available to speed up computation of
Tate pairing.
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Previous attempts

fDas, Sarkar [Pairing 2008]: T

# Map points to a curve in Welerstrass form using
birational map and compute pairing there.

# Express functions gr g and gr p in the Miller loop by
transformation to Montgomery form.

# Explicit formulas for supersingular curves with k& = 2.

lonica, Joux [Indocrypt 2008]:
# Compute Miller functions on a curve

viu = (14 du)?® — 4u.

# Actually compute 4th power of the Tate pairing.
~» Explicit formulas for even k. -
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Miller’salgorithm

fLet k > 1 be the embedding degree of £ w.r.t. r,

P e E(IFy)[r], Q € E(IF ),
r=(r_1,...,71,70)2-

Compute the Tate pairing as:
1. R— P, f+1
2. fori=1—2to0do
@) f— f* 9rr(Q), R 2R

(b) if r;, = 1 then
f<Ff 9rp(Q), R—R+P

3. f e & -1)/m

|

C. Aréne & T. Lange & M. Naehrig & C. Ritzenthaler

//doubling step

//addition step
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Miller function on twisted Edwar ds curves

fAssume an even embedding degree k. T
» Represent IF . = TF 2 () Where a* = § € F s,
# Use quadratic twist Ej, 54(IF,+/2) to represent second
pairing argument @ = ¥ (Q’):
Vi Esqsa(lFpe2) —  Ega(IFpe),
Q" = (v0,90) + (Toa,yo)-
® Here yo € IF /2 lies In a proper subfield of IF .

# In Miller’s algorithm compute

2 - gr.r(1(Q")) (doubling step) and
f9rp((Q")) (addition step).

| |
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Miller function on twisted Edwar ds curves

f.o Compute T

h1 B sz(l + yo) + CcxyToyo + Cx 7T
—(330047 yO) T
l112 (Z3yo — Y3)zpx
_ Cz2 %Oé T+ CxXYYo + CXz
Z3yo — Y3 ’

where (X3 : Y3 : Z3) are the coord. of 2|R or R + P,

® in 2(k/2)m over IF, given the coefficients c2, cxy, cxz
and precomputed n = 1L

o0

# Note that Z3yg — Y3 € I /2. Discard it since final
exponentiation maps it to 1 anyway.

| |
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Pairing-friendly Edwards curves
|7How to get Edwards curves with small embedding degree? T

# Construct pairing-friendly curves in Weierstrass form
and then transform to Edwards or twisted Edwards
form.

# Only requirement is that the group order is a multiple of
4.

# |f have a point of order 4, get plain Edwards curve.

# If not, get twisted Edwards curve. Can be transformed
to plain Edwards form by using 2-isogenies.

| |
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Pairing-friendly Edwards curves

-

® Need curves with 4 | #E(IF,).

#® Use generalized MNT construction for curves with
cofactor 4 as done by Galbraith, McKee, Valenca.

# Parameterizations for embedding degree £ = 6 and
cofactor 4.

Case q(0) t(0) n({)
1 1602 + 100 + 5 20 +2 | 402 +20+1
11202 + 540+ 7 | 140+4 | 2802 +10¢ + 1
11202 + 86/ + 17 | 14046 | 2802 +18¢+ 3
20802 +300+1 | —260 — 2| 520% + 140 + 1
20802 + 126/ + 19 | —26¢ — 8 | 52¢? + 38¢ + 7

| |
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Pairing-friendly Edwards curves

| N

# First solve the norm equation
t(0)? — 4q(¢) = —Dv*.
# Case 1 inthe table:
t(0) =20+ 2, q(f) = 160> + 100 + 5

Transform equation into corresponding Pell equation by
completing the square:

t(0)* —4q(0) = —Dy* — 2°—15Dy* = —44,

where x = 15/ + 4.

| |
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Pairing-friendly Edwards curves

f.o Constructed curves over I, have order T
#E(IF),) = 4hr

for a prime r and cofactor h.
# Since embedding degree is fixed to 6, balance the

DLPs; ECRYPT report on key sizes suggests the
following bitsizes:

r D p6 h

160 | 208 | 1248 | 46
192 | 296 | 1776 | 102
224 | 405 | 2432 | 179
256 | 541 | 3248 | 283
t__ 512 | 2570 | 15424 | 2056 __J
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Examples

D=1, [log(n)] =363, [log(h)] =7, [log(p)] = 371 N

p = 32428903728427434871960638456028409162281939582432575945
30632153559402628010019946681624958973937239637420169141,

n = 11105788948091587284918026868502879850096554651518005460
623832064312035897815509951488907964532000965993787241,

h = 73,

d = 16214451864213717435980319228014204581140969791216287972
65316076779701314005009973340812479486968619818710084571.

D = 7230, [log(n)| = 165, [log(h)| = 34, [log(p)| = 201

p = 205161366376812960609358343287588739841530196222749018750880
n = 44812545413308579913957438201331385434743442366277,

h = 7-733-2230663,

d = 889556570662354157210639662153375862261205379822879716332449

E)y example in Barreto, Lynn, Scott with k = 12, D = 13188099.J
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|

Explicit formulas

-

Use explicit formulas with extended Edwards
coordinates by Hisil, et. al. [Asiacrypt 2008] for point
doubling and addition in Miller’s algorithm.

Can reuse large parts of the computation for
coefficients of the conic.

Use even embedding degree and quadratic twist to
represent second pairing argument @), I.e.
multiplications with coordinates zg and y¢ cost k/2

multiplications in IF,,.

Compute conic coefficients in doubling step with
6m + 5s + 1my,, In addition step with 14m + 1m, (mixed
addition 12m + 1my).
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Comparison

| N

DBL MADD ADD
J Im + 11s + 1mg,, | 9m + 3s —
J, a4 = —3 Tm + 4s O9m + 3s —
J,a4 =0 o6m + 5s 9m + 3s —
E 8m + 4s + 1my 14dm +4s+ 1mgq | —
&, this paper | 6m + 5s + 1m, 12m + 1my, 14m + 1my,

| |

C. Aréne & T. Lange & M. Naehrig & C. Ritzenthaler Pairings on Edwards Curves — p. 3:



Comparison

| N

DBL mMADD ADD

J Im + 11s + 1mg,, | 9m + 3s —

this paper Im+ 11s + 1m,, | 6m + 6s 15m + 6s

J, a4 = —3 Tm + 4s O9m + 3s —

this paper 6m + 5s 6m + 6s 15m + 6s
J,a4 =0 6m + 5s 9m + 3s —

this paper 3m + 8s 6m + 6s 15m + 6s

& 8m + 4s + 1my 4dm+4s+ 1mgq | —

£, this paper | 6m + 5s + 1m, 12m + 1m, 14m + 1lm,

- .
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Thank you for your attention!

-

| |
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