Pairings on Edwards Curves

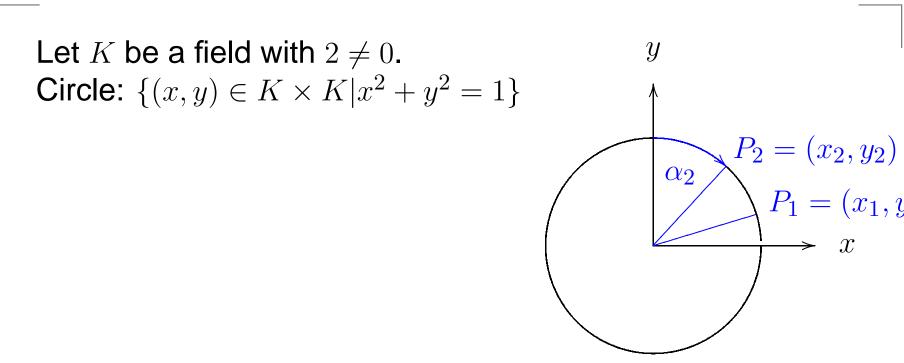
Tanja Lange Technische Universiteit Eindhoven tanja@hyperelliptic.org

15.05.2009

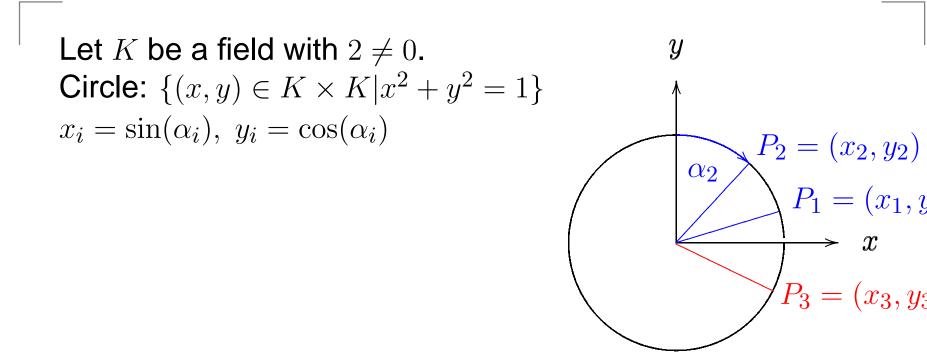
Joint work with Christophe Arène (IML), Michael Naehrig (TU/e), and Christophe Ritzenthaler (IML)

C. Arène & T. Lange & M. Naehrig & C. Ritzenthaler

Do you know how to add on a circle?

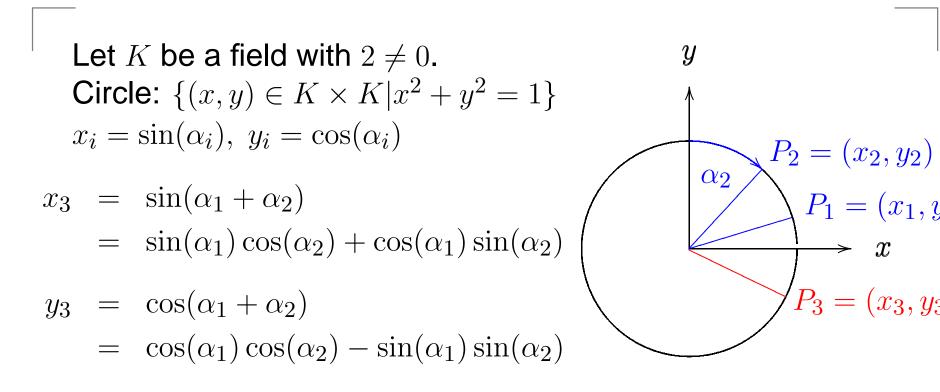


Do you know how to add on a circle?



C. Arène & T. Lange & M. Naehrig & C. Ritzenthaler

Do you know how to add on a circle?



Addition of angles defines commutative group law $(x_1, y_1) + (x_2, y_2) = (x_3, y_3)$, where

 $x_3 = x_1y_2 + y_1x_2$ and $y_3 = y_1y_2 - x_1x_2$.

C. Arène & T. Lange & M. Naehrig & C. Ritzenthaler

- (0,1) is at $\alpha = 0$. Then (0,1) + Q = Q + (0,1) = Q.
- ▶ R = (0, -1) is at angle 180°. Then [2]R =

C. Arène & T. Lange & M. Naehrig & C. Ritzenthaler

- (0,1) is at $\alpha = 0$. Then (0,1) + Q = Q + (0,1) = Q.
- ▶ R = (0, -1) is at angle 180°. Then [2]R = (0, 1).
- What is the order of (1,0)?

- (0,1) is at $\alpha = 0$. Then (0,1) + Q = Q + (0,1) = Q.
- ▶ R = (0, -1) is at angle 180°. Then [2]R = (0, 1).
- What is the order of (1,0)? [2](1,0) = (0,-1).

- (0,1) is at $\alpha = 0$. Then (0,1) + Q = Q + (0,1) = Q.
- R = (0, -1) is at angle 180°. Then [2]R = (0, 1).
- What is the order of (1,0)? [2](1,0) = (0,-1).
- Negative of (x, y) is (-x, y).
- These observations are clear from the angles on the circle, e.g. $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ is at 45° and has order 8.

• How about
$$S = (\frac{3}{5}, \frac{4}{5})$$
?

- (0,1) is at $\alpha = 0$. Then (0,1) + Q = Q + (0,1) = Q.
- R = (0, -1) is at angle 180°. Then [2]R = (0, 1).
- What is the order of (1,0)? [2](1,0) = (0,-1).
- Negative of (x, y) is (-x, y).
- These observations are clear from the angles on the circle, e.g. $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ is at 45° and has order 8.
- How about $S = (\frac{3}{5}, \frac{4}{5})$? Compute [2]S: $x_3 = \frac{3}{5}\frac{4}{5} + \frac{4}{5}\frac{3}{5} = \frac{24}{25}, y_3 = \frac{4}{5}\frac{4}{5} - \frac{3}{5}\frac{3}{5} = \frac{7}{25}$ [3]S = [2]S + S: $x_3 = \frac{24}{25}\frac{4}{5} + \frac{7}{25}\frac{3}{5} = \frac{103}{125}, y_3 = \frac{7}{25}\frac{4}{5} - \frac{24}{25}\frac{3}{5} = \frac{-54}{125}$.

• For $p \equiv 3 \mod 4$ the clock modulo p gives $T_2(\mathbb{F}_p)$.

Let *K* be a field with $2 \neq 0$. Let $d \in K$ with $d \neq 0, 1$. *Y* Edwards curve (nice form of elliptic curve):

 $\{(x,y) \in K \times K | x^2 + y^2 = 1 + dx^2 y^2\}$

Harold M. Edwards, (Bulletin of the AMS, 44, 393–422, 2007)

Let *K* be a field with $2 \neq 0$. Let $d \in K$ with $d \neq 0, 1$. *Y* Edwards curve (nice form of elliptic curve): $\{(x, y) \in K \times K | x^2 + y^2 = 1 + dx^2y^2\}$ Harold M. Edwards, (Bulletin of the AMS, 44, 393–422, 2007) Associative operation on points $(x_1, y_1) + (x_2, y_2) = (x_3, y_3)$ defined by Edwards addition law

$$x_3 = \frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}$$
 and $y_3 = \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}$

Let *K* be a field with $2 \neq 0$. Let $d \in K$ with $d \neq 0, 1$. *Y* Edwards curve (nice form of elliptic curve): $\{(x, y) \in K \times K | x^2 + y^2 = 1 + dx^2y^2\}$ Harold M. Edwards, (Bulletin of the AMS, 44, 393–422, 2007) Associative operation on points $(x_1, y_1) + (x_2, y_2) = (x_3, y_3)$ defined by Edwards addition law

$$x_3 = \frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2} \text{ and } y_3 = \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}$$

Let *K* be a field with $2 \neq 0$. Let $d \in K$ with $d \neq 0, 1$. *Y* Edwards curve (nice form of elliptic curve): $\{(x, y) \in K \times K | x^2 + y^2 = 1 + dx^2y^2\}$ Harold M. Edwards, (Bulletin of the AMS, 44, 393–422, 2007) Associative operation on points $(x_1, y_1) + (x_2, y_2) = (x_3, y_3)$ defined by Edwards addition law

$$x_3 = \frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}$$
 and $y_3 = \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}$.

• Neutral element is (0,1) (like on circle).

Let *K* be a field with $2 \neq 0$. Let $d \in K$ with $d \neq 0, 1$. *Y* Edwards curve (nice form of elliptic curve): $\{(x, y) \in K \times K | x^2 + y^2 = 1 + dx^2y^2\}$ Harold M. Edwards, (Bulletin of the AMS, 44, 393–422, 2007) Associative operation on points $(x_1, y_1) + (x_2, y_2) = (x_3, y_3)$ defined by Edwards addition law

$$x_3 = \frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}$$
 and $y_3 = \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}$.

• Neutral element is (0,1) (like on circle).

•
$$-(x_1, y_1) =$$

C. Arène & T. Lange & M. Naehrig & C. Ritzenthaler

Let *K* be a field with $2 \neq 0$. Let $d \in K$ with $d \neq 0, 1$. *Y* Edwards curve (nice form of elliptic curve): $\{(x, y) \in K \times K | x^2 + y^2 = 1 + dx^2y^2\}$ Harold M. Edwards, (Bulletin of the AMS, 44, 393–422, 2007) Associative operation on points $(x_1, y_1) + (x_2, y_2) = (x_3, y_3)$ defined by Edwards addition law

$$x_3 = \frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}$$
 and $y_3 = \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}$.

• Neutral element is (0,1) (like on circle).

•
$$-(x_1, y_1) = (-x_1, y_1)$$
 (like on circle).

C. Arène & T. Lange & M. Naehrig & C. Ritzenthaler

Nice features of the addition law

- Neutral element of addition law is affine point, this avoids special routines (for (0,1) one of the inputs or the result).
- Addition law is symmetric in both inputs.

$$P + Q = \left(\frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}, \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}\right)$$

Nice features of the addition law

- Neutral element of addition law is affine point, this avoids special routines (for (0, 1) one of the inputs or the result).
- Addition law is symmetric in both inputs.

•
$$P + Q = \left(\frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}, \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}\right)$$

• $[2]P = \left(\frac{x_1y_1 + y_1x_1}{1 + dx_1x_1y_1y_1}, \frac{y_1y_1 - x_1x_1}{1 - dx_1x_1y_1y_1}\right).$

Nice features of the addition law

- Neutral element of addition law is affine point, this avoids special routines (for (0,1) one of the inputs or the result).
- Addition law is symmetric in both inputs.

•
$$P + Q = \left(\frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}, \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}\right)$$

• $[2]P = \left(\frac{x_1y_1 + y_1x_1}{1 + dx_1x_1y_1y_1}, \frac{y_1y_1 - x_1x_1}{1 - dx_1x_1y_1y_1}\right).$

If d is not a square in K the denominators $1 + dx_1x_2y_1y_2$ and $1 - dx_1x_2y_1y_2$ are never 0; addition law is complete.

Explicit formulas: addition

•
$$(x_1, y_1) + (x_2, y_2) = \left(\frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}, \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}\right)$$

- Avoid inversions: Use $(X_1 : Y_1 : Z_1)$ with $Z_1 \neq 0$ to represent $(x_1, y_1) = (X_1/Z_1, Y_1/Z_1)$, i. e., $(X_1 : Y_1 : Z_1) = (\lambda X_1 : \lambda Y_1 : \lambda Z_1)$ for $\lambda \neq 0$.
- Addition formulas in projective coordinates:

$$A = Z_1 \cdot Z_2; \ B = A^2; \ C = X_1 \cdot X_2; \ D = Y_1 \cdot Y_2; E = d \cdot C \cdot D; \ F = B - E; \ G = B + E; X_3 = A \cdot F \cdot ((X_1 + Y_1) \cdot (X_2 + Y_2) - C - D); Y_3 = A \cdot G \cdot (D - C); Z_3 = F \cdot G.$$

Needs 10M + 1S + 1D + 7A.

•
$$(x_1, y_1) + (x_1, y_1) = \left(\frac{x_1y_1 + y_1x_1}{1 + dx_1x_1y_1y_1}, \frac{y_1y_1 - x_1x_1}{1 - dx_1x_1y_1y_1}\right)$$
$$= \left(\frac{2x_1y_1}{1 + d(x_1y_1)^2}, \frac{y_1^2 - x_1^2}{1 - d(x_1y_1)^2}\right)$$

•
$$(x_1, y_1) + (x_1, y_1) = \left(\frac{x_1y_1 + y_1x_1}{1 + dx_1x_1y_1y_1}, \frac{y_1y_1 - x_1x_1}{1 - dx_1x_1y_1y_1}\right)$$
$$= \left(\frac{2x_1y_1}{1 + d(x_1y_1)^2}, \frac{y_1^2 - x_1^2}{1 - d(x_1y_1)^2}\right)$$

Use curve equation $x^2 + y^2 = 1 + dx^2y^2$.

C. Arène & T. Lange & M. Naehrig & C. Ritzenthaler

•
$$(x_1, y_1) + (x_1, y_1) = \left(\frac{x_1y_1 + y_1x_1}{1 + dx_1x_1y_1y_1}, \frac{y_1y_1 - x_1x_1}{1 - dx_1x_1y_1y_1}\right)$$

$$= \left(\frac{2x_1y_1}{1 + d(x_1y_1)^2}, \frac{y_1^2 - x_1^2}{1 - d(x_1y_1)^2}\right)$$

$$= \left(\frac{2x_1y_1}{x_1^2 + y_1^2}, \frac{y_1^2 - x_1^2}{2 - (x_1^2 + y_1^2)}\right)$$

•
$$(x_1, y_1) + (x_1, y_1) = \left(\frac{x_1y_1 + y_1x_1}{1 + dx_1x_1y_1y_1}, \frac{y_1y_1 - x_1x_1}{1 - dx_1x_1y_1y_1}\right)$$

$$= \left(\frac{2x_1y_1}{1 + d(x_1y_1)^2}, \frac{y_1^2 - x_1^2}{1 - d(x_1y_1)^2}\right)$$

$$= \left(\frac{2x_1y_1}{x_1^2 + y_1^2}, \frac{y_1^2 - x_1^2}{2 - (x_1^2 + y_1^2)}\right)$$

Doubling formulas in projective coordinates:

$$B = (X_1 + Y_1)^2; \ C = X_1^2; \ D = Y_1^2;$$

$$E = C + D; \ H = Z_1^2; \ J = E - 2H;$$

$$X_3 = (B - E) \cdot J; \ Y_3 = E \cdot (C - D); \ Z_3 = E \cdot J.$$

Needs <u>3M</u> + <u>4S</u> + <u>6A</u>.

C. Arène & T. Lange & M. Naehrig & C. Ritzenthaler

Fast addition law

- Very fast point addition 10M + 1S + 1D. Even faster with Inverted Edwards coordinates (9M+1S+1D) and Extended Edwards coordinates (8M+1S+1D).
- Dedicated doubling formulas need only 3M + 4S.
- Fastest scalar multiplication in the literature.
- For comparison: IEEE standard P1363 provides "the fastest arithmetic on elliptic curves" by using Jacobian coordinates on Weierstrass curves.
 - Point addition 12M + 4S.
 - Doubling formulas need only 4M + 4S.
- For more curve shapes, better algorithms (even for Weierstrass curves) and many more operations (mixed addition, re-addition, tripling, scaling,...) see www.hyperelliptic.org/EFD.

C. Arène & T. Lange & M. Naehrig & C. Ritzenthaler

Relationship to elliptic curves

- Every elliptic curve with point of order 4 is birationally equivalent to an Edwards curve.
- Let $P_4 = (u_4, v_4)$ have order 4 and shift u s.t. $2P_4 = (0, 0)$. Then Weierstrass form:

$$v^{2} = u^{3} + (v_{4}^{2}/u_{4}^{2} - 2u_{4})u^{2} + u_{4}^{2}u.$$

- **Define** $d = 1 (4u_4^3/v_4^2)$.
- The coordinates $x = v_4 u/(u_4 v)$, $y = (u u_4)/(u + u_4)$ satisfy

$$x^2 + y^2 = 1 + dx^2 y^2.$$

- Inverse map $u = u_4(1+y)/(1-y), v = v_4u/(u_4x).$
- Finitely many exceptional points. Exceptional points have $v(u + u_4) = 0$.
- Addition on Edwards and Weierstrass corresponds.
 C. Arène & T. Lange & M. Naehrig & C. Ritzenthaler
 Pairings on Edwards Curves p. 9

Exceptional points of the map

- Points with $v(u+u_4) = 0$ on Weierstrass curve map to points at infinity on desingularization of Edwards curve.
- Reminder: $d = 1 (4u_4^3/v_4^2)$.
- $u = -u_4$ is *u*-coordinate of a point iff

$$(-u_4)^3 + (v_4^2/u_4^2 - 2u_4)(u_4)^2 + u_4^2(u_4)$$

= $v_4^2 - 4u_4^3 = v_4^2d$

is a square, i. e., iff d is a square.

• v = 0 corresponds to (0, 0) which maps to (0, -1) on Edwards curve and to solutions of $u^2 + (v_4^2/u_4^2 - 2u_4)u + u_4^2 = 0$. Discriminant is $(v_4^2/u_4^2 - 2u_4)^2 - 4u_4^2 = v_4^4 d$,

i.e., points defined over K iff d is a square.

C. Arène & T. Lange & M. Naehrig & C. Ritzenthaler Pairings on Edwards Curves – p. 10

Complete addition law

- Previous slide shows that for $d \neq \Box$ in K all points of the Weierstrass curve map to the affine part of the Edwards curve; where we extend the map by $P_{\infty} \mapsto (0, 1)$ and $(0, 0) \mapsto (0, -1)$.
- Geometric description: The other missing points from the Weierstrass curve correspond to the blow-ups of (1:0:0) and (0:1:0) on the Edwards curve. They blow up to two points each on the desingularization of the curve. On both the Weierstrass and the Edwards side these points are defined over $K(\sqrt{d})$.
- Attention: Having no K-rational points at infinity does not guarantee that the formulas are complete:

 $(x_3, y_3) = \left((x_1y_1 + x_2y_2) / (x_1x_2 + y_1y_2), (x_1y_1 - x_2y_2) / (x_1y_2 - y_1x_2) \right)$

is addition on Edwards curve ... and fails for doublings. C. Arène & T. Lange & M. Naehrig & C. Ritzenthaler Pairings on Edwards Curves – p. 17

Twisted Edwards curves

$$E_{a,d}: ax^2 + y^2 = 1 + dx^2 y^2,$$

with $a, d \in K^*$, $a \neq d$.

- Isomorphic to plain Edwards curve $E_{1,d/a}$ for $a = \Box$.
- Set of twisted Edwards curves invariant under quadratic twists.
- Addition formulas very similar to Edwards curves

$$x_3 = \frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}$$
 and $y_3 = \frac{y_1y_2 - ax_1x_2}{1 - dx_1x_2y_1y_2}$.

- Arithmetic complete only for $a = \Box, d \neq \Box$.
- Operation count same as Edwards (except for 1A in DBL and ADD).

Generality of twisted Edwards curves

- Edwards curves require point of order 4; this happens for about 1/3 of all isomorphism classes if $p \equiv 1 \mod 4$ and for about 3/8 if $p \equiv 3 \mod 4$
- Twisted Edwards curves have order divisible by 4.
- For $p \equiv 1 \mod 4$ twisted Edwards curves cover all curves with order divisible by 4, i.e. curves with subgroups isomorphic to $\mathbb{Z}/2 \times \mathbb{Z}/2$ or $\mathbb{Z}/4$.
- For $p \equiv 3 \mod 4$ twisted Edwards curves cover exactly the same as Edwards curves, i.e. they require $\mathbb{Z}/4$.
- Montgomery curves are birationally equivalent to twisted Edwards curves.
- Use 2-isogenies to cover all curves with $4 \mid \#E(\mathbb{F}_p)$.
- (Upcoming preprint: complete addition for all curves.)

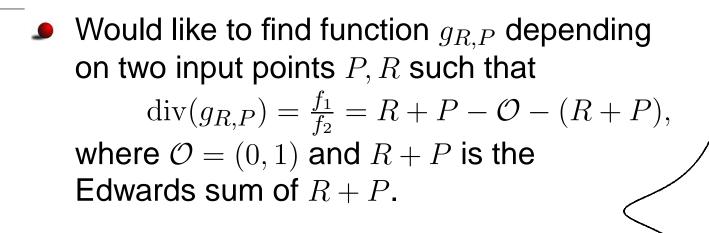
Understanding Edwards addition

- The Gauss/Euler example (d = -1) is mentioned in some books.
- Edwards generalized this single example to whole class of curves;
- showed how to do arithmetic on this curve;
- gives several proofs of the addition law, e.g. algebraically; via holomorphic differentials; via algebraic variations.
- does not give any geometric interpretation.

But does have much more! Bulletin of the AMS, 44, 393–422, 2007

C. Arène & T. Lange & M. Naehrig & C. Ritzenthaler

Geometric addition law



Y

Geometric addition law

- Would like to find function $g_{R,P}$ depending on two input points P, R such that $\operatorname{div}(g_{R,P}) = \frac{f_1}{f_2} = R + P - \mathcal{O} - (R + P),$ where $\mathcal{O} = (0, 1)$ and R + P is the Edwards sum of R + P.
 - Equation has degree 4, so expect $4 \deg(f)$ intersection points by intersection with function f.
 - Functions f_i cannot be linear generically (would have 4 intersection points; need to eliminate 2 out of each).
 - Quadratic functions f_i could offer enough freedom of cancellation (8 intersection points).
 - Problem: conic is determined by 5 points; not enough control over intersection points.

C. Arène & T. Lange & M. Naehrig & C. Ritzenthaler

Y

Conic sections

- Solution: observe that points at infinity $\Omega_1 = (1:0:0)$ and $\Omega_2 = (0:1:0)$ are singular and have multiplicity 2.
- Conic determined by passing through the 5 points $R, P, (0, -1), \Omega_1$, and Ω_2 has only one more intersection point Q; then Q = -(R + P).
- Use f_2 to "replace" (0, -1) by (0, 1) and -(R + P) by $R + P = (X_3 : Y_3 : Z_3)$, i.e. put

 $f_2 = l_1 \cdot l_2$, with $l_1 = Z_3 Y - Y_3 Z$ and $l_2 = X$.

• Conic through $(0, -1), \Omega_1$, and Ω_2 has shape

 $C: c_{Z^2}(Z^2 + YZ) + c_{XY}XY + c_{XZ}XZ = 0,$

where $(c_{Z^2} : c_{XY} : c_{XZ}) \in \mathbb{P}^2(K)$.

C. Arène & T. Lange & M. Naehrig & C. Ritzenthaler

Theorem

(a) If $P_1 \neq P_2$, $P_1 \neq \mathcal{O}'$ and $P_2 \neq \mathcal{O}'$, then

$$c_{Z^{2}} = X_{1}X_{2}(Y_{1}Z_{2} - Y_{2}Z_{1}),$$

$$c_{XY} = Z_{1}Z_{2}(X_{1}Z_{2} - X_{2}Z_{1} + X_{1}Y_{2} - X_{2}Y_{1}),$$

$$c_{XZ} = X_{2}Y_{2}Z_{1}^{2} - X_{1}Y_{1}Z_{2}^{2} + Y_{1}Y_{2}(X_{2}Z_{1} - X_{1}Z_{2}).$$

(b) If $P_1 \neq P_2 = \mathcal{O}'$, then

$$c_{Z^2} = -X_1, \ c_{XY} = Z_1, \ c_{XZ} = Z_1.$$

(c) If $P_1 = P_2$, then

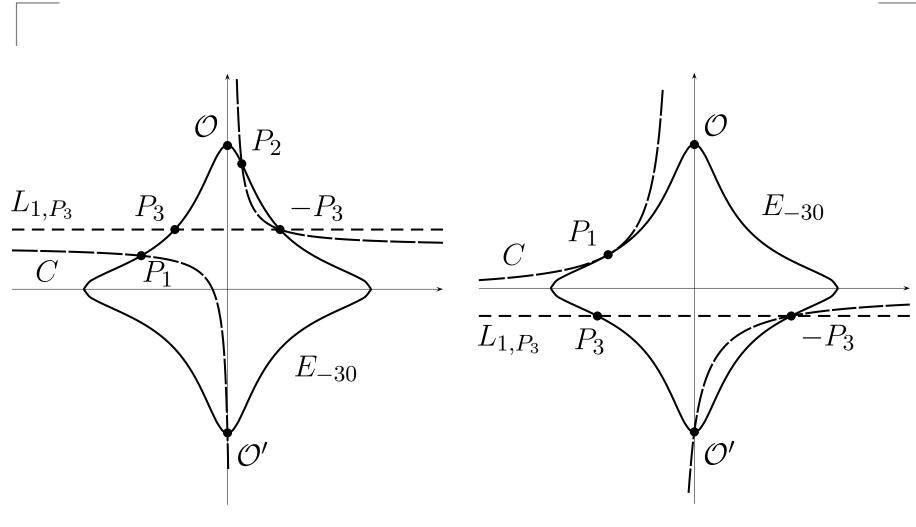
$$c_{Z^2} = X_1 Z_1 (Z_1 - Y_1),$$

$$c_{XY} = dX_1^2 Y_1 - Z_1^3,$$

$$c_{XZ} = Z_1 (Z_1 Y_1 - aX_1^2).$$

C. Arène & T. Lange & M. Naehrig & C. Ritzenthaler

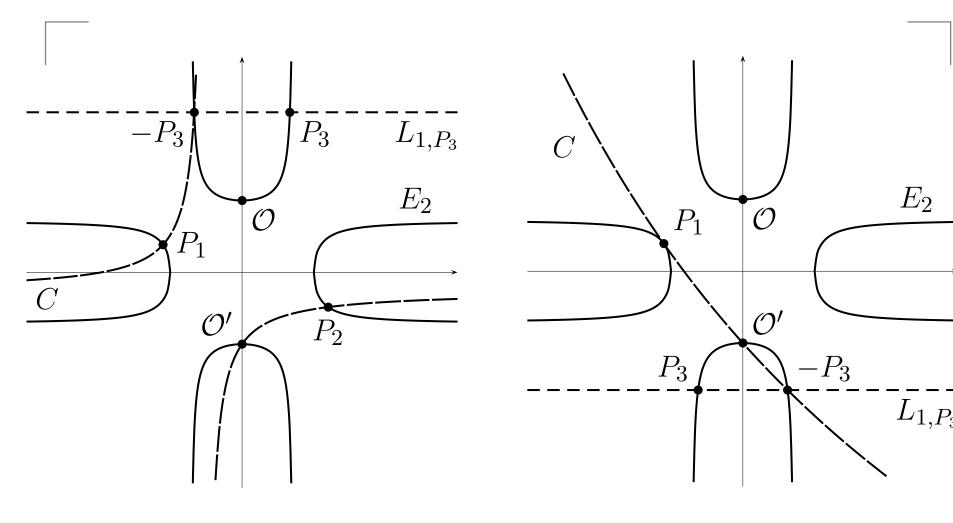
Pictures I



Addition and doubling over \mathbb{R} for d < 0.

C. Arène & T. Lange & M. Naehrig & C. Ritzenthaler

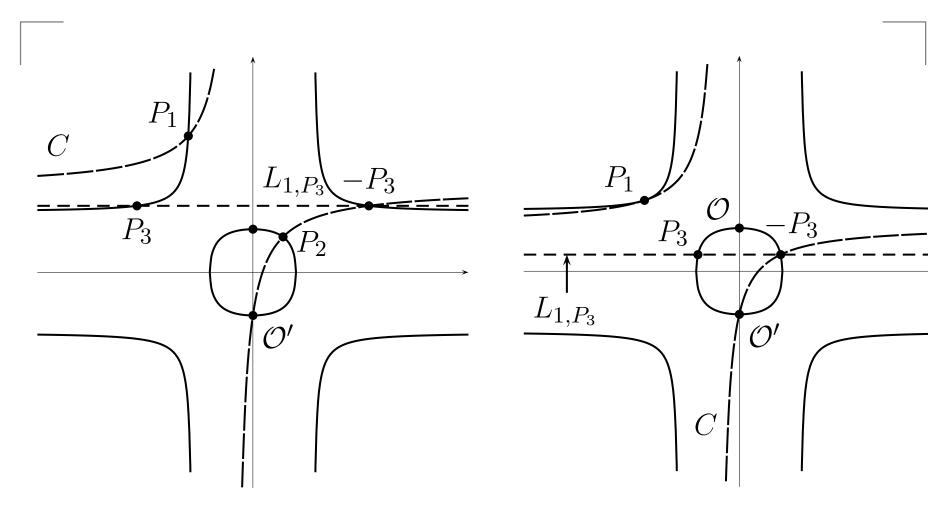
Pictures II



Addition and doubling over \mathbb{R} for d > 1.

C. Arène & T. Lange & M. Naehrig & C. Ritzenthaler

Pictures III



Addition and doubling over \mathbb{R} for 0 < d < 1.

C. Arène & T. Lange & M. Naehrig & C. Ritzenthaler

Pairings on Edwards Curves - p. 20

- Understanding the addition law.
- Efficient arithmetic

C. Arène & T. Lange & M. Naehrig & C. Ritzenthaler

- Understanding the addition law.
- Efficient arithmetic not really.

- Understanding the addition law.
- Efficient arithmetic not really.
- Addition procedures are not complete. (Conic for addition is independent of curve while that for doubling needs tangent.)

- Understanding the addition law.
- Efficient arithmetic not really.
- Addition procedures are not complete. (Conic for addition is independent of curve while that for doubling needs tangent.)
- Pairings! Tate pairing:

$$(P,Q) \mapsto f_P(Q)^{(p^k-1)/r},$$

where $P \in E(\mathbb{F}_p)[r]$, *E* has embedding degree *k* with respect to *r*, and $\operatorname{div}(f_P) = rP - r\mathcal{O}$.

- Miller's algorithm computes $f_P(Q)$ iteratively using $g_{R,P}$.
- All sorts of tricks available to speed up computation of Tate pairing.

C. Arène & T. Lange & M. Naehrig & C. Ritzenthaler

Previous attempts

Das, Sarkar [Pairing 2008]:

- Map points to a curve in Weierstrass form using birational map and compute pairing there.
- Express functions $g_{R,R}$ and $g_{R,P}$ in the Miller loop by transformation to Montgomery form.
- Explicit formulas for supersingular curves with k = 2.

Ionica, Joux [Indocrypt 2008]:

Compute Miller functions on a curve

$$v^2 u = (1 + du)^2 - 4u.$$

- Actually compute 4th power of the Tate pairing.
- Explicit formulas for even k.

Miller's algorithm

Let k > 1 be the embedding degree of E w.r.t. r, $P \in E(\mathbb{F}_p)[r], Q \in E(\mathbb{F}_{p^k}),$ $r = (r_{l-1}, \ldots, r_1, r_0)_2.$ Compute the Tate pairing as:

1.
$$R \leftarrow P, f \leftarrow 1$$

2. for $i = l - 2$ to 0 do
(a) $f \leftarrow f^2 \cdot g_{R,R}(Q), R \leftarrow 2R$ //doubling step
(b) if $r_i = 1$ then
 $f \leftarrow f \cdot g_{R,P}(Q), R \leftarrow R + P$ //addition step
3. $f \leftarrow f^{(p^k-1)/n}$

Miller function on twisted Edwards curves

Assume an even embedding degree k.

- Represent $\mathbb{F}_{p^k} = \mathbb{F}_{p^{k/2}}(\alpha)$ where $\alpha^2 = \delta \in \mathbb{F}_{p^{k/2}}$.
- Use quadratic twist $E_{\delta a, \delta d}(\mathbb{F}_{p^{k/2}})$ to represent second pairing argument $Q = \psi(Q')$:

$$\psi: E_{\delta a, \delta d}(\mathbb{F}_{p^{k/2}}) \longrightarrow E_{a, d}(\mathbb{F}_{p^k}),$$
$$Q' = (x_0, y_0) \longmapsto (x_0 \alpha, y_0).$$

- Here $y_0 \in {\rm I\!F}_{p^{k/2}}$ lies in a proper subfield of ${\rm I\!F}_{p^k}$.
- In Miller's algorithm compute $f^2 \cdot g_{R,R}(\psi(Q'))$ (doubling step) and $f \cdot g_{R,P}(\psi(Q'))$ (addition step).

Miller function on twisted Edwards curves

Compute

$$\frac{h_1}{l_1 l_2} (x_0 \alpha, y_0) = \frac{c_{Z^2} (1 + y_0) + c_{XY} x_0 \alpha y_0 + c_{XZ} x_0 \alpha}{(Z_3 y_0 - Y_3) x_0 \alpha}$$
$$= \frac{c_{Z^2} \frac{1 + y_0}{x_0 \delta} \alpha + c_{XY} y_0 + c_{XZ}}{Z_3 y_0 - Y_3},$$

where $(X_3: Y_3: Z_3)$ are the coord. of [2]R or R + P,

- in 2(k/2)m over \mathbb{F}_p given the coefficients c_{Z^2}, c_{XY}, c_{XZ} and precomputed $\eta = \frac{1+y_0}{x_0\delta}$.
- Note that $Z_3y_Q Y_3 \in \mathbb{F}_{p^{k/2}}$. Discard it since final exponentiation maps it to 1 anyway.

How to get Edwards curves with small embedding degree?

- Construct pairing-friendly curves in Weierstrass form and then transform to Edwards or twisted Edwards form.
- Only requirement is that the group order is a multiple of 4.
- If have a point of order 4, get plain Edwards curve.
- If not, get twisted Edwards curve. Can be transformed to plain Edwards form by using 2-isogenies.

- Need curves with $4 \mid \#E(\mathbb{F}_p)$.
- Use generalized MNT construction for curves with cofactor 4 as done by Galbraith, McKee, Valença.
- Parameterizations for embedding degree k = 6 and cofactor 4.

Case	$q(\ell)$	$t(\ell)$	$n(\ell)$
1	$16\ell^2 + 10\ell + 5$	$2\ell + 2$	$4\ell^2 + 2\ell + 1$
2	$112\ell^2 + 54\ell + 7$	$14\ell + 4$	$28\ell^2 + 10\ell + 1$
3	$112\ell^2 + 86\ell + 17$	$14\ell + 6$	$28\ell^2 + 18\ell + 3$
4	$208\ell^2 + 30\ell + 1$	$-26\ell - 2$	$52\ell^2 + 14\ell + 1$
5	$208\ell^2 + 126\ell + 19$	$-26\ell - 8$	$52\ell^2 + 38\ell + 7$

First solve the norm equation

$$t(\ell)^2 - 4q(\ell) = -Dv^2.$$

$$t(\ell) = 2\ell + 2, \ q(\ell) = 16\ell^2 + 10\ell + 5$$

Transform equation into corresponding Pell equation by completing the square:

$$t(\ell)^2 - 4q(\ell) = -Dy^2 \iff x^2 - 15Dy^2 = -44,$$

where $x = 15\ell + 4$.

C. Arène & T. Lange & M. Naehrig & C. Ritzenthaler

• Constructed curves over \mathbb{F}_p have order

 $#E(\mathbb{F}_p) = 4hr$

for a prime r and cofactor h. Since embedding degree is fixed to 6, balance the DLPs; ECRYPT report on key sizes suggests the following bitsizes:

r	p	p^6	h
160	208	1248	46
192	296	1776	102
224	405	2432	179
256	541	3248	283
512	2570	15424	2056

C. Arène & T. Lange & M. Naehrig & C. Ritzenthaler

Pairings on Edwards Curves - p. 29

Examples

D = 1, $\lceil \log(n) \rceil = 363$, $\lceil \log(h) \rceil = 7$, $\lceil \log(p) \rceil = 371$

- p = 3242890372842743487196063845602840916228193958243257594530632153559402628010019946681624958973937239637420169141,
- n = 11105788948091587284918026868502879850096554651518005460623832064312035897815509951488907964532000965993787241,
- h = 73,
- $d = 16214451864213717435980319228014204581140969791216287972 \\ 65316076779701314005009973340812479486968619818710084571.$

 $D = 7230, \lceil \log(n) \rceil = 165, \lceil \log(h) \rceil = 34, \lceil \log(p) \rceil = 201$

- p = 205161366376812960609358343287588739841530196222749018750880
- n = 44812545413308579913957438201331385434743442366277,
- $h = 7 \cdot 733 \cdot 2230663,$
- d = 889556570662354157210639662153375862261205379822879716332449

Toy example in Barreto, Lynn, Scott with k = 12, D = 13188099.

Explicit formulas

- Use explicit formulas with extended Edwards coordinates by Hisil, et. al. [Asiacrypt 2008] for point doubling and addition in Miller's algorithm.
- Can reuse large parts of the computation for coefficients of the conic.
- Use even embedding degree and quadratic twist to represent second pairing argument Q, i.e. multiplications with coordinates x_Q and $y_Q \cos t k/2$ multiplications in \mathbb{F}_p .
- Compute conic coefficients in doubling step with $6m + 5s + 1m_a$, in addition step with $14m + 1m_a$ (mixed addition $12m + 1m_a$).

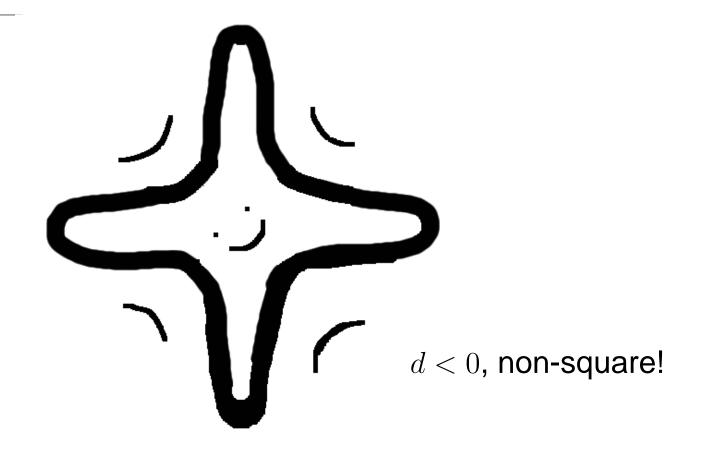
Comparison

	DBL	mADD	ADD
\mathcal{J}	$1\mathbf{m} + 11\mathbf{s} + 1\mathbf{m}_{\mathbf{a_4}}$	$9\mathbf{m} + 3\mathbf{s}$	_
$\mathcal{J}, a_4 = -3$	$7\mathbf{m} + 4\mathbf{s}$	$9\mathbf{m} + 3\mathbf{s}$	
$\mathcal{J}, a_4 = 0$	$6\mathbf{m} + 5\mathbf{s}$	$9\mathbf{m} + 3\mathbf{s}$	
E	$8\mathbf{m} + 4\mathbf{s} + 1\mathbf{m}_{\mathbf{d}}$	$14\mathbf{m} + 4\mathbf{s} + 1\mathbf{m_d}$	
\mathcal{E} , this paper	$6\mathbf{m} + 5\mathbf{s} + 1\mathbf{m_a}$	$12\mathbf{m} + 1\mathbf{m_a}$	$14\mathbf{m} + 1\mathbf{m}_{\mathbf{a}}$

Comparison

	DBL	mADD	ADD
\mathcal{J}	$1\mathbf{m} + 11\mathbf{s} + 1\mathbf{m}_{\mathbf{a_4}}$	$9\mathbf{m} + 3\mathbf{s}$	—
this paper	$1\mathbf{m} + 11\mathbf{s} + 1\mathbf{m}_{\mathbf{a_4}}$	$6\mathbf{m} + 6\mathbf{s}$	$15\mathbf{m} + 6\mathbf{s}$
$\mathcal{J}, a_4 = -3$	$7\mathbf{m} + 4\mathbf{s}$	$9\mathbf{m} + 3\mathbf{s}$	
this paper	$6\mathbf{m} + 5\mathbf{s}$	$6\mathbf{m} + 6\mathbf{s}$	$15\mathbf{m} + 6\mathbf{s}$
$\mathcal{J}, a_4 = 0$	$6\mathbf{m} + 5\mathbf{s}$	$9\mathbf{m} + 3\mathbf{s}$	_
this paper	$3\mathbf{m} + 8\mathbf{s}$	$6\mathbf{m} + 6\mathbf{s}$	$15\mathbf{m} + 6\mathbf{s}$
E	$8\mathbf{m} + 4\mathbf{s} + 1\mathbf{m}_{\mathbf{d}}$	$14\mathbf{m} + 4\mathbf{s} + 1\mathbf{m_d}$	
\mathcal{E} , this paper	$6\mathbf{m} + 5\mathbf{s} + 1\mathbf{m}_{\mathbf{a}}$	$12\mathbf{m} + 1\mathbf{m_a}$	$14\mathbf{m} + 1\mathbf{m}_{\mathbf{a}}$

Thank you for your attention!



Explicit formulas and more curve examples in preprint http://eprint.iacr.org/2009/155

C. Arène & T. Lange & M. Naehrig & C. Ritzenthaler

Pairings on Edwards Curves - p. 34