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Do you know how to add on a circle?

Let K be a field with 2 6= 0.
Circle: {(x, y) ∈ K ×K|x2 + y2 = 1}
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P3 = (x3, y3
PPPPPPPPP

xi = sin(αi), yi = cos(αi)
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Do you know how to add on a circle?

Let K be a field with 2 6= 0.
Circle: {(x, y) ∈ K ×K|x2 + y2 = 1}
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P3 = (x3, y3
PPPPPPPPP

xi = sin(αi), yi = cos(αi)

x3 = sin(α1 + α2)

= sin(α1) cos(α2) + cos(α1) sin(α2)

y3 = cos(α1 + α2)

= cos(α1) cos(α2)− sin(α1) sin(α2)

Addition of angles defines commutative group law
(x1, y1) + (x2, y2) = (x3, y3), where

x3 = x1y2 + y1x2 and y3 = y1y2 − x1x2.
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Cryptography on the circle
(0, 1) is at α = 0. Then (0, 1) +Q = Q+ (0, 1) = Q.

R = (0,−1) is at angle 180◦. Then [2]R =
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Cryptography on the circle
(0, 1) is at α = 0. Then (0, 1) +Q = Q+ (0, 1) = Q.

R = (0,−1) is at angle 180◦. Then [2]R =(0, 1).

What is the order of (1, 0)?
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Cryptography on the circle
(0, 1) is at α = 0. Then (0, 1) +Q = Q+ (0, 1) = Q.

R = (0,−1) is at angle 180◦. Then [2]R =(0, 1).

What is the order of (1, 0)? [2](1, 0) = (0,−1).
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Cryptography on the circle
(0, 1) is at α = 0. Then (0, 1) +Q = Q+ (0, 1) = Q.

R = (0,−1) is at angle 180◦. Then [2]R =(0, 1).

What is the order of (1, 0)? [2](1, 0) = (0,−1).

Negative of (x, y) is (−x, y).
These observations are clear from the angles on the
circle, e.g. ( 1√

2
, 1√

2
) is at 45◦ and has order 8.

How about S = (3
5 ,

4
5)?
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Cryptography on the circle
(0, 1) is at α = 0. Then (0, 1) +Q = Q+ (0, 1) = Q.

R = (0,−1) is at angle 180◦. Then [2]R =(0, 1).

What is the order of (1, 0)? [2](1, 0) = (0,−1).

Negative of (x, y) is (−x, y).
These observations are clear from the angles on the
circle, e.g. ( 1√

2
, 1√

2
) is at 45◦ and has order 8.

How about S = (3
5 ,

4
5)? Compute [2]S:

x3 = 3
5

4
5 + 4

5
3
5 = 24

25 , y3 = 4
5

4
5 − 3

5
3
5 = 7

25

[3]S = [2]S + S: x3 = 24
25

4
5 + 7

25
3
5 = 103

125 , y3 = 7
25

4
5 − 24

25
3
5 = −54

125 .

For p ≡ 3 mod 4 the clock modulo p gives T2(IFp).
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Now add on an elliptic curve
Let K be a field with 2 6= 0. Let d ∈ K with d 6= 0, 1.
Edwards curve (nice form of elliptic curve):

{(x, y) ∈ K ×K|x2 + y2 = 1 + dx2y2}

y
OO

//

Harold M. Edwards,
(Bulletin of the AMS, 44, 393–422, 2007)
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Now add on an elliptic curve
Let K be a field with 2 6= 0. Let d ∈ K with d 6= 0, 1.
Edwards curve (nice form of elliptic curve):

{(x, y) ∈ K ×K|x2 + y2 = 1 + dx2y2}

y
OO

//

Harold M. Edwards,
(Bulletin of the AMS, 44, 393–422, 2007)

Associative operation on points
(x1, y1) + (x2, y2) = (x3, y3)

defined by Edwards addition law

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
and y3 =

y1y2 − x1x2

1− dx1x2y1y2
.
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Now add on an elliptic curve
Let K be a field with 2 6= 0. Let d ∈ K with d 6= 0, 1.
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//
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(Bulletin of the AMS, 44, 393–422, 2007)

Associative operation on points
(x1, y1) + (x2, y2) = (x3, y3)

defined by Edwards addition law

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
and y3 =

y1y2 − x1x2

1− dx1x2y1y2
.

Neutral element is
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Now add on an elliptic curve
Let K be a field with 2 6= 0. Let d ∈ K with d 6= 0, 1.
Edwards curve (nice form of elliptic curve):

{(x, y) ∈ K ×K|x2 + y2 = 1 + dx2y2}

y
OO

//

Harold M. Edwards,
(Bulletin of the AMS, 44, 393–422, 2007)

Associative operation on points
(x1, y1) + (x2, y2) = (x3, y3)

defined by Edwards addition law

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
and y3 =

y1y2 − x1x2

1− dx1x2y1y2
.

Neutral element is (0, 1) (like on circle).

C. Arène & T. Lange & M. Naehrig & C. Ritzenthaler Pairings on Edwards Curves – p. 4



Now add on an elliptic curve
Let K be a field with 2 6= 0. Let d ∈ K with d 6= 0, 1.
Edwards curve (nice form of elliptic curve):

{(x, y) ∈ K ×K|x2 + y2 = 1 + dx2y2}

y
OO

//

Harold M. Edwards,
(Bulletin of the AMS, 44, 393–422, 2007)

Associative operation on points
(x1, y1) + (x2, y2) = (x3, y3)

defined by Edwards addition law

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
and y3 =

y1y2 − x1x2

1− dx1x2y1y2
.

Neutral element is (0, 1) (like on circle).

−(x1, y1) =
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Now add on an elliptic curve
Let K be a field with 2 6= 0. Let d ∈ K with d 6= 0, 1.
Edwards curve (nice form of elliptic curve):

{(x, y) ∈ K ×K|x2 + y2 = 1 + dx2y2}

y
OO

//

Harold M. Edwards,
(Bulletin of the AMS, 44, 393–422, 2007)

Associative operation on points
(x1, y1) + (x2, y2) = (x3, y3)

defined by Edwards addition law

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
and y3 =

y1y2 − x1x2

1− dx1x2y1y2
.

Neutral element is (0, 1) (like on circle).

−(x1, y1) =(−x1, y1) (like on circle).
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Nice features of the addition law
Neutral element of addition law is affine point, this
avoids special routines (for (0, 1) one of the inputs or the
result).

Addition law is symmetric in both inputs.

P +Q =

(

x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − x1x2

1− dx1x2y1y2

)

.

C. Arène & T. Lange & M. Naehrig & C. Ritzenthaler Pairings on Edwards Curves – p. 5



Nice features of the addition law
Neutral element of addition law is affine point, this
avoids special routines (for (0, 1) one of the inputs or the
result).

Addition law is symmetric in both inputs.

P +Q =

(

x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − x1x2

1− dx1x2y1y2

)

.

[2]P =

(

x1y1 + y1x1

1 + dx1x1y1y1
,
y1y1 − x1x1

1− dx1x1y1y1

)

.
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Nice features of the addition law
Neutral element of addition law is affine point, this
avoids special routines (for (0, 1) one of the inputs or the
result).

Addition law is symmetric in both inputs.

P +Q =

(

x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − x1x2

1− dx1x2y1y2

)

.

[2]P =

(

x1y1 + y1x1

1 + dx1x1y1y1
,
y1y1 − x1x1

1− dx1x1y1y1

)

.

If d is not a square in K the denominators 1 + dx1x2y1y2
and 1− dx1x2y1y2 are never 0; addition law is complete.
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Explicit formulas: addition

(x1, y1) + (x2, y2) =

(

x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − x1x2

1− dx1x2y1y2

)

.

Avoid inversions: Use (X1 : Y1 : Z1) with Z1 6= 0 to
represent (x1, y1) = (X1/Z1, Y1/Z1), i. e.,
(X1 : Y1 : Z1) = (λX1 : λY1 : λZ1) for λ 6= 0.

Addition formulas in projective coordinates:

A = Z1 · Z2; B = A2; C = X1 ·X2; D = Y1 · Y2;

E = d · C ·D; F = B − E; G = B + E;

X3 = A · F · ((X1 + Y1) · (X2 + Y2)− C −D);

Y3 = A ·G · (D − C);

Z3 = F ·G.
Needs 10M + 1S + 1D + 7A.
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Faster dedicated doubling

(x1, y1) + (x1, y1) =

(

x1y1 + y1x1

1 + dx1x1y1y1
,
y1y1 − x1x1

1− dx1x1y1y1

)

=

(

2x1y1
1 + d(x1y1)2

,
y2
1 − x2

1

1− d(x1y1)2

)
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Faster dedicated doubling

(x1, y1) + (x1, y1) =

(

x1y1 + y1x1

1 + dx1x1y1y1
,
y1y1 − x1x1

1− dx1x1y1y1

)

=

(

2x1y1
1 + d(x1y1)2

,
y2
1 − x2

1

1− d(x1y1)2

)

Use curve equation x2 + y2 = 1 + dx2y2.
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Faster dedicated doubling

(x1, y1) + (x1, y1) =

(

x1y1 + y1x1

1 + dx1x1y1y1
,
y1y1 − x1x1

1− dx1x1y1y1

)

=

(

2x1y1
1 + d(x1y1)2

,
y2
1 − x2

1

1− d(x1y1)2

)

=

(

2x1y1
x2

1 + y2
1

,
y2
1 − x2

1

2− (x2
1 + y2

1)

)
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Faster dedicated doubling

(x1, y1) + (x1, y1) =

(

x1y1 + y1x1

1 + dx1x1y1y1
,
y1y1 − x1x1

1− dx1x1y1y1

)

=

(

2x1y1
1 + d(x1y1)2

,
y2
1 − x2

1

1− d(x1y1)2

)

=

(

2x1y1
x2

1 + y2
1

,
y2
1 − x2

1

2− (x2
1 + y2

1)

)

Doubling formulas in projective coordinates:

B = (X1 + Y1)
2; C = X2

1 ; D = Y 2
1 ;

E = C +D; H = Z2
1 ; J = E − 2H ;

X3 = (B − E) · J ; Y3 = E · (C −D); Z3 = E · J.
Needs 3M + 4S + 6A.
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Fast addition law
Very fast point addition 10M + 1S + 1D. Even faster with
Inverted Edwards coordinates (9M+1S+1D) and
Extended Edwards coordinates (8M+1S+1D).

Dedicated doubling formulas need only 3M + 4S.

Fastest scalar multiplication in the literature.

For comparison: IEEE standard P1363 provides “the
fastest arithmetic on elliptic curves” by using Jacobian
coordinates on Weierstrass curves.

Point addition 12M + 4S.
Doubling formulas need only 4M + 4S.

For more curve shapes, better algorithms (even for
Weierstrass curves) and many more operations (mixed
addition, re-addition, tripling, scaling,. . . ) see

www.hyperelliptic.org/EFD.
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Relationship to elliptic curves
Every elliptic curve with point of order 4 is birationally
equivalent to an Edwards curve.

Let P4 = (u4, v4) have order 4 and shift u s.t. 2P4 = (0, 0).
Then Weierstrass form:

v2 = u3 + (v2
4/u

2
4 − 2u4)u

2 + u2
4u.

Define d = 1− (4u3
4/v

2
4).

The coordinates x = v4u/(u4v), y = (u− u4)/(u+ u4)
satisfy

x2 + y2 = 1 + dx2y2.

Inverse map u = u4(1 + y)/(1− y), v = v4u/(u4x).

Finitely many exceptional points. Exceptional points
have v(u+ u4) = 0.

Addition on Edwards and Weierstrass corresponds.
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Exceptional points of the map
Points with v(u+ u4) = 0 on Weierstrass curve map to
points at infinity on desingularization of Edwards curve.

Reminder: d = 1− (4u3
4/v

2
4).

u = −u4 is u-coordinate of a point iff

(−u4)
3 + (v2

4/u
2
4 − 2u4)(u4)

2 + u2
4(u4)

= v2
4 − 4u3

4 = v2
4d

is a square, i. e., iff d is a square.

v = 0 corresponds to (0, 0) which maps to (0,−1) on
Edwards curve and to solutions of
u2 + (v2

4/u
2
4 − 2u4)u+ u2

4 = 0. Discriminant is

(v2
4/u

2
4 − 2u4)

2 − 4u2
4 = v4

4d,

i. e., points defined over K iff d is a square.
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Complete addition law
Previous slide shows that for d 6= 2 in K all points of the
Weierstrass curve map to the affine part of the Edwards
curve; where we extend the map by P∞ 7→ (0, 1) and
(0, 0) 7→ (0,−1).

Geometric description: The other missing points from
the Weierstrass curve correspond to the blow-ups of
(1 : 0 : 0) and (0 : 1 : 0) on the Edwards curve. They
blow up to two points each on the desingularization of
the curve. On both the Weierstrass and the Edwards
side these points are defined over K(

√
d).

Attention: Having no K-rational points at infinity does
not guarantee that the formulas are complete:

(x3, y3) = ((x1y1 + x2y2)/(x1x2 + y1y2), (x1y1 − x2y2)/(x1y2 − y1x2))

is addition on Edwards curve . . . and fails for doublings.
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Twisted Edwards curves

Ea,d : ax2 + y2 = 1 + dx2y2,

with a, d ∈ K∗, a 6= d.

Isomorphic to plain Edwards curve E1,d/a for a = �.

Set of twisted Edwards curves invariant under quadratic
twists.

Addition formulas very similar to Edwards curves

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
and y3 =

y1y2 − ax1x2

1− dx1x2y1y2
.

Arithmetic complete only for a = �, d 6= �.

Operation count same as Edwards (except for 1A in
DBL and ADD).
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Generality of twisted Edwards curves
Edwards curves require point of order 4; this happens
for about 1/3 of all isomorphism classes if p ≡ 1 mod 4
and for about 3/8 if p ≡ 3 mod 4

Twisted Edwards curves have order divisible by 4.

For p ≡ 1 mod 4 twisted Edwards curves cover all
curves with order divisible by 4, i.e. curves with
subgroups isomorphic to ZZ/2× ZZ/2 or ZZ/4.

For p ≡ 3 mod 4 twisted Edwards curves cover exactly
the same as Edwards curves, i.e. they require ZZ/4.

Montgomery curves are birationally equivalent to
twisted Edwards curves.

Use 2-isogenies to cover all curves with 4 | #E(IFp).

(Upcoming preprint: complete addition for all curves.)
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Understanding Edwards addition
The Gauss/Euler example (d = −1)
is mentioned in some books.

Edwards generalized this single
example to whole class of curves;

showed how to do arithmetic
on this curve;

gives several proofs of the
addition law, e.g. algebraically;
via holomorphic differentials;
via algebraic variations.

does not give any
geometric interpretation.

But does have much more! Bulletin of the AMS, 44,
393–422, 2007
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Geometric addition law
y
OO

//

Would like to find function gR,P depending
on two input points P,R such that

div(gR,P ) = f1

f2
= R + P −O − (R + P ),

where O = (0, 1) and R + P is the
Edwards sum of R + P .
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Geometric addition law
y
OO

//

Would like to find function gR,P depending
on two input points P,R such that

div(gR,P ) = f1

f2
= R + P −O − (R + P ),

where O = (0, 1) and R + P is the
Edwards sum of R + P .

Equation has degree 4, so expect
4 deg(f) intersection points by intersection
with function f .

Functions fi cannot be linear generically (would have 4
intersection points; need to eliminate 2 out of each).

Quadratic functions fi could offer enough freedom of
cancellation (8 intersection points).

Problem: conic is determined by 5 points; not enough
control over intersection points.
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Conic sections
Solution: observe that points at infinity Ω1 = (1 : 0 : 0)
and Ω2 = (0 : 1 : 0) are singular and have multiplicity 2.

Conic determined by passing through the 5 points
R,P, (0,−1),Ω1, and Ω2 has only one more intersection
point Q; then Q = −(R + P ).

Use f2 to “replace” (0,−1) by (0, 1) and −(R + P ) by
R+ P = (X3 : Y3 : Z3), i.e. put

f2 = l1 · l2, with l1 = Z3Y − Y3Z and l2 = X.

Conic through (0,−1),Ω1, and Ω2 has shape

C : cZ2(Z2 + Y Z) + cXYXY + cXZXZ = 0,

where (cZ2 : cXY : cXZ) ∈ P
2(K).
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Theorem
(a) If P1 6= P2, P1 6= O′ and P2 6= O′, then

cZ2 = X1X2(Y1Z2 − Y2Z1),

cXY = Z1Z2(X1Z2 −X2Z1 +X1Y2 −X2Y1),

cXZ = X2Y2Z
2
1 −X1Y1Z

2
2 + Y1Y2(X2Z1 −X1Z2).

(b) If P1 6= P2 = O′, then

cZ2 = −X1, cXY = Z1, cXZ = Z1.

(c) If P1 = P2, then

cZ2 = X1Z1(Z1 − Y1),

cXY = dX2
1Y1 − Z3

1 ,

cXZ = Z1(Z1Y1 − aX2
1 ).
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Pictures I

b

b

b

b

b b

P1

P2

P3 −P3L1,P3

C

E−30

O

O′

b

b

b

b b

P1

P3 −P3L1,P3

C

E−30

O

O′

Addition and doubling over IR for d < 0.
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Pictures II

b

b

b

b

bb

P1

P2

C

E2O

O′

P3−P3 L1,P3

b

b

b

b b

P1
E2O

O′

C

P3 −P3

L1,P3

Addition and doubling over IR for d > 1.
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Pictures III

b

b

b

b

b b

P1

P2

C

O′

P3

−P3L1,P3

b

b

b

b b

O

O′

P1

C

P3
−P3

L1,P3

Addition and doubling over IR for 0 < d < 1.
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What is this good for?
Understanding the addition law.

Efficient arithmetic
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What is this good for?
Understanding the addition law.

Efficient arithmetic – not really.
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What is this good for?
Understanding the addition law.

Efficient arithmetic – not really.

Addition procedures are not complete. (Conic for
addition is independent of curve while that for doubling
needs tangent.)
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What is this good for?
Understanding the addition law.

Efficient arithmetic – not really.

Addition procedures are not complete. (Conic for
addition is independent of curve while that for doubling
needs tangent.)

Pairings! Tate pairing:

(P,Q) 7→ fP (Q)(p
k−1)/r,

where P ∈ E(IFp)[r], E has embedding degree k with
respect to r, and div(fP ) = rP − rO.

Miller’s algorithm computes fP (Q) iteratively using gR,P .

All sorts of tricks available to speed up computation of
Tate pairing.
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Previous attempts
Das, Sarkar [Pairing 2008]:

Map points to a curve in Weierstrass form using
birational map and compute pairing there.

Express functions gR,R and gR,P in the Miller loop by
transformation to Montgomery form.

Explicit formulas for supersingular curves with k = 2.

Ionica, Joux [Indocrypt 2008]:

Compute Miller functions on a curve

v2u = (1 + du)2 − 4u.

Actually compute 4th power of the Tate pairing.

Explicit formulas for even k.
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Miller’s algorithm

Let k > 1 be the embedding degree of E w.r.t. r,
P ∈ E(IFp)[r], Q ∈ E(IFpk),
r = (rl−1, . . . , r1, r0)2.
Compute the Tate pairing as:

1. R← P , f ← 1

2. for i = l − 2 to 0 do
(a) f ← f2 · gR,R(Q), R← 2R //doubling step
(b) if ri = 1 then

f ← f · gR,P (Q), R← R + P //addition step

3. f ← f (pk−1)/n
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Miller function on twisted Edwards curves
Assume an even embedding degree k.

Represent IFpk = IFpk/2(α) where α2 = δ ∈ IFpk/2.

Use quadratic twist Eδa,δd(IFpk/2) to represent second
pairing argument Q = ψ(Q′):

ψ : Eδa,δd(IFpk/2) → Ea,d(IFpk),

Q′ = (x0, y0) 7→ (x0α, y0).

Here y0 ∈ IFpk/2 lies in a proper subfield of IFpk .

In Miller’s algorithm compute
f2 · gR,R(ψ(Q′)) (doubling step) and
f · gR,P (ψ(Q′)) (addition step).
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Miller function on twisted Edwards curves II
Compute

h1

l1l2
(x0α, y0) =

cZ2(1 + y0) + cXY x0αy0 + cXZx0α

(Z3y0 − Y3)x0α

=
cZ2

1+y0

x0δ
α+ cXY y0 + cXZ

Z3y0 − Y3
,

where (X3 : Y3 : Z3) are the coord. of [2]R or R+ P ,

in 2(k/2)m over IFp given the coefficients cZ2 , cXY , cXZ

and precomputed η = 1+y0

x0δ
.

Note that Z3yQ − Y3 ∈ IFpk/2. Discard it since final
exponentiation maps it to 1 anyway.
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Pairing-friendly Edwards curves

How to get Edwards curves with small embedding degree?

Construct pairing-friendly curves in Weierstrass form
and then transform to Edwards or twisted Edwards
form.

Only requirement is that the group order is a multiple of
4.

If have a point of order 4, get plain Edwards curve.

If not, get twisted Edwards curve. Can be transformed
to plain Edwards form by using 2-isogenies.
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Pairing-friendly Edwards curves

Need curves with 4 | #E(IFp).

Use generalized MNT construction for curves with
cofactor 4 as done by Galbraith, McKee, Valença.

Parameterizations for embedding degree k = 6 and
cofactor 4.

Case q(ℓ) t(ℓ) n(ℓ)

1 16ℓ2 + 10ℓ+ 5 2ℓ+ 2 4ℓ2 + 2ℓ+ 1

2 112ℓ2 + 54ℓ+ 7 14ℓ+ 4 28ℓ2 + 10ℓ+ 1

3 112ℓ2 + 86ℓ+ 17 14ℓ+ 6 28ℓ2 + 18ℓ+ 3

4 208ℓ2 + 30ℓ+ 1 −26ℓ− 2 52ℓ2 + 14ℓ+ 1

5 208ℓ2 + 126ℓ+ 19 −26ℓ− 8 52ℓ2 + 38ℓ+ 7
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Pairing-friendly Edwards curves

First solve the norm equation

t(ℓ)2 − 4q(ℓ) = −Dv2.

Case 1 in the table:

t(ℓ) = 2ℓ+ 2, q(ℓ) = 16ℓ2 + 10ℓ+ 5

Transform equation into corresponding Pell equation by
completing the square:

t(ℓ)2 − 4 q(ℓ) = −D y2 ⇐⇒ x2 − 15Dy2 = −44,

where x = 15ℓ+ 4.
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Pairing-friendly Edwards curves
Constructed curves over IFp have order

#E(IFp) = 4hr

for a prime r and cofactor h.
Since embedding degree is fixed to 6, balance the
DLPs; ECRYPT report on key sizes suggests the
following bitsizes:

r p p6 h

160 208 1248 46

192 296 1776 102

224 405 2432 179

256 541 3248 283

512 2570 15424 2056
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Examples
D = 1, ⌈log(n)⌉ = 363, ⌈log(h)⌉ = 7, ⌈log(p)⌉ = 371

p = 32428903728427434871960638456028409162281939582432575945
30632153559402628010019946681624958973937239637420169141,

n = 11105788948091587284918026868502879850096554651518005460
623832064312035897815509951488907964532000965993787241,

h = 73,
d = 16214451864213717435980319228014204581140969791216287972

65316076779701314005009973340812479486968619818710084571.

D = 7230, ⌈log(n)⌉ = 165, ⌈log(h)⌉ = 34, ⌈log(p)⌉ = 201

p = 2051613663768129606093583432875887398415301962227490187508801
n = 44812545413308579913957438201331385434743442366277,
h = 7 · 733 · 2230663,
d = 889556570662354157210639662153375862261205379822879716332449

Toy example in Barreto, Lynn, Scott with k = 12, D = 13188099.
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Explicit formulas

Use explicit formulas with extended Edwards
coordinates by Hisil, et. al. [Asiacrypt 2008] for point
doubling and addition in Miller’s algorithm.

Can reuse large parts of the computation for
coefficients of the conic.

Use even embedding degree and quadratic twist to
represent second pairing argument Q, i.e.
multiplications with coordinates xQ and yQ cost k/2
multiplications in IFp.

Compute conic coefficients in doubling step with
6m + 5s + 1ma, in addition step with 14m + 1ma (mixed
addition 12m + 1ma).
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Comparison

DBL mADD ADD

J 1m + 11s + 1ma4
9m + 3s —

J , a4 = −3 7m + 4s 9m + 3s —
J , a4 = 0 6m + 5s 9m + 3s —
E 8m + 4s + 1md 14m + 4s + 1md —
E , this paper 6m + 5s + 1ma 12m + 1ma 14m + 1ma
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Comparison

DBL mADD ADD

J 1m + 11s + 1ma4
9m + 3s —

this paper 1m + 11s + 1ma4
6m + 6s 15m + 6s

J , a4 = −3 7m + 4s 9m + 3s —
this paper 6m + 5s 6m + 6s 15m + 6s

J , a4 = 0 6m + 5s 9m + 3s —
this paper 3m + 8s 6m + 6s 15m + 6s

E 8m + 4s + 1md 14m + 4s + 1md —
E , this paper 6m + 5s + 1ma 12m + 1ma 14m + 1ma
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Thank you for your attention!

d < 0, non-square!

Explicit formulas and more curve examples in preprint
http://eprint.iacr.org/2009/155
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