Fully Homomorphic Encryption Using Ideal Lattices

Craig Gentry

Stanford University, IBM

Fields Institute, 05/11/09

Wouldn't it be neat if you could...

Query encrypted data?

- Store your encrypted data on an untrusted server
- Query the data - i.e., make boolean queries on the data
- Get a useful response from the server, without the server just sending all of the data to you

Wouldn't it be neat if you could...

Query encrypted data?

- Store your encrypted data on an untrusted server
- Query the data - i.e., make boolean queries on the data
- Get a useful response from the server, without the server just sending all of the data to you

Query data privately?

- Send an encrypted query regarding stored data (e.g., on Google's servers)
- Get a useful concise response

Wouldn't it be neat if you could...

Query encrypted data?

- Store your encrypted data on an untrusted server
- Query the data - i.e., make boolean queries on the data
- Get a useful response from the server, without the server just sending all of the data to you

Query data privately?

- Send an encrypted query regarding stored data (e.g., on Google's servers)
- Get a useful concise response

Do both simultaneously?

Privacy Homomorphism (a.k.a. Fully Homomorphic Encryption)

Well, here's how:

- Privacy homomorphism: Rivest, Adleman and Dertouzos proposed the concept in 1978. (Rivest, Shamir, and Adleman proposed RSA in 1977, published in 1978.)
- Assume you have public-key encryption scheme that, in addition to algorithms (KeyGen, Enc, Dec), has an efficient algorithm "Evaluate", such that:

$$
\text { Evaluate }\left(p k, C, \Psi_{1}, \ldots, \Psi_{\dagger}\right) \approx E n c\left(p k, C\left(\pi_{1}, \ldots, \pi_{\dagger}\right)\right)
$$

for all pk, all circuits C, all $\Psi_{i}=\operatorname{Encrypt}\left(p k, \pi_{i}\right)$.

Privacy Homomorphism

Well, here's how:

- Assume you have public-key encryption scheme that, in addition to algorithms (KeyGen, Enc, Dec), has an efficient algorithm "Evaluate", such that:

$$
\text { Evaluate(pk, } \left.C, \Psi_{1}, \ldots, \psi_{\dagger}\right) \approx \operatorname{Enc}\left(p k, C\left(\pi_{1}, \ldots, \pi_{+}\right)\right)
$$

for all $p k$, all circuits C, all $\Psi_{i}=$ Encrypt(pk, $\left.\pi_{i}\right)$.

Query encrypted data:
Encrypt stored data: $\psi_{1}, \ldots, \psi_{\dagger}$
Query: send your circuit C
Response: Eval $\left(\mathrm{pk}, C, \Psi_{1}, \ldots, \Psi_{\dagger}\right)$
Decrypt response $\rightarrow C\left(\pi_{1}, \ldots, \pi_{+}\right)$

Privacy Homomorphism

Well, here's how:

- Assume you have public-key encryption scheme that, in addition to algorithms (KeyGen, Enc, Dec), has an efficient algorithm "Evaluate", such that:

$$
\text { Evaluate }\left(\mathrm{pk}, C, \Psi_{1}, \ldots, \psi_{\dagger}\right) \approx \operatorname{Enc}\left(\mathrm{pk}, C\left(\pi_{1}, \ldots, \pi_{\dagger}\right)\right)
$$

for all $p k$, all circuits C, all $\Psi_{i}=$ Encrypt(pk, $\left.\pi_{i}\right)$.

Query encrypted data:
Encrypt stored data: $\psi_{1}, \ldots, \psi_{\dagger}$
Query: send your circuit C
Response: Eval(pk, $\left.C, \Psi_{1}, \ldots, \Psi_{+}\right)$
Decrypt response $\rightarrow C\left(\pi_{1}, \ldots, \pi_{+}\right)$

Query data privately:
Send enc. queries $\psi_{i}=\operatorname{Enc}\left(p k, \pi_{i}\right)$
Server uses search circuit $C_{\text {data }}$
Response: Eval(pk, $\left.C_{\text {data }}, \psi_{1}, \ldots, \psi_{+}\right)$
Decrypt response $\rightarrow C_{\text {data }}\left(\pi_{1}, \ldots, \pi_{+}\right)$

The Quest for Privacy Homomorphisms

Problem is: We have no such encryption scheme.

- What we have currently:
- Multiplicatively homomorphic schemes: RSA, EIGamal, etc.
- Additively homomorphic schemes: GM, Paillier, etc.
- Quadratic formulas: BGN
- NC1: SYY
- What we don't have:
- A fully homomorphic scheme for arbitrary circuits

Fully Homomorphic Encryption: Construction

3 Steps

- Step 1 - Bootstrapping:

- Step 2 - Ideal Lattices: Decryption in lattice-based systems has low circuit complexity. Ideal lattices used to get + and \times ops.
- Step 3 - Squashing the Decryption Circuit: the encrypter helps make decryption circuit smaller by starting decryption itself! Like server-aided decryption.

Step 1: Bootstrapping

9 What Circuits can RSA "Evaluate"?

A circuit of multiplication $(\bmod N)$ gates

Q What Circuits can Goldwasser-Micali "Evaluate"?

A circuit of XOR gates

Q What Circuits can Boneh-Goh-Nissim "Evaluate"?

Uses a bilinear map or "pairing": $\quad e: G \times G \rightarrow G_{T}$

A quadratic formula

Fully Homomorphic Encryption: Informal Definition

Can "evaluate" any circuit

- A too-strong definition (indistinguishable distributions):

$$
\text { Evaluate }\left(\mathrm{pk}, C, \psi_{1}, \ldots, \psi_{+}\right) \approx \operatorname{Enc}\left(\mathrm{pk}, C\left(\pi_{1}, \ldots, \pi_{+}\right)\right)
$$

for all circuits C, all ($s k, p k$), and $\psi_{i}=$ Encrypt(pk, $\left.\pi_{i}\right)$.

- Indistinguishability unnecessary for many apps.
- But we can achieve this...

Fully Homomorphic Encryption: Informal Definition

Can "evaluate" any circuit

- What we want:
- Correctness:
$\operatorname{Dec}\left(\right.$ sk, Evaluate $\left.\left(\mathrm{pk}, C, \Psi_{1}, \ldots, \psi_{+}\right)\right)=C\left(\pi_{1}, \ldots, \pi_{+}\right)$
for all circuits C, all ($s k, p k$), and $\Psi_{i}=\operatorname{Encrypt}\left(p k, \pi_{i}\right)$.

Fully Homomorphic Encryption: Informal Definition

Can "evaluate" any circuit

- What we want:
- Correctness:
$\operatorname{Dec}\left(\right.$ sk, Evaluate $\left.\left(\mathrm{pk}, C, \psi_{1}, \ldots, \psi_{+}\right)\right)=C\left(\pi_{1}, \ldots, \pi_{+}\right)$
for all circuits C, all ($s k, p k$), and $\Psi_{i}=\operatorname{Encrypt}\left(p k, \pi_{i}\right)$.
- Compactness:
- Output of Evaluate is short.
- The trivial solution doesn' \dagger count:

$$
\text { Evaluate }\left(p k, C, \Psi_{1}, \ldots, \psi_{+}\right) \rightarrow\left(C, \Psi_{1}, \ldots, \psi_{+}\right)
$$

- Our requirement: Size of decryption circuit is a fixed polynomial in security parameter

A "Complete" Set of Circuits?

A Steppingstone?

- Given: a scheme E that Evaluates some set S of circuits
- Is S complete?: From E, can we construct a scheme that works for circuits of arbitrary depth?

A "Complete" Set of Circuits?

A Steppingstone?

- Given: a scheme E that Evaluates some set S of circuits
- Is S complete?: From E, can we construct a scheme that works for circuits of arbitrary depth?

Yes!

Why is homomorphically evaluating the decryption circuit so powerful?

- Proxy re-encryption: Alice enables anyone to convert a ciphertext under $\mathrm{PK}_{\text {Alice }}$ to one under $\mathrm{PK}_{\text {Boo }}$:

Red means
encrypted
under PK Alice.

Circuits of Arbitrary Depth

Theorem (informal):

- Suppose scheme E is bootstrappable - i.e., it evaluates its own decryption circuit augmented by gates in Γ.
- Then, there is a scheme $\mathrm{E}_{\bar{\delta}}$ that evaluates arbitrary circuits of depth δ with gates in Γ.
- Ciphertexts: Same size in $E_{\bar{\delta}}$ as in E.
- Public key:
- Consists of ($\delta+1$) E pub keys: $\mathrm{pk}_{0}, \ldots, \mathrm{pk}_{\bar{\delta}}$
- Along with δ encrypted secret keys: $\left\{E n c\left(\mathrm{pk}_{\mathrm{i}}, \mathrm{sk}_{(i-1)}\right)\right\}$
- Linear in δ.
- Constant in δ, if you assume encryption is "circular secure."

Step 2: Ideal Lattices

Our Task Now...

Find an encryption scheme E that can evaluate its own decryption circuit, plus some.

Our Task Now...

Find an encryption scheme E that can evaluate its own decryption circuit, plus some.

Bootstrappability gives us a new angle:

- Don't just maximize the scheme's "evaluative capacity"
- Also minimize the circuit complexity of decryption

Our Task Now...

Find an encryption scheme E that can evaluate its own decryption circuit, plus some.

Bootstrappability gives us a new angle:

- Don't just maximize the scheme's "evaluative capacity"
- Also minimize the circuit complexity of decryption

Where to Look?:

- Not RSA: Exponentiation is highly unparallelizable - i.e., it requires deep circuits
- Maybe schemes based on codes or lattices...
- "Decoding" is typically an inner product - parallelizable!

A set of points, or vectors, that looks like this.

What's a Lattice?

- $\left(v_{1}, v_{2}\right)$ is a basis of the lattice L, since $L=\left\{x_{1} v_{1}+x_{2} v_{2}: x_{i}\right.$ in Z (integers) $\}$
- Bases are not unique
- $\left(v_{1}, v_{2}\right)$ looks like a better basis, don't you think?

Parallelepipeds

Good Basis

Good Basis

- Formula for reducing a basis modulo $B=\left\{v_{1}, v_{2}\right\}$: $\quad t \bmod B=\dagger-B\left[B^{-1} \dagger\right]$

Bad Basis

Bad Basis

- Formula for reducing a basis modulo $B=\left\{v_{1}, v_{2}\right\}: \quad \dagger \bmod B=\dagger-B\left[B^{-1} \dagger\right]$
- LLL 2^{n}-approximates the best basis.

Bad Basis

- Formula for reducing a basis modulo $B=\left\{v_{1}, v_{2}\right\}$: $\quad t \bmod B=t-B\left[B^{-1} \dagger\right]$
- LLL 2^{n}-approximates the best basis.

How Do We Encrypt Using Lattices?

- Ideas:
- Close / Far: Ciphertext for 0 is close to a lattice point, and a ciphertext for 1 is far.
- Odd / Even:
- Encryption of 0: vector that differs from closest lattice point by an "even" vector.
- Encryption of 1: vector that differs from closest lattice point by an "odd" vector.

- Encryption: $\psi \leftarrow \rho \bmod B_{p k}$ (public basis)

A Rough Lattice-Based Encryption Scheme

- Encryption: $\psi \leftarrow \rho \bmod \mathrm{B}_{\mathrm{pk}}$ (public basis)
- Decryption: $\rho \leftarrow \psi \bmod B_{s k}$ (secret basis) $=\psi-B_{\text {sk }}\left[B_{s k}{ }^{-1} \psi\right]$

What if we add ciphertext vectors?

q

- Encryption $\psi \leftarrow \rho \bmod B_{p k}$ (public basis)

What if we add ciphertext vectors?

- Encryption $\psi \leftarrow \rho \bmod B_{p k}$ (public basis)

How many ciphertexts can we add?

. Suppose a sphere of radius $r_{\text {Dec }}$ is in private parallelepiped.

- Suppose a processed plaintext is in $B\left(r_{E n c}\right)$.

Sum of processed plaintexts

How many ciphertexts can we add?

\S Fortunately, $r_{\text {Dec }} / r_{\text {Enc }}$ can be huge - e.g., $2^{\sqrt{n}}$ - and still secure.
§ LLL can find closest L-vector to t when

$$
\lambda_{1}(L) / \operatorname{dist}(L, t) \quad>\quad 2^{n}
$$

where $\lambda_{1}(L)$ is the shortest nonzero vector in L.
$\S r_{\text {Dec }}$: can as large as $\lambda_{1}(L)$, up to a small (poly (n)) factor.
\& $r_{\text {Enc }}$: can be very small, as long as:
$\S \lambda_{1}(L) / r_{\text {Enc }}$ is not so large that LLL breaks security ($2^{\sqrt{ } n} O K$)
\S There is enough min-entropy in $B\left(r_{\text {Enc }}\right)$, roughly speaking.
\S Overall, $r_{\text {Dec }} / r_{\text {Enc }}$ can be about $2^{\sqrt{n}}$.

How Can We Multiply Ciphertexts?

- Ideas:
- Tensor Product: Would lead to huge ciphertexts
- Use rings instead of (additive) groups: Good idea!

Ideal Lattices

What is an "ideal"?

A subset J of a ring R that is closed under " + ", and also closed under " x " with R.

What is an "ideal lattice"? One object, both an ideal and a lattice

- Example: Z (integers) is a ring. (2), the even integers, is an ideal.
$\begin{array}{cccccccccccc}-2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \ominus & \bullet & \ominus & \bullet\end{array}$

Ideal Lattices

What is an "ideal"?

A subset J of a ring R that is closed under " + ", and also closed under " x " with R.

What is an "ideal lattice"? One object, both an ideal and a lattice

- Example: $Z[x] /(f(x))$ is a polynomial ring, $f(x)$ monic, $\operatorname{deg}(f)=n$.
- $(a(x))$ is an ideal $\{a(x) b(x) \bmod f(x): b(x)$ in $R\}$. Lattice basis below:

$a(x)$
$x \cdot a(x) \bmod f(x)$
\ldots
$x^{n-1} \cdot a(x) \bmod f(x)$

a_{0}	a_{1}	a_{2}	\ldots	a_{n-1}
$-a_{n-1} f_{0}$	$a_{0}-a_{n-1} f_{1}$	$a_{1}-a_{n-1} f_{2}$	\ldots	$a_{n-2}-a_{n-1} f_{n-1}$
\ldots				
\ldots				

Ideal Lattice Scheme: High-Level

Background: $C T s$ live in ring $R=Z[x] / f(x)$, where $\operatorname{deg}(f)=n$. CTs can be added as vectors and multiplied as ring elements.

Random vector from public key ideal J

Multiplication: $\quad\left(m_{1}+2 v_{1}+j_{1}\right)\left(m_{2}+2 v_{2}+j_{2}\right)$
$=m_{1} \times m_{2}+2\left(m_{1} v_{2}+m_{2} v_{1}+2 v_{1} v_{2}\right)+($ something in $J)$

Ideal Lattice Scheme: More Concretely

- Parameters: Ring $\mathrm{R}=\mathrm{Z}[\mathrm{x}] /(\mathrm{f}(\mathrm{x}))$, basis B_{I} of "small" ideal lattice I. Radii $r_{\text {Dec }}$ and $r_{\text {Enc }}$ as before. The operations " + " and " \times " are in R.
- KeyGen: Output "good" and "bad" bases ($\mathrm{B}_{\mathrm{sk}}, \mathrm{B}_{\mathrm{pk}}$) of a "big" ideal lattice J, which is relatively prime to $I-$ i.e., $I+J=R$. Plaintext space: the cosets of I.
- Encrypt $\left(\mathrm{B}_{\mathrm{pk}}, \mathrm{m}\right): \operatorname{Set} \mathrm{m}^{\prime} \leftarrow^{\mathrm{R}}(\mathrm{m}+\mathrm{I}) \cap \mathrm{B}\left(\mathrm{r}_{\mathrm{Enc}}\right) . \quad$ Set $\mathrm{c} \leftarrow \mathrm{m}^{\prime} \bmod \mathrm{B}_{\mathrm{pk}}$.
- Decrypt $\left(B_{s k}, c\right)$: Output $\left(c \bmod B_{s k}\right) \bmod B_{I} \rightarrow m$
- $\operatorname{Add}\left(\mathrm{B}_{\mathrm{pk}}, \mathrm{c}_{1}, \mathrm{c}_{2}\right)$: Output $\mathrm{c} \leftarrow \mathrm{c}_{1}+\mathrm{c}_{2} \bmod \mathrm{~B}_{\mathrm{pk}}$
- $\operatorname{Mult}\left(\mathrm{B}_{\mathrm{pk}}, \mathrm{c}_{1}, \mathrm{c}_{2}\right)$: Output $\mathrm{c} \leftarrow \mathrm{c}_{1} \times \mathrm{c}_{2} \bmod \mathrm{~B}_{\mathrm{pk}}$, which is in $\mathrm{m}_{1}{ }^{\prime} \times \mathrm{m}_{2}{ }^{\prime}+\mathrm{J}$

The NTRU encryption scheme uses a similar approach with 2 relatively prime ideals.

Ideal Lattice Scheme: Correctness

- Parameters: Ring $\mathrm{R}=\mathrm{Z}[\mathrm{x}] /(\mathrm{f}(\mathrm{x}))$, basis B_{I} of "small" ideal lattice I . Radii $r_{\text {Dec }}$ and $r_{\text {Enc }}$ as before. The operations " + " and " x " are in R.
- KeyGen: Output "good" and "bad" bases ($\mathrm{B}_{\mathrm{sk}}, \mathrm{B}_{\mathrm{pk}}$) of a "big" ideal lattice J , which is relatively prime to $\mathrm{I}-\mathrm{i} . \mathrm{e} ., \mathrm{I}+\mathrm{J}=\mathrm{R}$. Plaintext space: the cosets of I.
- Encrypt $\left(\mathrm{B}_{\mathrm{pk}}, \mathrm{m}\right):$ Set $\mathrm{m}^{\prime} \leftarrow^{\mathrm{R}}(\mathrm{m}+\mathrm{I}) \cap \mathrm{B}\left(\mathrm{r}_{\mathrm{Enc}}\right)$. Set $\mathrm{c} \leftarrow \mathrm{m}^{\prime} \bmod \mathrm{B}_{\mathrm{pk}}$.
- Decrypt $\left(B_{\text {sk }}, c\right)$: Output $\left(c \bmod B_{\text {sk }}\right) \bmod B_{I} \rightarrow m$
- $\operatorname{Add}\left(\mathrm{B}_{\mathrm{pk}}, \mathrm{c}_{1}, \mathrm{c}_{2}\right)$: Output $\mathrm{c} \leftarrow \mathrm{c}_{1}+\mathrm{c}_{2} \bmod \mathrm{~B}_{\mathrm{pk}}$
- $\operatorname{Mult}\left(\mathrm{B}_{\mathrm{pk}}, \mathrm{c}_{1}, \mathrm{c}_{2}\right)$: Output $\mathrm{c} \leftarrow \mathrm{c}_{1} \times \mathrm{c}_{2} \bmod \mathrm{~B}_{\mathrm{pk}}$, which is in $\mathrm{m}_{1}{ }^{\prime} \times \mathrm{m}_{2}{ }^{\prime}+\mathrm{J}$

Correctness: Decryption works on $\operatorname{Add}\left(\mathrm{B}_{\mathrm{pk}}, \mathrm{c}_{1}, \mathrm{c}_{2}\right)$ if $\mathrm{m}^{\prime}{ }_{1}+\mathrm{m}^{\prime}{ }_{2}$ is in the B_{sk} parallelepiped.

Ideal Lattice Scheme: Correctness

- Parameters: Ring $\mathrm{R}=\mathrm{Z}[\mathrm{x}] /(\mathrm{f}(\mathrm{x}))$, basis B_{I} of "small" ideal lattice I . Radii $r_{\text {Dec }}$ and $r_{\text {Enc }}$ as before. The operations " + " and " x " are in R.
- KeyGen: Output "good" and "bad" bases ($\mathrm{B}_{\mathrm{sk}}, \mathrm{B}_{\mathrm{pk}}$) of a "big" ideal lattice J , which is relatively prime to $\mathrm{I}-\mathrm{i} . \mathrm{e} ., \mathrm{I}+\mathrm{J}=\mathrm{R}$. Plaintext space: the cosets of I.
- Encrypt $\left(\mathrm{B}_{\mathrm{pk}}, \mathrm{m}\right):$ Set $\mathrm{m}^{\prime} \leftarrow^{\mathrm{R}}(\mathrm{m}+\mathrm{I}) \cap \mathrm{B}\left(\mathrm{r}_{\mathrm{Enc}}\right)$. Set $\mathrm{c} \leftarrow \mathrm{m}^{\prime} \bmod \mathrm{B}_{\mathrm{pk}}$.
- Decrypt $\left(B_{\text {sk }}, c\right)$: Output $\left(c \bmod B_{\text {sk }}\right) \bmod B_{I} \rightarrow m$
- $\operatorname{Add}\left(\mathrm{B}_{\mathrm{pk}}, \mathrm{c}_{1}, \mathrm{c}_{2}\right)$: Output $\mathrm{c} \leftarrow \mathrm{c}_{1}+\mathrm{c}_{2} \bmod \mathrm{~B}_{\mathrm{pk}}$
- $\operatorname{Mult}\left(\mathrm{B}_{\mathrm{pk}}, \mathrm{c}_{1}, \mathrm{c}_{2}\right)$: Output $\mathrm{c} \leftarrow \mathrm{c}_{1} \times \mathrm{c}_{2} \bmod \mathrm{~B}_{\mathrm{pk}}$, which is in $\mathrm{m}_{1}{ }^{\prime} \times \mathrm{m}_{2}{ }^{\prime}+\mathrm{J}$

Correctness: Decryption works on $\operatorname{Mult}\left(\mathrm{B}_{\mathrm{pk}}, \mathrm{c}_{1}, \mathrm{c}_{2}\right)$ if $\mathrm{m}_{1} \times \mathrm{m}_{2}{ }_{2}$ is in the B_{sk} parallelepiped.

Ideal Lattice Scheme: Correctness

- Parameters: Ring $\mathrm{R}=\mathrm{Z}[\mathrm{x}] /(\mathrm{f}(\mathrm{x}))$, basis B_{I} of "small" ideal lattice I . Radii $r_{\text {Dec }}$ and $r_{\text {Enc }}$ as before. The operations " + " and " x " are in R.
- KeyGen: Output "good" and "bad" bases ($\mathrm{B}_{\mathrm{sk}}, \mathrm{B}_{\mathrm{pk}}$) of a "big" ideal lattice J , which is relatively prime to $\mathrm{I}-$ i.e., $\mathrm{I}+\mathrm{J}=\mathrm{R}$. Plaintext space: the cosets of I.
- Encrypt $\left(\mathrm{B}_{\mathrm{pk}}, \mathrm{m}\right):$ Set $\mathrm{m}^{\prime} \leftarrow^{\mathrm{R}}(\mathrm{m}+\mathrm{I}) \cap \mathrm{B}\left(\mathrm{r}_{\mathrm{Enc}}\right)$. Set $\mathrm{c} \leftarrow \mathrm{m}^{\prime} \bmod \mathrm{B}_{\mathrm{pk}}$.
- Decrypt $\left(B_{\text {sk }}, c\right)$: Output $\left(c \bmod B_{\text {sk }}\right) \bmod B_{I} \rightarrow m$
- $\operatorname{Add}\left(\mathrm{B}_{\mathrm{pk}}, \mathrm{c}_{1}, \mathrm{c}_{2}\right)$: Output $\mathrm{c} \leftarrow \mathrm{c}_{1}+\mathrm{c}_{2} \bmod \mathrm{~B}_{\mathrm{pk}}$
- $\operatorname{Mult}\left(\mathrm{B}_{\mathrm{pk}}, \mathrm{c}_{1}, \mathrm{c}_{2}\right)$: Output $\mathrm{c} \leftarrow \mathrm{c}_{1} \times \mathrm{c}_{2} \bmod \mathrm{~B}_{\mathrm{pk}}$, which is in $\mathrm{m}_{1}{ }^{\prime} \times \mathrm{m}_{2}{ }^{\prime}+\mathrm{J}$

> Correctness: Correct for set S of circuits if $\mathrm{C}\left(\mathrm{m}_{1}^{\prime}, \ldots, \mathrm{m}_{\mathrm{t}}\right)$ is always in the B_{sk} parallelepiped..

Analyzing the Evaluative Capacity Geometrically

Correctness: Correct for set S of circuits if $\mathrm{C}\left(\mathrm{m}^{\prime}, \ldots, \mathrm{m}_{\mathrm{t}}\right)$ is always in the B_{sk} parallelepiped.

Analyzing the Evaluative Capacity Geometrically

Question: for what arithmetic circuits C does this hold: for all $\left(x_{1}, \ldots, x_{t}\right)$ in $B\left(r_{\text {Enc }}\right)^{t}, C\left(x_{1}, \ldots, x_{t}\right)$ is inside $B\left(r_{\text {Dec }}\right)$

- Add operations: $|\mathrm{u}+\mathrm{v}| \leq|\mathrm{u}|+|\mathrm{v}|$ (triangle inequality)
- Mult operations: $|\mathrm{u} \times \mathrm{v}| \leq \gamma_{\text {Mult }}(\mathrm{R}) \cdot|\mathrm{ul} \cdot| \mathrm{v} \mid$ for some factor $\gamma_{\text {Mult }}(\mathrm{R})$ that depends on the ring R , and which can be poly(n).
- Add vs. Mult:
- Add causes much less expansion than Mult.
- Constant fan-in Mult is as bad as poly(n) fan-in Add.

Analyzing the Evaluative Capacity Geometrically

Question: for what arithmetic circuits C does this hold: for all $\left(x_{1}, \ldots, x_{t}\right)$ in $B\left(r_{\text {Enc }}\right)^{t}, C\left(x_{1}, \ldots, x_{t}\right)$ is inside $B\left(r_{\text {Dec }}\right)$

Add: $|\mathrm{u}+\mathrm{v}| \leq|\mathrm{u}|+|\mathrm{v}|$
Mult: $|\mathrm{u} \times \mathrm{v}| \leq \gamma_{\text {Mult }}(\mathrm{R}) \cdot|\mathrm{ul} \cdot| \mathrm{vl} \quad$ How much depth can we get?

- Let C be a fan-in-2, depth d arithmetic circuit
- Let r_{i} be the max radius associated to a gate in C at level i, when $r_{d}=r_{\text {Enc }}$.
- $r_{i} \leq \gamma_{\text {Mult }}(R) \cdot r_{i+1}{ }^{2}$
- Then, $\mathrm{r}_{0} \leq\left(\gamma_{\text {Mult }}(\mathrm{R}) \cdot \mathrm{r}_{\mathrm{d}}\right)^{2^{\mathrm{d}}}$.
- $r_{0} \leq r_{\text {Dec }}$ if $d \leq \log \log r_{\text {Dec }}-\log \log \left(\gamma_{\text {Mult }}(R) \cdot r_{\text {Enc }}\right)$
- E.g., $\left(\mathrm{c}_{1}-\mathrm{c}_{2}\right) \log \mathrm{n}$ depth when $\mathrm{r}_{\text {Dec }}=2^{\mathrm{n}^{\mathrm{c} 1}}$ and $\gamma_{\text {Mult }}(\mathrm{R}) \cdot \mathrm{r}_{\text {Enc }}=2^{\mathrm{n}^{\mathrm{c} 2}}$.
- Bottom line: We get about $\log \mathrm{n}$ depth.

Analyzing the Evaluative Capacity Geometrically

Question: for what arithmetic circuits C does this hold: for all $\left(x_{1}, \ldots, x_{t}\right)$ in $B\left(r_{\text {Enc }}\right)^{t}, C\left(x_{1}, \ldots, x_{t}\right)$ is inside $B\left(r_{\text {Dec }}\right)$

Add: $|\mathrm{u}+\mathrm{v}| \leq|\mathrm{u}|+|\mathrm{v}|$
Mult: $|\mathrm{u} \times \mathrm{v}| \leq \gamma_{\text {Mult }}(\mathrm{R}) \cdot|\mathrm{ul} \cdot| \mathrm{vl} \quad$ How much depth can we get?

- Let C be a fan-in-2, depth d arithmetic circuit
- Let r_{i} be the max radius associated to a gate in C at level i, when $r_{d}=r_{\text {Enc }}$.
- $r_{i} \leq \gamma_{\text {Mult }}(R) \cdot r_{i+1}{ }^{2}$
- Then, $\mathrm{r}_{0} \leq\left(\gamma_{\text {Mult }}(\mathrm{R}) \cdot \mathrm{r}_{\mathrm{d}}\right)^{2^{\mathrm{d}}}$.
- $r_{0} \leq r_{\text {Dec }}$ if $d \leq \log \log r_{\text {Dec }}-\log \log \left(\gamma_{\text {Mult }}(R) \cdot r_{\text {Enc }}\right)$
- E.g., $\left(\mathrm{c}_{1}-\mathrm{c}_{2}\right) \log \mathrm{n}$ depth when $\mathrm{r}_{\text {Dec }}=2^{\mathrm{n}^{\mathrm{c} 1}}$ and $\gamma_{\text {Mult }}(\mathrm{R}) \cdot \mathrm{r}_{\text {Enc }}=2^{\mathrm{n}^{\mathrm{c} 2}}$.
- Bottom line: We get about $\log \mathrm{n}$ depth.
- Is this enough to bootstrap??

Homomorphic Decryption to "Refresh" Ciphertexts

- Intuition: When our ciphertext's "error vector" becomes to long, we want to "refresh" the ciphertext:
- Get a new encryption of same plaintext with shorter error.
- How to do it?
- Decrypt it, then encrypt again!
- But this requires the secret key...

Homomorphic Decryption to "Refresh" Ciphertexts

- Intuition: When our ciphertext's "error vector" becomes to long, we want to "refresh" the ciphertext:
- Get a new encryption of same plaintext with shorter error.
- How to do it?
- Decrypt it, then encrypt again!
- But this requires the secret key...
- Homomorphically decrypt it!!!

The Decryption Circuit of the Initial Scheme

$$
\begin{aligned}
\operatorname{Decrypt}\left(B_{s k}, \Psi\right) & =\left(\psi \bmod B_{s k}\right) \bmod B_{I} \\
& =\left(\psi-B_{s k} \cdot\left[B_{s k}^{-1} \cdot \psi\right]\right) \bmod B_{I}
\end{aligned}
$$

Can simplify this to:

$$
\operatorname{Decrypt}\left(v_{s k}, \psi\right)=\left(\psi-\left[\left(v_{s k}\right)^{-1} \times \psi\right]\right) \bmod (2)
$$

Expensive Step: Computing $\left[\left(v_{s k}\right)^{-1} \times \psi\right] \bmod (2)$

Another "tweak": Require ψ to be within $r_{\text {Dec }} / 2$ of a lattice point. Then, the coeffs of $\left(v_{s k}\right)^{-1} \times \psi$ will be within $\frac{1}{4}$ of an integer.
Then, we need less precision to ensure correct rounding.

The Decryption Circuit of the Initial Scheme

Expensive Step: Computing $\left[\left(v_{\text {sk }}\right)^{-1} \times \psi\right] \bmod (2)$

- Ring multiplication is like a bunch of parallel inner products
- Each inner product involves an addition of n terms, like this: 1.1101... + 0.0101... + 0.1011... + 1.1010... + ...
- We have to worry about carry bits -> have high degree in input.
- When vectors are n-dimensional, the shallowest circuit I know of has depth $O(\log n)$, and is heavy on the MULTs.

The Decryption Circuit of the Initial Scheme

Expensive Step: Computing $\left[\left(v_{s k}\right)^{-1} \times \psi\right] \bmod 2$

1.1101... + 0.0101... $+0.1011 \ldots+1.1010 \ldots+\ldots$

- When vectors are n-dimensional, the least complex circuit I know of has depth $O(\log n)$, and is heavy on the MULTs.
- "3-for-2" trick: replaces 3 (binary) numbers with 2 numbers having the same sum.
- $c \log _{3 / 2} n$ depth to get 2 numbers with same sum as n numbers.

$$
0.1011 \ldots+1.0111 \ldots
$$

- Normally, depth of adding 2 numbers is log in their bit-lengths
- But, we can use fact that, for valid ciphertexts, $\left(v_{s k}\right)^{-1} \times \psi$ is very close to an integer vector \rightarrow final sum is constant depth.

The Decryption Circuit of the Initial Scheme

- Bottom line: Decryption circuit is also $O(\log n)$, but for a larger constant than the depth we can Evaluate.
- Blargh...

Still Not Bad...

- Boneh-Goh-Nissim does quadratic formulas: arbitrary number of additions, but multiplication depth of 1 .
- Our scheme:
- Essentially arbitrary additions, but with $\log n$ multiplication depth.
- Also, larger plaintext space.

Security of the scheme

- We'll discuss this in more detail later if we have time...

Step 3: Squashing the Decryption Circuit

Abstractly, How Can We Lower the Decryption Complexity?

Old
decryption algorithm

Abstractly, How Can We Lower the Decryption Complexity?

Old
decryption algorithm

Crazy idea: The encrypter starts decryption, leaving less for the decrypter to do!

Abstractly, How Can We Lower the

Crazy idea: The encrypter starts decryption, leaving less for the decrypter to do!

Abstractly, How Can We Lower the Decryption Complexity?

Crazy idea: The encrypter starts decryption, leaving less for the decrypter to do!

Abstractly, How Can We Lower the

Abstractly, How Can We Lower the Decryption Complexity?

Concretely, How Does the Transformation Work?

$$
\operatorname{Decrypt}\left(v_{s k}, \psi\right)=\left(\psi-\left[\left(v_{s k}\right)^{-1} \times \Psi\right]\right) \bmod (2)
$$

Expensive Step: Computing $\left[\left(v_{\text {sk }}\right)^{-1} \times \psi\right] \bmod 2$

Remember the Old Circuit...

Expensive Step: Computing $\left[\left(v_{\text {sk }}\right)^{-1} \times \psi\right] \bmod 2$

1.1101... + 0.0101... + 0.1011... + 1.1010... + ...

- Dominant computation: "3-for-2 trick" circuit of depth $c \log _{3 / 2} n$

Our New Circuit...

Expensive Step: Computing $\left[\left(v_{\text {sk }}\right)^{-1} \times \psi\right] \bmod 2$

1.1101... + 0.0101... $+0.1011 \ldots+1.1010 \ldots+\ldots$

- Dominant computation: "3-for-2 trick" circuit of depth $c \log _{3 / 2} n$
- Goal: Use less depth to get 2 vectors

$$
(0.1011 \ldots, \ldots, 1.0110 \ldots)+(1.0111 \ldots, \ldots, 1.1000 \ldots)
$$

whose sum is same $(\bmod 2)$ as: $\left(v_{s k}\right)^{-1} \times \psi$

- Strategy: Start with much fewer than n vectors in the first place!

Abstractly, How Can We Lower the Decryption Complexity?

Concretely, How Does the New Approach Work?

Expensive Step: Computing $\left[\left(v_{\text {sk }}\right)^{-1} \times \psi\right] \bmod 2$

What is the "hint" $f(s k, r)$ that we put in the pub key?

- The Hint: a set S of vectors $\left\{w_{i}\right\}$ that has a hidden subset T of vectors $\left\{x_{i}\right\}$ whose sum is $\left(v_{\text {sk }}\right)^{-1}$.
- $|S|=n^{\beta}, \beta>1 . \quad|T|=\omega(1)$ and $o(n)$.
- Dec1: Encrypter sends ψ and

$$
\psi^{*}=\left\{c_{i}=w_{i} \times \psi(\bmod 2)\right\} \text { for all } w_{i} \text { in } S
$$

- Dec2: Decrypter sums up the $|T|$ values that are "relevant." This takes $c \log |T|$ depth with 3-for-2 trick.

Concretely, How Does the New Approach Work?

- The Hint: a set S of vectors $\left\{w_{i}\right\}$ that has a hidden subset T of vectors $\left\{x_{i}\right\}$ whose sum is $\left(v_{s k}\right)^{-1}$.
- $|S|=n^{\beta}, \beta>1 . \quad|T|=\omega(1)$ and $o(n)$.
- Dec1: Encrypter sends ψ and

$$
\psi^{\star}=\left\{c_{i}=w_{i} \times \psi(\bmod 2)\right\} \text { for all } w_{i} \text { in } S
$$

- Dec2: Decrypter sums up the $|T|$ vectors that are "relevant."

In Dec2, how do we cheaply extract |T| vectors that are relevant?

- Decrypter's secret key sk* consists of $|T| 0 / 1$-vectors $\left\{y_{i}\right\}$ of dimension $|S|$; each encodes 1 member of $|T|$.

$y_{1}:$	0	1	0	0	0	0	0
$y_{2}:$	0	0	1	0	0	0	0
$y_{3}:$	0	0	0	0	0	1	0

- For each i, it inner-products y_{i} with ψ^{\star}.
- Key point: No carries to worry about in inner product \rightarrow We can use a high fan-in add gate (cheap).

Concretely, How Does the New Approach Work?

Expensive Step: Computing $\left[\left(v_{\text {sk }}\right)^{-1} \times \psi\right] \bmod 2$

- Bottom line: Dec2 has about $\log |T|$ depth, $|T|=\omega(1)$ and $o(n)$.
- New Assumption: Given set S of vectors $\left\{w_{i}\right\}$ and vector v, decide whether there exists a low-weight subset $T=\left\{x_{i}\right\}$ with $v=\Sigma x_{i}$.
- Can pick |S| s.t. there will be many subsets of size, say, $|S| / 2$ whose sum is v .
- Known attacks: Finding T takes time roughly $n^{|T|}$.
- To evaluate depth $\log |T|$, original scheme needs $r_{\text {Dec }} / r_{\text {Enc }} \approx n^{\ominus(|T|)}$. This is also basically the approx factor of the lattice problem.
- Known attacks: Takes time roughly $2^{n / T \mid}$.
- Optimal: Set $|T| \approx \sqrt{ } n$.

Performance

- Well... a little slow.
- "Evaluating" a circuit homomorphically takes $\tilde{O}\left(k^{7}\right)$ computation per circuit gate if you want 2^{k} security against known attacks.
- ... But a full exponentiation in RSA also takes $\tilde{O}\left(k^{6}\right)$; also, in EIGamal (using finite fields).

Open Problems

- CCA1 Security
- Improve efficiency
- System using linear codes (wouldn't be so surprising)
- System based on "conventional" crypto assumptions
- "Refreshing" a ciphertext without completely (homomorphically) decrypting it

Thank You! Questions?

Q Security of the Initial Ideal Lattice Scheme

Distributional CVP: Generate basis B_{pk} for ideal lattice J using KeyGen. Set bit b.

- If $b=0,+$ is uniform in blue parallelepiped.
- If $b=1, \dagger$ is in blue parallelepiped, but according to a clumpy distribution.

Q Security of the Initial Ideal Lattice Scheme

Distributional CVP: Generate basis B_{pk} for ideal lattice J using KeyGen. Set bit b.

- If $b=0,+$ is uniform in blue parallelepiped.
- If $b=1, \dagger$ is in blue parallelepiped, but according to a clumpy distribution.

Q Security of the Initial Ideal Lattice Scheme

Distributional CVP: Generate basis B_{pk} for ideal lattice J using KeyGen. Set bit b.

- If $b=0,+$ is uniform in blue parallelepiped.
- If $b=1, \dagger$ is in blue parallelepiped, but according to a clumpy distribution.

Security

- Distributional CVP: Generate basis B_{pk} for ideal lattice J using KeyGen. Set bit b.
- If $b=0, t$ is uniform in blue parallelepiped.
- If $b=1, t$ is in blue parallelepiped, but according to a clumpy distribution (say, of radius r).
- Security proof sketch:
- If $b=1,+$ can be used to validly encrypt m, as follows:
- Let s be a short vector in I, such that the ideal (s) is relatively prime to the ideal J.
- Output $c \leftarrow m+s \times \dagger \bmod \mathrm{B}_{\mathrm{pk}}$.
- If $b=0$, then $c \leftarrow m+s \times \dagger \bmod B_{p k}$ will be random modulo J and independent of m.

Circuit Privacy

- Algorithm "Randomize":
- Applied to outputs of Encrypt or Evaluate, it induces statistically equivalent distributions.
- The Idea: Add a random encryption of 0 whose "error space" is huge in comparison to the "error space" ciphertexts output by Encrypt or Evaluate.
- New error space for Evaluate is $\mathrm{B}\left(\mathrm{r}_{\mathrm{Dec}} / \mathrm{m}\right)$ for super-polynomial m , but no problem...

Let Us Revisit the Initial Construction to Get a Better Security Result...

- Parameters: Ring $\mathrm{R}=\mathrm{Z}[\mathrm{x}] /(\mathrm{f}(\mathrm{x}))$, basis B_{I} of "small" ideal lattice I. Radii $\mathrm{R}_{\text {Dec }}$ and $\mathrm{R}_{\text {Enc }}$ as before. The operations " + " and " x " are in R.
- KeyGen: Output "good" and "bad" bases $\left(\mathrm{B}_{\mathrm{sk}}, \mathrm{B}_{\mathrm{pk}}\right.$) of a "big" ideal lattice J , which is relatively prime to $\mathrm{I}-$ i.e., $\mathrm{I}+\mathrm{J}=\mathrm{R}$. Plaintext space: the cosets of I.
- Encrypt $\left(\mathrm{B}_{\mathrm{pk}}, \mathrm{m}\right):$ Set $\mathrm{m}^{\prime} \leftarrow^{\mathrm{R}}(\mathrm{m}+\mathrm{I}) \cap \mathrm{B}\left(\mathrm{r}_{\mathrm{Enc}}\right) . \quad$ Set $\mathrm{c} \leftarrow \mathrm{m}^{\prime} \bmod \mathrm{B}_{\mathrm{pk}}$.
- Decrypt $\left(\mathrm{B}_{\mathrm{sk}}, \mathrm{c}\right)$: Output $\left(\mathrm{c} \bmod \mathrm{B}_{\mathrm{sk}}\right) \bmod \mathrm{B}_{\mathrm{I}} \rightarrow \mathrm{m}$
- $\operatorname{Add}\left(\mathrm{B}_{\mathrm{pk}}, \mathrm{c}_{1}, \mathrm{c}_{2}\right)$: Output $\mathrm{c} \leftarrow \mathrm{c}_{1}+\mathrm{c}_{2} \bmod \mathrm{~B}_{\mathrm{pk}}$
- $\operatorname{Mult}\left(\mathrm{B}_{\mathrm{pk}}, \mathrm{c}_{1}, \mathrm{c}_{2}\right)$: Output $\mathrm{c} \leftarrow \mathrm{c}_{1} \times \mathrm{c}_{2} \bmod \mathrm{~B}_{\mathrm{pk}}$, which is in $\mathrm{m}_{1}{ }^{\prime} \times \mathrm{m}_{2}{ }^{\prime}+\mathrm{J}$

Let Us Revisit the Initial Construction to Get a Better Security Result...

- Parameters: Ring $\mathrm{R}=\mathrm{Z}[\mathrm{x}] /(\mathrm{f}(\mathrm{x}))$, basis B_{I} of "small" ideal lattice I. Radii $\mathrm{R}_{\text {Dec }}$ and $\mathrm{R}_{\text {Enc }}$ as before. The operations " + " and " x " are in R.
- KeyGen: Output "good" and "bad" bases $\left(\mathrm{B}_{\mathrm{sk}}, \mathrm{B}_{\mathrm{pk}}\right.$) of a "big" ideal lattice J , which is relatively prime to $\mathrm{I}-$ i.e., $\mathrm{I}+\mathrm{J}=\mathrm{R}$. Plaintext space: the cosets of I.
- Encrypt $\left(\mathrm{B}_{\mathrm{pk}}, \mathrm{m}\right):$ Set $\mathrm{m}^{\prime} \leftarrow^{\mathrm{R}}(\mathrm{m}+\mathrm{I}) \cap \mathrm{B}\left(\mathrm{r}_{\mathrm{Enc}}\right)$. Set $\mathrm{c} \leftarrow \mathrm{m}^{\prime} \bmod \mathrm{B}_{\mathrm{pk}}$.
- Decrypt $\left(B_{s k}, c\right)$: Output $\left(c \bmod B_{s k}\right) \bmod B_{I} \rightarrow m$
- $\operatorname{Add}\left(\mathrm{B}_{\mathrm{pk}}, \mathrm{c}_{1}, \mathrm{c}_{2}\right)$: Output $\mathrm{c} \leftarrow \mathrm{c}_{1}+\mathrm{c}_{2} \bmod \mathrm{~B}_{\mathrm{pk}}$
- $\operatorname{Mult}\left(\mathrm{B}_{\mathrm{pk}}, \mathrm{c}_{1}, \mathrm{c}_{2}\right)$: Output $\mathrm{c} \leftarrow \mathrm{c}_{1} \times \mathrm{c}_{2} \bmod \mathrm{~B}_{\mathrm{pk}}$, which is in $\mathrm{m}_{1}{ }^{\prime} \times \mathrm{m}_{2}{ }^{\prime}+\mathrm{J}$

First step: Sample from $\mathrm{m}+\mathrm{I}$ according to a Gaussian distribution.

Discrete Gaussian Distributions

- We modify our initial construction to use discrete Gaussian distributions over lattices.
- Sum of 2 discrete Gaussian distribution is statistically equivalent to another discrete Gaussian distribution.

Used without permission of Oded Regev. He'd probably let me if I asked though. Thanks Oded!

Security Inner Ideal Membership Problem (IIMP)

- The IIMP: Fix R, B_{I}, and real $m_{\text {IIMP. }}$. $\operatorname{Run}\left(B_{s k}, B_{p k}\right) \leftarrow \operatorname{KeyGen}\left(R, B_{I}\right)$, bases for some ideal J. Se $b \leftarrow^{R}\{0,1\}$.
- If $b=0$, one samples $v \leftarrow \operatorname{Gauss}(I, s, 0)$ and sets $t \leftarrow v \bmod B_{p k}$.
- If $b=1$, one samples $v \leftarrow G a u s s\left(Z^{n}, s, 0\right)$ and sets $t \leftarrow v \bmod B_{p k}$.
- Given $\left(B_{p k}, t\right)$ and the fixed values, decide b.
- Security proof sketch:
- Set $w \leftarrow$ Gauss $\left(I, s,-m_{b}\right)$. Set $c \leftarrow m_{b}+w+v \bmod B_{p k}$.
- If $b=0,\left(c \bmod B_{s k}\right) \bmod B_{I}=\left(m_{b}+w+v\right) \bmod B_{I}=m_{b}$.
- If $b=1,\left(c \bmod B_{s k}\right) \bmod B_{I}=\left(m_{b}+w+v\right) \bmod B_{I}=$ random.

From Modified IIMP

- The MIIMP: Like the IIMP, except $m_{\text {MIIMP }}<m_{\text {IIMP }} \cdot \varepsilon /\left(n \cdot\left|B_{I}\right|\right)$ and
- If $b=0$, one sets $v \leftarrow I$ so that $|v|<m_{\text {MIIMP }}$
- If $b=1$, one sets v not in I so that $|v|<m_{\text {MIIMP }}$
- Given ($B_{p k}, t=v \bmod B_{p k}$) and the fixed values, decide b.
- Sketch of reduction to IIMP:
- Set u to be very short, but random modulo I.
- Set $t^{\prime} \leftarrow u \times t+\operatorname{Gauss}\left(I, m_{\text {IIMP }}, 0\right) \bmod B_{p k}$.
- IIMP instance is $\left(B_{p k}, t^{\prime}\right)$.
- If $b=0$, then indeed t^{\prime} is "in the inner ideal."
- If $b=1, t^{\prime}$ is uniformly random wrt I.

From Average-Case CVP Using Hensel Lifting

- Average-case CVP: Set $m_{\text {ACVP }}<m_{\text {MIIMP }} /\left(Y_{\text {MULT }}(R) \cdot \sqrt{n}\right)$. Set v such that $|v|<m_{A C v p}$, and se $t \dagger \leftarrow v \bmod B_{p k}$.
- Given ($B_{p k}, t$), output v. (This is a search problem!)
- Sketch of reduction to MIIMP:
- Use MIIMP-oracle to get $\mathrm{v}_{1} \leftarrow \mathrm{v}$ mod B_{I}.
- Set w to be a short vector in I^{-1}, and use the MIIMP-oracle to get $v_{2}{ }^{\prime} \leftarrow w \times\left(v-v_{1}\right) \bmod B_{I}$. This gives $v_{2} \leftarrow v \bmod I^{2}$.
- Etc.
- Given $v_{k}=v$ mod I^{k}, we know $v_{k}-v$ is in I^{k}. For large enough k, we can use LLL to solve this CVP in poly time (to get v).

Average-Case / Worst-Case Connection for Ideal Lattices?

- Yes
- First ac / wc connection where ac problem is for ideal lattices.
- First ac / wc connection where ac lattice has same dimension as wc lattice (usually the ac lattice is larger).
- I need quantum computation for the reduction...

q What is the average-case distribution?

- What is a random ideal?
- Our definition: uniformly random among ideals whose norm (i.e., determinant) is in a fixed interval - e.g., $\left[n^{c n}, 2 n^{c n}\right]$.

How to Generate (a Basis of) a Random Ideal...

- Our Technique: Adapt Kalai's technique for generating a random factored number.
- We generate a random factored norm N of an ideal in R.
- It is easy to generate bases for an ideal whose norm is prime.
- We multiply together the bases of the individual primes to get a basis whose norm is N .

KeyGen

- Goal: Ideal J, together with a good independent set for J^{-1}.
- Generate a random ideal K with norm in [$\left.n^{c n}, 2 n^{c n}\right]$.
- Generate $v \leftarrow \operatorname{Gauss}\left(K^{-1}, s, t \cdot e_{1}\right)$. I.e., v almost equals $\dagger \cdot \boldsymbol{e}_{1}$.
- Set J $\leftarrow K \cdot(v)$.
- Already have a somewhat good independent set for K-i.e., $\left\{\boldsymbol{e}_{i}\right\}$.
- Our good independent set for J^{-1} is $\left\{\boldsymbol{e}_{i} / v\right\}$.
- Proving that J has a nice average-case distribution (in a different interval) uses properties of discrete Gaussian distributions.

How Do We "Randomize" a Worst-Case Ideal?

- Given worst-case CVP instance ($\left.B_{M}, u\right)$, how do we randomize it to obtain average-case instance ($\left.B_{J}, t\right)$, such that solving the ac instance helps us solve the wc instance?
- First, we multiply M by a random ideal K. Intuitively, the shape of MK is essentially independent of M.
- Next, we multiply by $v \leftarrow G a u s s\left((M K)^{-1}, s, t \cdot e_{1}\right)$ to "divide out" the algebraic dependence on M.
- We set $J \leftarrow M K \cdot(v)$ and $\dagger \leftarrow u \times w_{k} \times v$, where w_{k} is a very shor \dagger vector in K (of length poly(n)).
- But, wait, our method of generating a random K didn't also give a short w_{k} in K...

How to Generate a Random Ideal with a Short Vector in It... Quantumly

- Generate the short w first via w $\leftarrow \operatorname{Gauss}\left(Z^{n}, s, t \cdot e_{1}\right)$
- Factor the ideal (w) by factoring the norm of (w) using Shor's quantum factoring algorithm.
- Set K to be a random divisor of (w).

Worst-Case CVP to Independent Vector Improvement Problem (IVIP)

- [Regev]: uses quantum computation
- Superposition 1: Gaussian distribution ($Z^{n}, ~ s, 0$).
- Superposition 2: Reduce each point in the above distribution modulo a basis B_{L} for the lattice L.
- If there is a classical CVP oracle for L that solves it when \dagger is within $s \sqrt{ } n$ of a lattice point, this reduction is reversible.
- Superposition 3: Fourier transform to get distribution (L*, 1/s, 0).
- Measure, to get a point in L^{*} of length at most $\sqrt{ } \mathrm{n} / \mathrm{s}$.

IVIP to Shortest Independent Vector Problem

- The SIVP: Generate n linearly independent vectors in a given lattice L, all of length at most $m_{\text {SIVP }} \cdot \lambda_{n}(L)$.
- Sketch of reduction to IVIP
- Given M_{0}, use the IVIP oracle to find an independent set of $M_{0}{ }^{-1}$ with vectors of length at most $1 / m_{\text {Ivip }}$.
- Set $v \leftarrow \operatorname{Gauss}\left(M_{0}{ }^{-1}, s / m_{\text {Ivip }}\left(\dagger / m_{\text {IvIP }}\right) \cdot e_{1}\right)$ and $M_{1} \leftarrow M_{0} \cdot(v)$.
- Recurse.
- Result: Let $d_{\text {SIVP }}=3^{1 / n .} d_{\text {IVIP }}$. If there is an algorithm that solves IVIP for $m_{\text {IVIP }}=8 \cdot \lambda_{\text {MULT }}(R) \cdot n^{2.5} \cdot \log n$ whenever the given ideal has $\operatorname{det}(M)^{1 / n}>d_{\text {IVIP }}$, then there is an algorithm that solves SIVP for approximation factor $d_{\text {sIvp }}$.

Correctness

Correctness: Decryption works on Evaluate $\left(\mathrm{B}_{\mathrm{J}, \mathrm{pk}}, C, \Psi_{1}, \ldots \psi_{\dagger}\right)$ if

 $C\left(\pi_{1}+i_{1}, \ldots, \pi_{+}+i_{+}\right)$is the disting. rep. of its coset w.r.t. $B_{J, s k}$.- Ciphertext $\Psi_{k}=\pi_{k}+i_{k}+j_{k}$, with i in I and j in J.
- Evaluate $\left(B_{J, p k}, C, \Psi_{1}, \ldots, \Psi_{+}\right)=C\left(\pi_{1}+i_{1}+j_{1}, \ldots, \pi_{+}+i_{+}+j_{+}\right)$

$$
\text { in } C\left(\pi_{1}+i_{1}, \ldots, \pi_{+}+i_{+}\right)
$$

- If $C\left(\pi_{1}+i_{1}, \ldots, \pi_{+}+i_{+}\right)$is the disting. rep. of its coset of J w.r.t. $B_{J, s k}$, which is true if $C(Y, \ldots, Y)$ is a subset of R mod $\mathrm{B}_{\mathrm{J}, \text { sk }}$, then Decrypt returns $C\left(\pi_{1}+i_{1}, \ldots, \pi_{+}+i_{+}\right) \bmod B_{I}=C\left(\pi_{1}, \ldots, \pi_{+}\right) \bmod B_{I}$.

- The LLL algorithm (with Babai's modifications) can approximate CVP to within a factor of about 2^{n} in polynomial time.
- We do not know how to do better in general.

Let us review our additively homomorphic scheme...

§ Global Parameters: $\mathrm{r}_{\text {Dec }}, \mathrm{r}_{\text {Enc }}, \mathrm{Z}^{\mathrm{n}}$, and a basis B_{H} of an additive subgroup H of Z^{n}. E.g., H could be the vectors with even coefficient sum. Plaintext space is the set of "distinguished reps" of the cosets of H.
\S KeyGen: Secret and public bases $B_{s k}$ and $B_{p k}$ of some lattice L, where $B_{s k}$ circumscribes a ball of radius $r_{\text {Dec }}$.
$\S \operatorname{Encrypt}\left(\mathrm{B}_{\mathrm{pk}}, m\right):$ Set $\mathrm{m}^{\prime} \leftarrow^{\mathrm{R}}(\mathrm{m}+\mathrm{H}) \cap \mathrm{B}\left(\mathrm{r}_{\mathrm{Enc}}\right)$. Set $\mathrm{c} \leftarrow \mathrm{m}^{\prime} \bmod \mathrm{B}_{\mathrm{pk}}$.
$\S \operatorname{Decrypt}\left(\mathrm{B}_{\mathrm{sk}}, \mathrm{c}\right): \operatorname{Set} \mathrm{m} \leftarrow\left(\mathrm{c} \bmod \mathrm{B}_{\mathrm{sk}}\right) \bmod \mathrm{B}_{\mathrm{H}} \cdot$ Note: $\mathrm{m}^{\prime}=\left(\mathrm{c} \bmod \mathrm{B}_{\mathrm{sk}}\right)$.
$\S \operatorname{Add}\left(\mathrm{B}_{\mathrm{PK}}, \mathrm{c}_{1}, \mathrm{c}_{2}\right): \operatorname{Set} \mathrm{c} \leftarrow \mathrm{c}_{1}+\mathrm{c}_{2} \bmod \mathrm{~B}_{\mathrm{PK}}$, which is in $\mathrm{m}^{\prime}{ }_{1}+\mathrm{m}^{\prime}{ }_{2}+\mathrm{L}$.
\S Correctness: Let C be a mod- B_{H} circuit that adds at most $\mathrm{r}_{\mathrm{Dec}} / \mathrm{r}_{\mathrm{Enc}}$ plaintexts. Then, Evaluate $\left(\mathrm{B}_{\mathrm{pk}}, \mathrm{C}, \mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{t}}\right)$ decrypts correctly since:

1) $m^{\prime}{ }_{1}+\ldots+m_{t}^{\prime}=c_{1}+\ldots+c_{t} \bmod B_{\text {sk }}$, since it is in the secret parallelepiped.
2) $m_{1}+\ldots+m_{t}=m^{\prime}{ }_{1}+\ldots+m_{t}{ }^{\bmod B_{H}}$.

9 How Does It All Work Together?

How Does It All Work Together?

q
E is the initial scheme. E^{\star} has the squashed dec circuit.

$9 \quad$ How Does It All Work Together?

E is the initial scheme. E^{\star} has the squashed dec circuit.

How Does It All Work Together？

E is the initial scheme． E^{\star} has the squashed dec circuit．

How Does It All Work Together？

E is the initial scheme． E^{\star} has the squashed dec circuit．

How Does It All Work Together？

$\mathrm{E}_{\mathrm{pk2}}\left(\operatorname{Dec}\left(\mathrm{sk}^{\star}{ }^{\star}, \mathrm{E}^{\star}{ }_{\mathrm{pk} 1 \star}(\pi)\right)\right)$
＝

How Does It All Work Together？

$\mathrm{E}_{\mathrm{pk2}}\left(\operatorname{Dec}\left(s k 1^{\star}, \mathrm{E}^{\star}{ }_{\mathrm{pk} 1 \star}(\pi)\right)\right)$
＝

How Does It All Work Together？

E is the initial scheme． E^{\star} has the squashed dec circuit．

How Does It All Work Together？

$\mathrm{E}_{\mathrm{pk} 2}\left(\operatorname{Dec}\left(s k 1^{\star}, \mathrm{E}^{\star}{ }_{\mathrm{pk} 1 *}(\pi)\right)\right)$

E is the initial scheme． E^{*} has the squashed dec circuit．

How Does It All Work Together？

$\mathrm{E}_{\mathrm{pk} 2}\left(\operatorname{Dec}\left(s k 1^{\star}, \mathrm{E}^{\star}{ }_{\mathrm{pk} 1 *}(\pi)\right)\right)$

How Does It All Work Together？

$\mathrm{E}_{\mathrm{pk2}}\left(\operatorname{Dec}\left(s k 1^{\star}, \mathrm{E}^{\star}{ }_{\left.\mathrm{pkl}{ }^{*}(\pi)\right)}\right)\right.$

E is the initial scheme． E^{\star} has the squashed dec circuit．

How Does It All Work Together？

