Fully Homomorphic Encryption Using Ideal Lattices

Craig Gentry

Stanford University, IBM

Fields Institute, 05/11/09

Wouldn't it be neat if you could...

Query encrypted data?

- · Store your encrypted data on an untrusted server
- Query the data i.e., make boolean queries on the data
- Get a useful response from the server, without the server just sending all of the data to you

Wouldn't it be neat if you could...

Query encrypted data?

- · Store your encrypted data on an untrusted server
- Query the data i.e., make boolean queries on the data
- Get a useful response from the server, without the server just sending all of the data to you

Query data privately?

- Send an encrypted query regarding stored data (e.g., on Google's servers)
- Get a useful concise response

Wouldn't it be neat if you could...

Query encrypted data?

- · Store your encrypted data on an untrusted server
- Query the data i.e., make boolean queries on the data
- Get a useful response from the server, without the server just sending all of the data to you

Query data privately?

- Send an encrypted query regarding stored data (e.g., on Google's servers)
- Get a useful concise response

Do both simultaneously?

Privacy Homomorphism (a.k.a. Fully Homomorphic Encryption)

Well, here's how:

- Privacy homomorphism: Rivest, Adleman and Dertouzos proposed the concept in 1978. (Rivest, Shamir, and Adleman proposed RSA in 1977, published in 1978.)
- Assume you have public-key encryption scheme that, in addition to algorithms (KeyGen, Enc, Dec), has an efficient algorithm "Evaluate", such that:

```
Evaluate(pk, C, \psi_1, ..., \psi_t) \approx Enc(pk, C(\pi_1, ..., \pi_t))
```

for all pk, all circuits C, all ψ_i = Encrypt(pk, π_i).

Well, here's how:

Assume you have public-key encryption scheme that, in addition to algorithms (KeyGen, Enc, Dec), has an efficient algorithm "Evaluate", such that:

Evaluate(pk,
$$C$$
, ψ_1 , ..., ψ_t) \approx Enc(pk, $C(\pi_1, ..., \pi_t)$)

for all pk, all circuits C, all ψ_i = Encrypt(pk, π_i).

Query encrypted data:

Encrypt stored data: $\psi_1, ..., \psi_t$

Query: send your circuit C

Response: Eval(pk, C, ψ_1 , ..., ψ_t)

Decrypt response $\rightarrow C(\pi_1, ..., \pi_t)$

Well, here's how:

 Assume you have public-key encryption scheme that, in addition to algorithms (KeyGen, Enc, Dec), has an efficient algorithm "Evaluate", such that:

Evaluate(pk,
$$C$$
, ψ_1 , ..., ψ_t) \approx Enc(pk, $C(\pi_1, ..., \pi_t)$)

for all pk, all circuits C, all ψ_i = Encrypt(pk, π_i).

Query encrypted data:

Encrypt stored data: $\psi_1, ..., \psi_t$

Query: send your circuit C

Response: Eval(pk, C, ψ_1 , ..., ψ_t)

Decrypt response $\rightarrow C(\pi_1, ..., \pi_t)$

Query data privately:

Send enc. queries ψ_i = Enc(pk, π_i)

Server uses search circuit C_{data}

Response: Eval(pk, C_{data} , ψ_1 , ..., ψ_t)

Decrypt response $\rightarrow C_{data}(\pi_1, ..., \pi_t)$

The Quest for Privacy Homomorphisms

Problem is: We have no such encryption scheme.

- What we have currently:
 - Multiplicatively homomorphic schemes: RSA, ElGamal, etc.
 - Additively homomorphic schemes: GM, Paillier, etc.
 - Quadratic formulas: BGN
 - NC1: SYY
- What we don't have:
 - A fully homomorphic scheme for arbitrary circuits

Fully Homomorphic Encryption: Construction

3 Steps

Step 1 - Bootstrapping:

Scheme E can evaluate its own decryption circuit

Scheme E* can evaluate any circuit

- Step 2 Ideal Lattices: Decryption in lattice-based systems has low circuit complexity. *Ideal* lattices used to get + and × ops.
- Step 3 Squashing the Decryption Circuit: the encrypter helps make decryption circuit smaller by starting decryption itself! Like server-aided decryption.

Step 1: Bootstrapping

What Circuits can RSA "Evaluate"?

A circuit of multiplication (mod N) gates

What Circuits can Goldwasser-Micali "Evaluate"?

$$c \leftarrow c_1 \times c_2 \mod N$$
, $c = r^2 \times x^{m_1+m_2} \mod N$

A circuit of XOR gates

What Circuits can Boneh-Goh-Nissim "Evaluate"?

Uses a bilinear map or "pairing": $e: G \times G \rightarrow G_T$

A quadratic formula

Fully Homomorphic Encryption: Informal Definition

Can "evaluate" any circuit

A too-strong definition (indistinguishable distributions):

Evaluate(pk,
$$C$$
, ψ_1 , ..., ψ_t) \approx Enc(pk, $C(\pi_1, ..., \pi_t)$)

for all circuits C, all (sk,pk), and ψ_i = Encrypt(pk, π_i).

- Indistinguishability unnecessary for many apps.
- But we can achieve this...

Fully Homomorphic Encryption: Informal Definition

Can "evaluate" any circuit

- What we want:
 - Correctness:

```
Dec(sk, Evaluate(pk, C, \psi_1, ..., \psi_t)) = C(\pi_1, ..., \pi_t)
```

for all circuits C, all (sk,pk), and ψ_i = Encrypt(pk, π_i).

Fully Homomorphic Encryption: Informal Definition

Can "evaluate" any circuit

- What we want:
 - Correctness:

```
Dec(sk, Evaluate(pk, C, \psi_1, ..., \psi_t)) = C(\pi_1, ..., \pi_t)
```

for all circuits C, all (sk,pk), and ψ_i = Encrypt(pk, π_i).

- Compactness:
 - Output of Evaluate is short.
 - The trivial solution doesn't count:

Evaluate(pk,
$$C$$
, ψ_1 , ..., ψ_t) \rightarrow $(C, \psi_1, ..., \psi_t)$

 Our requirement: Size of decryption circuit is a fixed polynomial in security parameter

A "Complete" Set of Circuits?

A Steppingstone?

- Given: a scheme E that Evaluates some set S of circuits
- Is 5 complete?: From E, can we construct a scheme that works for circuits of arbitrary depth?

A "Complete" Set of Circuits?

A Steppingstone?

- Given: a scheme E that Evaluates some set S of circuits
- Is S complete?: From E, can we construct a scheme that works for circuits of arbitrary depth?

Yes!

<u>Decryption circuit</u> <u>"augmented" by NAND</u>

Why is homomorphically evaluating the decryption circuit so powerful?

• Proxy re-encryption: Alice enables anyone to convert a ciphertext under PK_{Alice} to one under PK_{Bob} :

If you can evaluate NAND-Dec...

Blue means encrypted under PK_{Bob}.

Green means encrypted under PK_{Carol}.

And so on...

Circuits of Arbitrary Depth

Theorem (informal):

- Suppose scheme E is bootstrappable i.e., it evaluates its own decryption circuit augmented by gates in Γ.
- Then, there is a scheme E_{δ} that evaluates arbitrary circuits of depth δ with gates in Γ .
- Ciphertexts: Same size in E_{δ} as in E.
- Public key:
 - Consists of $(\delta+1)$ E pub keys: $pk_0, ..., pk_{\delta}$
 - Along with δ encrypted secret keys: {Enc(pk_i, sk_(i-1))}
 - Linear in δ.
 - Constant in δ , if you assume encryption is "circular secure."

Step 2: Ideal Lattices

Our Task Now...

Find an encryption scheme E that can evaluate its own decryption circuit, plus some.

Our Task Now...

Find an encryption scheme E that can evaluate its own decryption circuit, plus some.

Bootstrappability gives us a new angle:

- Don't just maximize the scheme's "evaluative capacity"
- · Also minimize the circuit complexity of decryption

Our Task Now...

Find an encryption scheme E that can evaluate its own decryption circuit, plus some.

Bootstrappability gives us a new angle:

- Don't just maximize the scheme's "evaluative capacity"
- · Also minimize the circuit complexity of decryption

Where to Look?:

- Not RSA: Exponentiation is highly unparallelizable i.e., it requires deep circuits
- · Maybe schemes based on codes or lattices...
 - "Decoding" is typically an inner product parallelizable!

A set of points, or vectors, that looks like this.

What's a Lattice?

- (v_1, v_2) is a basis of the lattice L, since L = $\{x_1v_1 + x_2v_2 : x_i \text{ in } Z \text{ (integers)}\}$
- Bases are not unique
- (v_1, v_2) looks like a better basis, don't you think?

Parallelepipeds

Good Basis

Good Basis

• Formula for reducing a basis modulo $B = \{v_1, v_2\}$: $t \mod B = t - B [B^{-1} t]$

Bad Basis

- Formula for reducing a basis modulo B = {v₁,v₂}:
 LLL 2ⁿ-approximates the best basis. $t \mod B = t - B [B^{-1} t]$

Bad Basis

- Formula for reducing a basis modulo B = {v₁,v₂}:
 LLL 2ⁿ-approximates the best basis. $t \mod B = t - B [B^{-1} t]$

9/2

How Do We Encrypt Using Lattices?

Ideas:

- Close / Far: Ciphertext for 0 is close to a lattice point, and a ciphertext for 1 is far.
- Odd / Even:
 - Encryption of 0: vector that differs from closest lattice point by an "even" vector.
 - Encryption of 1: vector that differs from closest lattice point by an "odd" vector.

A Rough Lattice-Based Encryption Scheme

Encryption: $\psi \leftarrow \rho \mod B_{pk}$ (public basis)

A Rough Lattice-Based Encryption Scheme

- Encryption: $\psi \leftarrow \rho \mod B_{pk}$ (public basis)
- Decryption: $\rho \leftarrow \psi \mod B_{sk}$ (secret basis) = $\psi B_{sk} [B_{sk}^{-1} \psi]$

• Encryption: $\psi \leftarrow \rho \mod B_{pk}$ (public basis)

- Encryption: $\psi \leftarrow \rho \text{ mod } B_{pk}$ (public basis)
- Decryption: $\rho \leftarrow \psi \mod B_{sk}$ (secret basis) = $\psi B_{sk} [B_{sk}^{-1} \psi]$

• Encryption: $\psi \leftarrow \rho \mod B_{pk}$ (public basis)

- Encryption: $\psi \leftarrow \rho \mod B_{pk}$ (public basis)
- Decryption: $\rho \leftarrow \psi \mod B_{sk}$ (secret basis) = $\psi B_{sk} [B_{sk}^{-1} \psi]$

- Suppose a sphere of radius r_{Dec} is in private parallelepiped.
 - Suppose a processed plaintext is in $B(r_{Enc})$.

How many ciphertexts can we add?

- § Fortunately, r_{Dec}/r_{Enc} can be huge e.g., $2^{\sqrt{n}}$ and still secure.
- § LLL can find closest L-vector to t when

$$\lambda_1(L)/dist(L,t) \rightarrow 2^n$$

where $\lambda_1(L)$ is the shortest nonzero vector in L.

- § r_{Dec} : can as large as $\lambda_1(L)$, up to a small (poly(n)) factor.
- S r_{Enc} : can be very small, as long as:
 - § $\lambda_1(L)/r_{Enc}$ is not so large that LLL breaks security (2 $^{\sqrt{n}}$ OK)
 - § There is enough min-entropy in $B(r_{Enc})$, roughly speaking.
- § Overall, r_{Dec}/r_{Enc} can be about $2^{\sqrt{n}}$.

How Can We Multiply Ciphertexts?

- Ideas:
 - Tensor Product: Would lead to huge ciphertexts
 - Use rings instead of (additive) groups: Good idea!

What is an "ideal"?

A subset J of a ring R that is closed under "+", and also closed under "×" with R.

What is an "ideal lattice"?
One object, both an ideal and a lattice

- Example: Z (integers) is a ring. (2), the even integers, is an ideal.
 - -2
- -1
- 0
- 1
- .
- 3
- 4
- 5
- 6
- 7

What is an "ideal"?

A subset J of a ring R that is closed under "+", and also closed under "×" with R.

What is an "ideal lattice"?
One object, both an ideal and a lattice

- Example: Z[x]/(f(x)) is a polynomial ring, f(x) monic, deg(f) = n.
- (a(x)) is an ideal $\{a(x)b(x) \mod f(x) : b(x) \text{ in R }\}$. Lattice basis below:

a(x)				
$x \cdot a(x) \mod f(x)$				
•••				
$x^{n-1} \cdot a(x) \mod f(x)$				

a_0	a_1	a_2		a _{n-1}
$-a_{n-1}f_0$	a_0 - a_{n-1} f_1	a_1 - a_{n-1} f_2	•••	$a_{n-2}-a_{n-1}f_{n-1}$

Ideal Lattice Scheme: High-Level

Background: CTs live in ring R = Z[x]/f(x), where deg(f) = n. CTs can be added as vectors and multiplied as ring elements.

Multiplication:
$$(m_1 + 2v_1 + j_1) (m_2 + 2v_2 + j_2)$$

= $m_1 \times m_2 + 2(m_1v_2 + m_2v_1 + 2v_1v_2) + (something in J)$

Ideal Lattice Scheme: More Concretely

- Parameters: Ring R = Z[x]/(f(x)), basis B_I of "small" ideal lattice I. Radii r_{Dec} and r_{Enc} as before. The operations "+" and "×" are in R.
- KeyGen: Output "good" and "bad" bases (B_{sk}, B_{pk}) of a "big" ideal lattice J, which is relatively prime to I i.e., I + J = R. Plaintext space: the cosets of I.
- Encrypt(B_{pk} , m): Set m' \leftarrow ^R (m+I) \cap B(r_{Enc}). Set c \leftarrow m' mod B_{pk} .
- Decrypt(B_{sk} , c): Output (c mod B_{sk}) mod $B_I \rightarrow m$
- Add(B_{pk}, c₁, c₂): Output $c \leftarrow c_1 + c_2 \mod B_{pk}$
- Mult(B_{pk} , c_1 , c_2): Output $c \leftarrow c_1 \times c_2 \mod B_{pk}$, which is in $m_1' \times m_2' + J$

The NTRU encryption scheme uses a similar approach with 2 relatively prime ideals.

Ideal Lattice Scheme: Correctness

- Parameters: Ring R = Z[x]/(f(x)), basis B_I of "small" ideal lattice I. Radii r_{Dec} and r_{Enc} as before. The operations "+" and "×" are in R.
- KeyGen: Output "good" and "bad" bases (B_{sk}, B_{pk}) of a "big" ideal lattice J, which is relatively prime to I i.e., I + J = R. Plaintext space: the cosets of I.
- Encrypt(B_{pk} , m): Set m' \leftarrow ^R (m+I) \cap B(r_{Enc}). Set c \leftarrow m' mod B_{pk} .
- Decrypt(B_{sk} , c): Output (c mod B_{sk}) mod $B_I \rightarrow m$
- Add(B_{pk} , c_1 , c_2): Output $c \leftarrow c_1 + c_2 \mod B_{pk}$
- Mult(B_{pk} , c_1 , c_2): Output $c \leftarrow c_1 \times c_2 \mod B_{pk}$, which is in $m_1' \times m_2' + J$

Correctness: Decryption works on $Add(B_{pk}, c_1, c_2)$ if $m'_1+m'_2$ is in the B_{sk} parallelepiped.

Ideal Lattice Scheme: Correctness

- Parameters: Ring R = Z[x]/(f(x)), basis B_I of "small" ideal lattice I. Radii r_{Dec} and r_{Enc} as before. The operations "+" and "×" are in R.
- KeyGen: Output "good" and "bad" bases (B_{sk}, B_{pk}) of a "big" ideal lattice J, which is relatively prime to I i.e., I + J = R. Plaintext space: the cosets of I.
- Encrypt(B_{pk} , m): Set m' \leftarrow^R (m+I) \cap B(r_{Enc}). Set c \leftarrow m' mod B_{pk} .
- Decrypt(B_{sk} , c): Output (c mod B_{sk}) mod $B_I \rightarrow m$
- Add(B_{pk}, c₁, c₂): Output $c \leftarrow c_1 + c_2 \mod B_{pk}$
- Mult(B_{pk} , c_1 , c_2): Output $c \leftarrow c_1 \times c_2 \mod B_{pk}$, which is in $m_1' \times m_2' + J$

Correctness: Decryption works on $Mult(B_{pk}, c_1, c_2)$ if $m'_1 \times m'_2$ is in the B_{sk} parallelepiped.

Ideal Lattice Scheme: Correctness

- Parameters: Ring R = Z[x]/(f(x)), basis B_I of "small" ideal lattice I. Radii r_{Dec} and r_{Enc} as before. The operations "+" and "×" are in R.
- KeyGen: Output "good" and "bad" bases (B_{sk}, B_{pk}) of a "big" ideal lattice J, which is relatively prime to I i.e., I + J = R. Plaintext space: the cosets of I.
- Encrypt(B_{pk} , m): Set m' \leftarrow ^R (m+I) \cap B(r_{Enc}). Set c \leftarrow m' mod B_{pk} .
- Decrypt(B_{sk} , c): Output (c mod B_{sk}) mod $B_I \rightarrow m$
- Add(B_{pk}, c₁, c₂): Output $c \leftarrow c_1 + c_2 \mod B_{pk}$
- Mult(B_{pk} , c_1 , c_2): Output $c \leftarrow c_1 \times c_2 \mod B_{pk}$, which is in $m_1' \times m_2' + J$

Correctness: Correct for set S of circuits if $C(m'_1, ..., m'_t)$ is always in the B_{sk} parallelepiped..

Correctness: Correct for set S of circuits if C(m'₁, ..., m'_t) is *always* in the B_{sk} parallelepiped.

Question: for what arithmetic circuits C does this hold: for all $(x_1, ..., x_t)$ in $B(r_{Enc})^t$, $C(x_1, ..., x_t)$ is inside $B(r_{Dec})$

- Add operations: $|u+v| \le |u| + |v|$ (triangle inequality)
- Mult operations: $|u \times v| \le \gamma_{\text{Mult}}(R) \cdot |u| \cdot |v|$ for some factor $\gamma_{\text{Mult}}(R)$ that depends on the ring R, and which can be poly(n).
- Add vs. Mult:
 - Add causes much less expansion than Mult.
 - Constant fan-in Mult is as bad as poly(n) fan-in Add.

Question: for what arithmetic circuits C does this hold: for all $(x_1, ..., x_t)$ in $B(r_{Enc})^t$, $C(x_1, ..., x_t)$ is inside $B(r_{Dec})^t$

Add: $|u+v| \le |u| + |v|$

Mult: $|u \times v| \le \gamma_{\text{Mult}}(R) \cdot |u| \cdot |v|$

How much depth can we get?

- Let C be a fan-in-2, depth d arithmetic circuit
- Let r_i be the max radius associated to a gate in C at level i, when $r_d = r_{Enc}$.
- $r_i \le \gamma_{\text{Mult}}(R) \cdot r_{i+1}^2$
- Then, $r_0 \le (\gamma_{\text{Mult}}(R) \cdot r_d)^{2^d}$.
- $r_0 \le r_{Dec}$ if $d \le log log r_{Dec} log log (\gamma_{Mult}(R) \cdot r_{Enc})$
- E.g., (c_1-c_2) log n depth when $r_{Dec} = 2^{n^{c_1}}$ and $\gamma_{\text{Mult}}(R) \cdot r_{\text{Enc}} = 2^{n^{c_2}}$.
- Bottom line: We get about log n depth.

Question: for what arithmetic circuits C does this hold: for all $(x_1, ..., x_t)$ in $B(r_{Enc})^t$, $C(x_1, ..., x_t)$ is inside $B(r_{Dec})^t$

Add: $|u+v| \le |u| + |v|$

Mult: $|u \times v| \le \gamma_{\text{Mult}}(R) \cdot |u| \cdot |v|$

How much depth can we get?

- Let C be a fan-in-2, depth d arithmetic circuit
- Let r_i be the max radius associated to a gate in C at level i, when $r_d = r_{Enc}$.
- $r_i \le \gamma_{\text{Mult}}(R) \cdot r_{i+1}^2$
- Then, $r_0 \le (\gamma_{\text{Mult}}(R) \cdot r_d)^{2^d}$.
- $r_0 \le r_{Dec}$ if $d \le log log r_{Dec} log log (\gamma_{Mult}(R) \cdot r_{Enc})$
- E.g., $(c_1-c_2) \log n$ depth when $r_{Dec} = 2^{n^{c_1}}$ and $\gamma_{\text{Mult}}(R) \cdot r_{\text{Enc}} = 2^{n^{c_2}}$.
- Bottom line: We get about log n depth.
- Is this enough to bootstrap??

- Intuition: When our ciphertext's "error vector" becomes to long, we want to "refresh" the ciphertext:
 - · Get a new encryption of same plaintext with shorter error.
- How to do it?
 - Decrypt it, then encrypt again!
 - But this requires the secret key...

- Intuition: When our ciphertext's "error vector" becomes to long, we want to "refresh" the ciphertext:
 - Get a new encryption of same plaintext with shorter error.
- How to do it?
 - · Decrypt it, then encrypt again!
 - But this requires the secret key...
 - Homomorphically decrypt it!!!

Decrypt(B_{sk} , ψ) = (ψ mod B_{sk}) mod B_{I}

= $(\psi - B_{sk} \cdot [B_{sk}^{-1} \cdot \psi]) \mod B_{I}$

Can simplify this to:

Decrypt $(v_{sk}, \psi) = (\psi - [(v_{sk})^{-1} \times \psi]) \mod (2)$

Expensive Step: Computing $[(v_{sk})^{-1} \times \psi] \mod (2)$

Another "tweak": Require ψ to be within $r_{Dec}/2$ of a lattice point. Then, the coeffs of $(v_{sk})^{-1} \times \psi$ will be within $\frac{1}{4}$ of an integer. Then, we need less precision to ensure correct rounding.

The Decryption Circuit of the Initial Scheme

Expensive Step: Computing $[(v_{sk})^{-1} \times \psi] \mod (2)$

- · Ring multiplication is like a bunch of parallel inner products
- Each inner product involves an addition of n terms, like this:

```
1.1101... + 0.0101... + 0.1011... + 1.1010... + ...
```

- We have to worry about carry bits -> have high degree in input.
- When vectors are n-dimensional, the shallowest circuit I know of has depth O(log n), and is heavy on the MULTs.

The Decryption Circuit of the Initial Scheme

Expensive Step: Computing $[(v_{sk})^{-1} \times \psi] \mod 2$

```
1.1101... + 0.0101... + 0.1011... + 1.1010... + ...
```

- When vectors are n-dimensional, the least complex circuit I know of has depth O(log n), and is heavy on the MULTs.
 - "3-for-2" trick: replaces 3 (binary) numbers with 2 numbers having the same sum.
 - c $\log_{3/2}$ n depth to get 2 numbers with same sum as n numbers.

```
0.1011... + 1.0111...
```

- Normally, depth of adding 2 numbers is log in their bit-lengths
- But, we can use fact that, for valid ciphertexts, $(v_{sk})^{-1} \times \psi$ is very close to an integer vector -> final sum is constant depth.

The Decryption Circuit of the Initial Scheme

- Bottom line: Decryption circuit is also O(log n), but for a larger constant than the depth we can Evaluate.
- Blargh...

Still Not Bad...

- Boneh-Goh-Nissim does quadratic formulas: arbitrary number of additions, but multiplication depth of 1.
- Our scheme:
 - Essentially arbitrary additions, but with log n multiplication depth.
 - Also, larger plaintext space.

Security of the scheme

• We'll discuss this in more detail later if we have time...

Step 3: Squashing the Decryption Circuit

Old decryption algorithm

Old decryption algorithm

Crazy idea: The <u>encrypter</u> starts decryption, leaving less for the decrypter to do!

Crazy idea: The <u>encrypter</u> starts decryption, leaving less for the decrypter to do!

Crazy idea: The <u>encrypter</u> starts decryption, leaving less for the decrypter to do!

complex than Dec

any ψ that Dec works on

Still semantically secure if f(sk,r) is computationally indistinguishable from random given (pk, sk), but not sk*.

Concretely, How Does the Transformation Work?

Decrypt(
$$v_{sk}$$
, ψ) = $(\psi - [(v_{sk})^{-1} \times \psi]) \mod (2)$

Expensive Step: Computing
$$[(v_{sk})^{-1} \times \psi] \mod 2$$

Remember the Old Circuit...

Expensive Step: Computing $[(v_{sk})^{-1} \times \psi] \mod 2$

```
1.1101... + 0.0101... + 0.1011... + 1.1010... + ...
```

• Dominant computation: "3-for-2 trick" circuit of depth c $\log_{3/2}$ n

Our New Circuit...

Expensive Step: Computing $[(v_{sk})^{-1} \times \psi] \mod 2$

```
1.1101... + 0.0101... + 0.1011... + 1.1010... + ...
```

- Dominant computation: "3-for-2 trick" circuit of depth c $\log_{3/2}$ n
- Goal: Use less depth to get 2 vectors

```
(0.1011..., ..., 1.0110...) + (1.0111..., ..., 1.1000...)
```

whose sum is same (mod 2) as: $(v_{sk})^{-1} \times \psi$

• Strategy: Start with much fewer than n vectors in the first place!

Abstractly, How Can We Lower the Decryption Complexity?

Still semantically secure if f(sk,r) is computationally indistinguishable from random given (pk, sk), but not sk*.

Concretely, How Does the New Approach Work?

Expensive Step: Computing $[(v_{sk})^{-1} \times \psi] \mod 2$

What is the "hint" f(sk,r) that we put in the pub key?

- The Hint: a set S of vectors {w_i} that has a hidden subset T of vectors {x_i} whose sum is (v_{sk})⁻¹.
- $|S| = n^{\beta}$, $\beta > 1$. $|T| = \omega(1)$ and o(n).
- Dec1: Encrypter sends ψ and

$$\psi^* = \{c_i = w_i \times \psi \pmod{2}\}\$$
 for all w_i in S

Dec2: Decrypter sums up the |T| values that are "relevant."
 This takes c log |T| depth with 3-for-2 trick.

Concretely, How Does the New Approach Work?

- The Hint: a set S of vectors $\{w_i\}$ that has a hidden subset T of vectors $\{x_i\}$ whose sum is $(v_{sk})^{-1}$.
- $|S| = n^{\beta}$, $\beta > 1$. $|T| = \omega(1)$ and o(n).
- Dec1: Encrypter sends ψ and

$$\psi^* = \{ c_i = w_i \times \psi \pmod{2} \} \text{ for all } w_i \text{ in } S$$

Dec2: Decrypter sums up the |T| vectors that are "relevant."
 This takes c log |T| depth with 3-for-2 trick.

In Dec2, how do we cheaply extract |T| vectors that are relevant?

• Decrypter's secret key sk* consists of |T| 0/1-vectors $\{y_i\}$ of dimension |S|; each encodes 1 member of |T|.

```
y_1: 0 1 0 0 0 0 0 0 y_2: 0 0 1 0 0 0 0 0 y_3: 0 0 0 0 0 1 0
```

- For each i, it inner-products y_i with ψ^* .
- Key point: No carries to worry about in inner product -> We can use a high fan-in add gate (cheap).

Concretely, How Does the New Approach Work?

Expensive Step: Computing $[(v_{sk})^{-1} \times \psi] \mod 2$

- Bottom line: Dec2 has about log |T| depth, $|T| = \omega(1)$ and o(n).
- New Assumption: Given set S of vectors $\{w_i\}$ and vector v, decide whether there exists a low-weight subset $T = \{x_i\}$ with $v = \Sigma x_i$.
- Can pick |S| s.t. there will be many subsets of size, say, |S|/2 whose sum is v.
- Known attacks: Finding T takes time roughly $n^{|T|}$.
- To evaluate depth log |T|, original scheme needs $r_{Dec}/r_{Enc} \approx n^{\Theta(|T|)}$. This is also basically the approx factor of the lattice problem.
 - Known attacks: Takes time roughly 2^{n/|T|}.
 - Optimal: Set $|T| \approx \sqrt{n}$.

Performance

- Well... a little slow.
- "Evaluating" a circuit homomorphically takes $\tilde{O}(k^7)$ computation per circuit gate if you want 2^k security against known attacks.
- ... But a full exponentiation in RSA also takes $\widetilde{O}(k^6)$; also, in ElGamal (using finite fields).

Open Problems

- CCA1 Security
- Improve efficiency
- System using linear codes (wouldn't be so surprising)
- System based on "conventional" crypto assumptions
- "Refreshing" a ciphertext without completely (homomorphically) decrypting it

Thank You! Questions?

Distributional CVP: Generate basis B_{pk} for ideal lattice J using KeyGen. Set bit b.

- If b = 0, t is uniform in blue parallelepiped.
- If b = 1, t is in blue parallelepiped, but according to a clumpy distribution.

Distributional CVP: Generate basis B_{pk} for ideal lattice J using KeyGen. Set bit b.

- If b = 0, t is uniform in blue parallelepiped.
- If b = 1, t is in blue parallelepiped, but according to a clumpy distribution.

Distributional CVP: Generate basis B_{pk} for ideal lattice J using KeyGen. Set bit b.

- If b = 0, t is uniform in blue parallelepiped.
- If b = 1, t is in blue parallelepiped, but according to a clumpy distribution.

Security

- Distributional CVP: Generate basis B_{pk} for ideal lattice J using KeyGen. Set bit b.
 - If b = 0, t is uniform in blue parallelepiped.
 - If b = 1, t is in blue parallelepiped, but according to a clumpy distribution (say, of radius r).
- Security proof sketch:
 - If b=1, t can be used to validly encrypt m, as follows:
 - Let s be a short vector in I, such that the ideal (s) is relatively prime to the ideal J.
 - Output $c \leftarrow m + s \times t \mod B_{pk}$.
 - If b=0, then $c \leftarrow m + s \times t \mod B_{pk}$ will be random modulo J and independent of m.

Circuit Privacy

- Algorithm "Randomize":
 - Applied to outputs of Encrypt or Evaluate, it induces statistically equivalent distributions.
 - The Idea: Add a random encryption of 0 whose "error space" is huge in comparison to the "error space" ciphertexts output by Encrypt or Evaluate.
 - New error space for Evaluate is $B(r_{Dec}/m)$ for super-polynomial m, but no problem...

Let Us Revisit the Initial Construction to Get a Better Security Result...

- Parameters: Ring R = Z[x]/(f(x)), basis B_I of "small" ideal lattice I. Radii R_{Dec} and R_{Enc} as before. The operations "+" and "×" are in R.
- KeyGen: Output "good" and "bad" bases (B_{sk}, B_{pk}) of a "big" ideal lattice J, which is relatively prime to I i.e., I + J = R. Plaintext space: the cosets of I.
- Encrypt(B_{pk} , m): Set m' \leftarrow ^R (m+I) \cap B(r_{Enc}). Set c \leftarrow m' mod B_{pk} .
- Decrypt(B_{sk} , c): Output (c mod B_{sk}) mod $B_I \rightarrow m$
- Add(B_{pk} , c_1 , c_2): Output $c \leftarrow c_1 + c_2 \mod B_{pk}$
- Mult(B_{pk} , c_1 , c_2): Output $c \leftarrow c_1 \times c_2 \mod B_{pk}$, which is in $m_1' \times m_2' + J$

Let Us Revisit the Initial Construction to Get a Better Security Result...

- Parameters: Ring R = Z[x]/(f(x)), basis B_I of "small" ideal lattice I. Radii R_{Dec} and R_{Enc} as before. The operations "+" and "×" are in R.
- KeyGen: Output "good" and "bad" bases (B_{sk}, B_{pk}) of a "big" ideal lattice J, which is relatively prime to I i.e., I + J = R. Plaintext space: the cosets of I.
- Encrypt(B_{pk} , m): Set m' \leftarrow ^R (m+I) \cap B(r_{Enc}). Set c \leftarrow m' mod B_{pk} .
- Decrypt(B_{sk} , c): Output (c mod B_{sk}) mod $B_I \rightarrow m$
- Add(B_{pk}, c₁, c₂): Output $c \leftarrow c_1 + c_2 \mod B_{pk}$
- Mult(B_{pk} , c_1 , c_2): Output $c \leftarrow c_1 \times c_2 \mod B_{pk}$, which is in $m_1' \times m_2' + J$

First step: Sample from m+I according to a Gaussian distribution.

- We modify our initial construction to use discrete Gaussian distributions over lattices.
- Sum of 2 discrete Gaussian distribution is statistically equivalent to another discrete Gaussian distribution.

Used without permission of Oded Regev. He'd probably let me if I asked though. Thanks Oded! 5/14/2009 Craig Gentry

Security Inner Ideal Membership Problem (IIMP)

- The IIMP: Fix R, B_I , and real m_{IIMP} . Run $(B_{sk}, B_{pk}) \leftarrow KeyGen(R, B_I)$, bases for some ideal J. Set b $\leftarrow^R \{0,1\}$.
 - If b=0, one samples $v \leftarrow Gauss(I, s, 0)$ and sets $t \leftarrow v \mod B_{pk}$.
 - If b=1, one samples $v \leftarrow Gauss(Z^n, s, 0)$ and sets $t \leftarrow v \mod B_{pk}$.
 - Given (B_{pk}, t) and the fixed values, decide b.
- Security proof sketch:
 - Set $w \leftarrow Gauss(I, s, -m_b)$. Set $c \leftarrow m_b + w + v \mod B_{pk}$.
 - If b=0, (c mod B_{sk}) mod $B_I = (m_b+w+v)$ mod $B_I = m_b$.
 - If b=1, (c mod B_{sk}) mod B_{I} = (m_b +w+v) mod B_{I} = random.

From Modified IIMP

- The MIIMP: Like the IIMP, except $m_{MIIMP} < m_{IIMP} \cdot \epsilon / (n \cdot |B_I|)$ and
 - If b=0, one sets $v \leftarrow I$ so that $|v| < m_{MIIMP}$
 - If b=1, one sets v not in I so that |v| < m_{MTIMP}
 - Given $(B_{pk}, t = v \mod B_{pk})$ and the fixed values, decide b.
- Sketch of reduction to IIMP:
 - · Set u to be very short, but random modulo I.
 - Set $t' \leftarrow u \times t + Gauss(I, m_{IIMP}, 0) \mod B_{pk}$.
 - IIMP instance is (B_{pk}, t').
 - If b = 0, then indeed t' is "in the inner ideal."
 - If b = 1, t' is uniformly random wrt I.

From Average-Case CVP Using Hensel Lifting

- Average-case CVP: Set $m_{ACVP} < m_{MIIMP}/(\gamma_{MULT}(R) \cdot \sqrt{n})$. Set v such that $|v| < m_{ACVP}$, and set $t \leftarrow v \mod B_{pk}$.
 - Given (B_{pk}, t) , output v. (This is a search problem!)
- Sketch of reduction to MIIMP:
 - Use MIIMP-oracle to get $v_1 \leftarrow v \mod B_T$.
 - Set w to be a short vector in I^{-1} , and use the MIIMP-oracle to get $v_2' \leftarrow w \times (v-v_1) \mod B_I$. This gives $v_2 \leftarrow v \mod I^2$.
 - Etc.
 - Given $v_k = v \mod I^k$, we know $v_k v$ is in I^k . For large enough k, we can use LLL to solve this CVP in poly time (to get v).

Average-Case / Worst-Case Connection for Ideal Lattices?

- Yes
- · First ac / wc connection where ac problem is for ideal lattices.
- First ac / wc connection where ac lattice has same dimension as wc lattice (usually the ac lattice is larger).
- I need quantum computation for the reduction...

What is the average-case distribution?

- What is a random ideal?
- Our definition: uniformly random among ideals whose norm (i.e., determinant) is in a fixed interval – e.g., [n^{cn}, 2n^{cn}].

- Our Technique: Adapt Kalai's technique for generating a random factored number.
- We generate a random factored norm N of an ideal in R.
- It is easy to generate bases for an ideal whose norm is prime.
- We multiply together the bases of the individual primes to get a basis whose norm is N.

KeyGen

- Goal: Ideal J, together with a good independent set for J-1.
- Generate a random ideal K with norm in [ncn, 2ncn].
- Generate $v \leftarrow Gauss(K^{-1}, s, t \cdot e_1)$. I.e., v almost equals $t \cdot e_1$.
- Set $J \leftarrow K \cdot (v)$.
- Already have a somewhat good independent set for K i.e., $\{e_i\}$.
- Our good independent set for J^{-1} is $\{e_i/v\}$.
- Proving that J has a nice average-case distribution (in a different interval) uses properties of discrete Gaussian distributions.

- Given worst-case CVP instance (B_M , u), how do we randomize it to obtain average-case instance (B_J , t), such that solving the ac instance helps us solve the wc instance?
- First, we multiply M by a random ideal K. Intuitively, the shape of MK is essentially independent of M.
- Next, we multiply by $v \leftarrow Gauss((MK)^{-1}, s, t \cdot e_1)$ to "divide out" the algebraic dependence on M.
- We set $J \leftarrow MK \cdot (v)$ and $t \leftarrow u \times w_K \times v$, where w_k is a very short vector in K (of length poly(n)).
- But, wait, our method of generating a random K didn't also give a short w_{κ} in K...

How to Generate a Random Ideal with a Short Vector in It... Quantumly

- Generate the short w first via w ← Gauss(Zⁿ, s, t·e₁)
- Factor the ideal (w) by factoring the norm of (w) using Shor's quantum factoring algorithm.
- Set K to be a random divisor of (w).

Worst-Case CVP to Independent Vector Improvement Problem (IVIP)

- [Regev]: uses quantum computation
- Superposition 1: Gaussian distribution $(Z^n, s, 0)$.
- Superposition 2: Reduce each point in the above distribution modulo a basis $B_{\rm L}$ for the lattice L.
 - If there is a classical CVP oracle for L that solves it when t is within $s\sqrt{n}$ of a lattice point, this reduction is *reversible*.
- Superposition 3: Fourier transform to get distribution (L*, 1/s, 0).
- Measure, to get a point in L* of length at most $\sqrt{n/s}$.

- The SIVP: Generate n linearly independent vectors in a given lattice L, all of length at most $m_{SIVP} \cdot \lambda_n(L)$.
- Sketch of reduction to IVIP
 - Given M_0 , use the IVIP oracle to find an independent set of M_0^{-1} with vectors of length at most $1/m_{\rm IVIP}$.
 - Set $v \leftarrow Gauss(M_0^{-1}, s/m_{IVIP}, (t/m_{IVIP}) \cdot e_1)$ and $M_1 \leftarrow M_0 \cdot (v)$.
 - · Recurse.
- Result: Let $d_{SIVP} = 3^{1/n} \cdot d_{IVIP}$. If there is an algorithm that solves IVIP for $m_{IVIP} = 8 \cdot \lambda_{MULT}(R) \cdot n^{2.5} \cdot \log n$ whenever the given ideal has $det(M)^{1/n} > d_{IVIP}$, then there is an algorithm that solves SIVP for approximation factor d_{SIVP} .

Correctness

Correctness: Decryption works on Evaluate($B_{J,pk}$, C, ψ_1 , ... ψ_t) if $C(\pi_1+i_1, ..., \pi_t+i_t)$ is the disting. rep. of its coset w.r.t. $B_{J,sk}$.

- Ciphertext $\psi_k = \pi_k + i_k + j_k$, with i in I and j in J.
- Evaluate($B_{J,pk}$, C, ψ_1 , ..., ψ_t) = $C(\pi_1 + i_1 + j_1, ..., \pi_t + i_t + j_t)$
- in $C(\pi_1 + i_1, ..., \pi_t + i_t)$
- If $C(\pi_1+i_1, ..., \pi_t+i_t)$ is the disting. rep. of its coset of J w.r.t. $B_{J,sk}$, which is true if C(Y, ..., Y) is a subset of R mod $B_{J,sk}$, then Decrypt returns $C(\pi_1+i_1, ..., \pi_t+i_t)$ mod $B_I = C(\pi_1, ..., \pi_t)$ mod B_I .

Cryptographically Hard Problems Over Lattices

- The LLL algorithm (with Babai's modifications) can approximate CVP to within a factor of about 2^n in polynomial time.
- We do not know how to do better in general.

Let us review our additively homomorphic scheme...

- Solobal Parameters: r_{Dec} , r_{Enc} , Z^n , and a basis B_H of an additive subgroup H of Z^n . E.g., H could be the vectors with even coefficient sum. Plaintext space is the set of "distinguished reps" of the cosets of H.
- S KeyGen: Secret and public bases B_{sk} and B_{pk} of some lattice L, where B_{sk} circumscribes a ball of radius r_{Dec} .
- § Encrypt(B_{pk} , m): Set m' \leftarrow ^R (m+H) \cap B(r_{Enc}). Set c \leftarrow m' mod B_{pk} .
- S Decrypt(B_{sk} , c): Set $m \leftarrow (c \mod B_{sk}) \mod B_H$. Note: $m' = (c \mod B_{sk})$.
- S Add(B_{PK} , c_1 , c_2): Set $c \leftarrow c_1 + c_2 \mod B_{PK}$, which is in $m'_1 + m'_2 + L$.
- S Correctness: Let C be a mod- B_H circuit that adds at most r_{Dec}/r_{Enc} plaintexts. Then, Evaluate(B_{pk} , C, c_1 , ..., c_t) decrypts correctly since:
 - 1) $m'_1+...+m'_t = c_1+...+c_t \mod B_{sk}$, since it is in the secret parallelepiped.
 - 2) $m_1 + ... + m_t = m'_1 + ... + m'_t \mod B_H$.

Craig Gentry

circuit.

