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X Wouldn't it be neat if you could...

Query encrypted data?
Store your encrypted data on an untrusted server
Query the data - i.e., make boolean queries on the data

Get a useful response from the server, without the server
just sending all of the data to you
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X Wouldn't it be neat if you could...

Query encrypted data?
- Store your encrypted dataon an untrusted server
Query the data - i.e., make boolean queries on the data

- Get a useful response from the server, without the server
just sending all of the data to you

Query data privately?

Send an encrypted guery regarding stored data (e.g., on
Google's servers)

+ Get a useful concise response
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X Wouldn't it be neat if you could...

Query encrypted data?
- Store your encrypted dataon an untrusted server
 Query the data - i.e., make boolean queries on the data

- Get a useful response from the server, without the server
just sending all of the data to you

Query data privately?

- Send an encrypted guery regarding stored data (e.g., on
Google's servers)

+ Get a useful concise response

Do both simultaneously?
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Privacy Homomorphism (a.k.a. Fully
X Homomorphic Encryption)

Well, here's how:

* Privacy homomorphism: Rivest, Adleman and Dertouzos
proposed the concept in 1978. (Rivest, Shamir, and
Adleman proposed RSA in 1977, published in 1978.)

+ Assume you have public-key encryption scheme that, in
addition to algorithms (KeyGen, Enc, Dec), has an efficient
algorithm "Evaluate”, such that:

Evaluate(pk, C, v, .., w;) = Enc(pk, C(1my, ..., T}) )

for all pk, all circuits C, all y, = Encrypt(pk, ).
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(X_ Privacy Homomorphism

Well, here's how:

Assume you have public-key encryption scheme that, in addition to
algorithms (KeyGen, Enc, Dec), has an efficient algorithm
"Evaluate”, such that:

Evaluate(pk, C, y, ..., y;) = Enc(pk, C(1, ..., ) )
for all pk, all circuits C, all g, = Encrypt(pk, ,).

/Query encrypted data: \
Encrypt stored data: gy, ..., W,

Query: send your circuit C

Response: Eval(pk, C, y;, ..., w,)
\ Decrypt response — C(1my, ..., 'ITT)/
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X Privacy Homomorphism

Well, here's how:

Assume you have public-key encryption scheme that, in addition to
algorithms (KeyGen, Enc, Dec), has an efficient algorithm
"Evaluate”, such that:

Evaluate(pk, C, y, ..., y;) = Enc(pk, C(1, ..., ) )
for all pk, all circuits C, all y, = Encrypt(pk, ).

/Quer'y encrypted data: \ /Query data privately: \
Encrypt stored data: yy, ..., W, Send enc. queries g, = Enc(pk, ;)
Query: send your circuit C Server uses search circuit Cy,
Response: Eval(pk, C, y;, ..., w,) Response: Eval(pk, Cy1q, W1, -0 Wy)

\ Decrypt response — C(1my, ..., 'ITf)/ \ Decrypt response — C (174, ..., 'ITT)/
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(X_ The Quest for Privacy Homomorphisms

Problem is: We have no such encryption scheme.

- What we have currently:
Multiplicatively homomorphic schemes: RSA, ElGamal, etc.
Additively homomorphic schemes: GM, Paillier, etc.
Quadratic formulas: BGN
NC1: SYY

* What we don't have:
A fully homomorphic scheme for arbitrary circuits
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X Fully Homomorphic Encryption: Construction

3 Steps
- Step 1 - Bootstrapping:

Scheme E can evaluate Scheme E* can
its own decryption circuit evaluate any circuit

- Step 2 - Ideal Lattices: Decryption in lattice-based systems has
low circuit complexity. Ideal/lattices used to get + and x ops.

* Step 3 - Squashing the Decryption Circuit: the encrypter helps
make decryption circuit smaller by starting decryption itself!
Like server-aided decryption.
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Step 1: Bootstrapping
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Wha’r Circuits can RSA "Evaluate”?

| c—cyxc,modN, c¢=(m; xm,)®modN

/®\

1.

A circuit of multiplication (mod N) gates
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Wha‘r Circuits can Goldwasser-Micali "Evaluate”?

| c—c;xc,modN, c¢=r?xxmmmodN

1.

A circuit of XOR gates
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‘«.X;/Vha‘r Circuits can Boneh-Goh-Nissim "Evaluate"?

Uses a bilinear map or “pairing”: e:6 x 6 — G+

C(_C'XC“

Cq Co

A quadratic formula
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Fully Homomorphic Encryption:

X Informal Definition

Can “evaluate” any circuit

* A too-strong definition (indistinguishable distributions):
Evaluate(pk, C, w,, .., w;) = Enc(pk, C(my, ..., TT}) )

for all circuits C, all (sk,pk), and y, = Encrypt(pk, ).
» Indistinguishability unnecessary for many apps.
- But we can achieve this...
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Fully Homomorphic Encryption:

X Informal Definition

Can “evaluate” any circuit

- What we want:
- Correctness:.

Dec(sk, Evaluate(pk, C, wy, .., w,)) = C(my, .., ™)

for all circuits C, all (sk,pk), and y, = Encrypt(pk, ).
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Fully Homomorphic Encryption:

X Informal Definition

Can “evaluate” any circuit

- What we want:
- Correctness:.

Dec(sk, Evaluate(pk, C, wy, .., w,)) = C(my, .., ™)

for all circuits C, all (sk,pk), and y, = Encrypt(pk, ).
- Compactness:
Output of Evaluate is short.
The trivial solution doesn't count:

Evaluate(pk, C, wy, .., w;) — (C, yy, ..., w,)

Our requirement: Size of decryption circuit is a fixed
polynomial in security parameter
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X A "Complete” Set of Circuits?

A Steppingstone?

- Given: a scheme E that Evaluates some set S of circuits

+ Is S complete?: From E, can we construct a scheme that
works for circuits of arbitrary depth?
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X A "Complete” Set of Circuits?

A Steppingstone?

- Given: a scheme E that Evaluates some set S of circuits

+ Is S complete?: From E, can we construct a scheme that
works for circuits of arbitrary depth?

Yes!
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X’ A "Complete” Set of Circuits

Decryption circuit
"augmented” by NAND

Decryption
Circuit

1T

T

M7t MM
sk Y

T MM "Mt MM
sk W, sk W,
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Why is homomorphically evaluating the
1 decryption circuit so powerful?

* Proxy re-encryption: Alice enables anyone to convert a
ciphertext under PK,;.. To one under PKg,:

Blue means
encrypted
under PKBob.

Red means
encrypted
under PKAlice.
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X If you can evaluate NAND-Dec...

Blue means
encrypted
under PKgop.

Red means m )‘ Epxatice(y)
encrypted ‘

d P K ice.
neer Tt m, ] )‘EPKAIice(mZ)
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X If you can evaluate NAND-Dec

Blue means
encrypted
under PKgop.

Green means
encrypted
Under‘ PKqu'ol.

Fully Homomorphic Encryption Using Ideal Lattices

AN
AND-Ded, _, R

function

NAND
(m; NAND m

2)

2)

And so on...
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(X_ Circuits of Arbitrary Depth

Theorem (informal):

- Suppose scheme E is bootstrappable - i.e., it evaluates its own
decryption circuit augmented by gates inT.

* Then, there is a scheme E; that evaluates arbitrary circuits of
depth & with gates inT.

- Ciphertexts: Same size in E; as in E.
* Public key:
Consists of (6+1) E pub keys: pk,, ..., pks
Along with & encrypted secret keys: {Enc(pk;, sk )}
Linear in d.
Constant in d, if you assume encryption is “circular secure.’

[
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Step 2: Ideal Lattices
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'X_ Our Task Now...

Find an encryption scheme E that can evaluate
its own decryption circuit, plus some.
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‘X_ Our Task Now...

Find an encryption scheme E that can evaluate
its own decryption circuit, plus some.

Bootstrappability gives us a new angle:
- Don't just maximize the scheme's "evaluative capacity”

- Also minimize the circuit complexity of decryption
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X Our Task Now...

Find an encryption scheme E that can evaluate
its own decryption circuit, plus some.

Bootstrappability gives us a new angle:
- Don't just maximize the scheme's "evaluative capacity”

- Also minimize the circuit complexity of decryption

Where to Look?:

- Not RSA: Exponentiation is highly unparallelizable - i.e., it
requires deep circuits

- Maybe schemes based on codes or /attices...
"Decoding” is typically an inner product - parallelizable!
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x What's a Lattice?

® e O ® O ®
S e © o ® ®
® e © e > g
V2 ® ® ® ® ®
I’;@ S @ O @
0 vy

A set of points, or vectors, that looks like this.
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X What's a Lattice?

® O O @ O @
@ @
@ @
@ @
@ @

* (vq, v,) is a basis of the lattice L, since L = { x,v; + X,v, : X. in Z (integers) }
» Bases are not unique

* (vq, v,) looks like a better basis, don't you think?
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Parallelepipeds
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X Parallelepipeds

L
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Good Basis
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X Good Basis

 Formula for reducing a basis modulo B = {v;,v,}; t mod B/=1-B[B?t]
Fully Homomorphic Encryption Using Ideal Lattices 5/14/2009 Craig Gentry



X Bad Basis
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X Bad Basis

 Formula for reducing a basis modulo B = {v;,v,}; tmodB=1-B[B?t]
« LLL 2n-approximates the best basis.
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X Bad Basis
. . 9
Clol%eogr‘rrlg;rl’rllycf? point?

 Formula for reducing a basis modulo B = {v;,v,}; tmodB=1-B[B?t]
« LLL 2n-approximates the best basis.
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X How Do We Encrypt Using Lattices?

+ Ideas:
« Close / Far: Ciphertext for O is close to a lattice point, and a
ciphertext for 1is far.
« Odd/ Even:

 Encryption of O: vector that differs from closest lattice point by
an “even” vector,

 Encryption of 1: vector that differs from closest lattice point by
an “odd" vector.
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X A Rough Lattice-Based Encryption Scheme

» Encryption: y < p mod B, (public basis)

® =

“Processed”
plaintext p

@

$ ©
Ciphertext y ’K ~
%
% ® o
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X A Rough Lattice-Based Encryption Scheme

» Encryption: y < p mod B, (public basis)
- Decryption: p — p mod B, (secret basis) = y - B, [B, ! w]

“Processed”
plaintext p




X What if we add ciphertext vectors?

» Encryption: y < p mod B, (public basis)

Sum of
processed .
plaintexts = Ciphertext
sum
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X What if we add ciphertext vectors?

» Encryption: y < p mod B, (public basis)
- Decryption: p — p mod B, (secret basis) = y - B, [B, ! w]

Sum of
processed
plaintexts




X What if we add ciphertext vectors?

* Encryption: y < p mod B, (public basis)

Sum of
processed
plaintexts

Ciphertext
sum
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X What if we add ciphertext vectors?

» Encryption: y < p mod B, (public basis)

- Decryption: p — w mod B, (secret basis) = y - B, [B, ! ]

Sum of
processed
plaintexts

What
= decryption
returns

Ciphertext
sum

raig Gentry



X How many ciphertexts can we add?

Suppose a sphere of radius ry,, is in private parallelepiped.
Suppose a processed plaintext is in B(rg,.).
We can add ry, /re. ciphertexts, and decrypt correctly.

Sum of
processed
plaintexts

What
= decryption
returns

Ciphertext
sum
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X How many ciphertexts can we add?

S Fortunately, ry,./reg, can be huge - e.g., 2¥n - and still secure.
§ LLL can find closest L-vector to t when
ML)/ dist(Lt) > 2n
where A,(L) is the shortest nonzero vector in L.

S Ppec €an as large as A,(L), up to a small (poly(n)) factor.
S rg,.: can be very small, as long as:

S M(L)/rg,. is not so large that LLL breaks security (2" OK)

S There is enough min-entropy in B(rg,.), roughly speaking.

S Overall, ry,./rg,. can be about 2V,
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‘X’ How Can We Multiply Ciphertexts?

+ Ideas:
« Tensor Product: Would lead to huge ciphertexts
Use rings instead of (additive) groups: Good ideal
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)

TIdeal Lattices

& What is an “ideal"? A
. . What is an “ideal lattice"?
A subset J of aring R that is One object, both an ideal
closed under "+", and also and a lattice
_ closed under "x" with R. )
« Example: Z (integers) is a ring. (2), the even integers, is an ideal.
2 -1 0 1 2 3 4 5 6 7 8 9
@ o @ o @ @ o @ ° @ o
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l TIdeal Lattices

4 What is an "ideal"?
A subset J of a ring R that is

W n

closed under "+", and also
_ closed under "x" with R.

~

What is an “ideal lattice"?
One object, both an ideal
and a lattice

/

« Example: Z[x]/(f(x)) is a polynomial ring, f(x) monic, deg(f) = n.
e (a(x)) isanideal {a(x)b(x) mod f(x):b(x)inR}.

Lattice basis below:

a(x) Ay

a,

a,

n-1

x+a(x) mod f(x) -a, f,

ap-a, 14

a;-a, ;f,

CIn-Z-Cln-lfn-l

xn-1-a(x) mod f(x)
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X Ideal Lattice Scheme: High-Level

Background: CTs live in ring R = Z[x]/f(x), where deg(f) = n.
CTs can be added as vectors and multiplied as ring elements.

Ciphertext form

[message in {0, 1} /
Random short even vec‘ror'

[Random vector from public key ideal J}

Multiplication:  (m;+ 2v;+ j;) (M, + 2v, + j,)
= m;xm, + 2(mv,+m,v,+2v,v,) + (something in J)
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Ideal Lattice Scheme: More Concretely

Parameters: Ring R = Z[x]/(f(x)), basis B, of “small” ideal lattice I. Radii

66,9

I'p.. and rg, . as before. The operations “+” and “x” are in R.

KeyGen: Output “good” and “bad” bases (B, B, ) of a “big” ideal lattice
J, which is relatively prime to I —1.e., I + J = R. Plaintext space: the
cosets of 1.

Encrypt(B ,, m): Set m’ «—® (m+I) N B(rg,.). Setc «— m’ mod B

pk’
Decrypt(By,, ¢): Output (¢ mod B, ) mod B, — m
Add(B,,

Mult(B

C1» ¢p): Output ¢ «— ¢, + ¢, mod B

oks €15 €)1 Output ¢ «— ¢, x ¢, mod B, which is inm,;” x m,” +J

The NTRU encryption scheme uses a similar approach with 2 relatively
prime ideals.
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Tdeal Lattice Scheme: Correctness

Parameters: Ring R = Z[x]/(f(x)), basis B, of “small” ideal lattice I. Radii

66,9

I'p.. and rg, . as before. The operations “+” and “x” are in R.

KeyGen: Output “good” and “bad” bases (B, B, ) of a “big” ideal lattice
J, which is relatively prime to I —1.e., I + J = R. Plaintext space: the
cosets of 1.

Encrypt(B ,, m): Set m’ «—® (m+I) N B(rg,.). Setc «— m’ mod B

pk’
Decrypt(By,, ¢): Output (¢ mod B, ) mod B, — m
Add(B,,

Mult(B

C1» ¢p): Output ¢ «— ¢, + ¢, mod B

oks €15 €)1 Output ¢ «— ¢, x ¢, mod B, which is inm,;” x m,” +J

Correctness: Decryption works on Add(B,,, ¢, ¢,) if m’+m’,
is in the B, parallelepiped.
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Tdeal Lattice Scheme: Correctness

Parameters: Ring R = Z[x]/(f(x)), basis B, of “small” ideal lattice I. Radii

66,9

I'p.. and rg, . as before. The operations “+” and “x” are in R.

KeyGen: Output “good” and “bad” bases (B, B, ) of a “big” ideal lattice
J, which is relatively prime to I —1.e., I + J = R. Plaintext space: the
cosets of 1.

Encrypt(B ,, m): Set m’ «—® (m+I) N B(rg,.). Setc «— m’ mod B

pk’
Decrypt(By,, ¢): Output (¢ mod B, ) mod B, — m
Add(B,,

Mult(B

C1» ¢p): Output ¢ «— ¢, + ¢, mod B

oks €15 €)1 Output ¢ «— ¢, x ¢, mod B, which is inm,;” x m,” +J

Correctness: Decryption works on Mult(B , ¢;, ¢,) it m’;xm’, 1s
in the B, parallelepiped.
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Tdeal Lattice Scheme: Correctness

Parameters: Ring R = Z[x]/(f(x)), basis B, of “small” ideal lattice I. Radii

66,9

I'p.. and rg, . as before. The operations “+” and “x” are in R.

KeyGen: Output “good” and “bad” bases (B, B, ) of a “big” ideal lattice
J, which is relatively prime to I —1.e., I + J = R. Plaintext space: the
cosets of 1.

Encrypt(B ,, m): Set m’ «—® (m+I) N B(rg,.). Setc «— m’ mod B

pk’
Decrypt(By,, ¢): Output (¢ mod B, ) mod B, — m
Add(B,,

Mult(B

C1» ¢p): Output ¢ «— ¢, + ¢, mod B

oks €15 €)1 Output ¢ «— ¢, x ¢, mod B, which is inm,;” x m,” +J

Correctness: Correct for set S of circuits if C(m’, ..., m’)) 1S
always in the B, parallelepiped..
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Analyzing the Evaluative Capacity
Geometrically

Correctness: Correct for set S of circuits if C(m’y, ..., m’)) 1s always
in the B, parallelepiped.

Question: for what arithmetic circuits C does this hold:
for all (x, ..., X)) 1n B(rg,)', C(X, ..., X, 18 inside B(rp,.)
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Analyzing the Evaluative Capacity
Geometrically

Question: for what arithmetic circuits C does this hold:
for all (x,, ..., X)) 1n B(rg,)', C(X, ..., X, 18 inside B(rp,.)

* Add operations: lu+vl < lul + Ivl (triangle
inequality)
e Mult operations: luxvl <y, (R) - lul - vl for

some factor Y,,,(R) that depends on the ring R,
and which can be poly(n).

e Add vs. Mult:
e Add causes much less expansion than Mult.

e Constant fan-in Mult is as bad as poly(n)
fan-in Add.

Fully Homomorphic Encryption Using Ideal Lattices 5/14/2009 Craig Gentry



Analyzing the Evaluative Capacity
Geometrically

Question: for what arithmetic circuits C does this hold:
for all (x,, ..., X)) 1n B(rg,)', C(X, ..., X, 18 inside B(rp,.)

Add: lu+vl < lul + vl

Mult: luxvl £ vy (R)-lal-lvl  [How much depth can we get?

Let C be a fan-in-2, depth d arithmetic circuit

Let r, be the max radius associated to a gate in C at
level 1, whenry =1, .

I < V(R T

Then, 1y < (Yy (R)T,)>.

Iy < Ipe if d <log log 1y, — log log (Yyy(R) Ty
E.g., (¢c,-c,) log n depth when r_, = 2*°! and
Yy (R) T = 2.

Bottom line: We get about log n depth.
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Analyzing the Evaluative Capacity
Geometrically

Question: for what arithmetic circuits C does this hold:
for all (x,, ..., X)) 1n B(rg,)', C(X, ..., X, 18 inside B(rp,.)

Add: lu+vl < lul + vl

Mult: luxvl £ vy (R)-lal-lvl  [How much depth can we get?

Let C be a fan-in-2, depth d arithmetic circuit

Let r, be the max radius associated to a gate in C at
level 1, whenry =1, .

I < V(R T

Then, 1y < (Yy (R)T,)>.

Iy < Ipe if d <log log 1y, — log log (Yyy(R) Ty
E.g., (¢c,-c,) log n depth when r_, = 2*°! and
Yy (R) Ty = 27,

Bottom line: We get about log n depth.

Is this enough to bootstrap??
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Homomorphic Decryption to "Refresh”

‘X Ci EherTesz

» Intuition: When our ciphertext's "error vector” becomes to long,
we want to "refresh” the ciphertext:

* Get a new encryption of same plaintext with shorter error.
- How to do it?
Decrypt it, then encrypt again!
But this requires the secret key...
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Homomorphic Decryption to "Refresh”

‘X Ci EherTesz

» Intuition: When our ciphertext's "error vector” becomes to long,
we want to "refresh” the ciphertext:

* Get a new encryption of same plaintext with shorter error.
- How to do it?
- Decrypt it, then encrypt againl
» But this requires the secret key...
- Homomorphically decrypt itlll
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The Decryption Circuit of the Initial

X Scheme

Decrypt(By, w) = (wmodB) mod B;
- (LlJ - Bsk . [Bsk_l . LlJ]) I'T\Od BI

Can simplify this to:
Decrypt(vg, W) = (W-[(va)' x w]) mod (2)

Expensive Step: Computing [(vg)?! x w] mod (2)

Another "tweak": Require y to be within ry,./2 of a lattice point.
Then, the coeffs of (vy)! x W will be within £ of an integer.
Then, we need less precision to ensure correct rounding.
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The Decryption Circuit of the

X Tnitial Scheme

Expensive Step: Computing [(vq)?! x w] mod (2)

- Ring multiplication is like a bunch of parallel inner products
» Each inner product involves an addition of n terms, like this:
11101.. + 0.0101.. + 0.1011. + 11010.. + ..

- We have to worry about carry bits -> have high degree in input.

- When vectors are n-dimensional, the shallowest circuit I know of has
depth O(log n), and is heavy on the MULTs.
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The Decryption Circuit of the

X Tnitial Scheme

Expensive Step: Computing  [(vg)?! x w] mod 2

11101.. + 0.0101.. + O0.1011.. + 11010.. + .

* When vectors are n-dimensional, the least complex circuit I know of
has depth O(log n), and is heavy on the MULTs.

"3-for-2" trick: replaces 3 (binary) numbers with 2 numbers
having the same sum.

¢ log;,,n depth to get 2 numbers with same sum as n numbers.
0.1011.. + 1.0111..
Normally, depth of adding 2 numbers is log in their bit-lengths

But, we can use fact that, for valid ciphertexts, (vy)?! x gy is
very close to an integer vector -> final sum is constant depth.
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The Decryption Circuit of the

X Tnitial Scheme

* Bottom line: Decryption circuit is also O(log n), but for a larger
constant than the depth we can Evaluate.

- Blargh...
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X Still Not Bad...

« Boneh-Goh-Nissim does quadratic formulas: arbitrary number
of additions, but multiplication depth of 1.

e Our scheme:

 Essentially arbitrary additions, but with log n
multiplication depth.

 Also, larger plaintext space.
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Security of the scheme

« We'll discuss this in more detail later if we have time...
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\

Step 3: Squashing the Decryption Circuit
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Abstractly, How Can We Lower the
‘X’ Decryption Complexity?

Old LU
decryption 1
algorithm
Dec
B N )
sk Y
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Abstractly, How Can We Lower the
X Decryption Complexity?

Old A
decryption 1
algorithm

Dec
T 1
sk Y

Crazy idea: The encrypter starts decryption, leaving
less for the decrypter to do!
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Abstractly, How Can We Lower the

>

old
decryption
algorithm

1T

T

Dec

Decryption Complexity?
1T

L N D
sk Y

New approach 1

T
sk* L|J*
T

T TI T T
f(sk, r) U/

Crazy idea: The encrypter starts decryption, leaving

less for the decrypter to do!
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Abstractly, How Can We Lower the
Decryption Complexity?

New approach 1 Decrypter
Old . runs Dec?2
decryption “—
algorithm %e& [ Encrypter J
1TT 4 In new h TsTktT TLTJIT(/ sends y*
scheme,
ey | L[ Enenpter
Kpubluc keyj —
Dec
T 1
sk Y
T T

> f(sk, r) U/

Crazy idea: The encrypter starts decryption, leaving
less for the decrypter to do!
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Abstractly, How Can We Lower the
Decryption Complexity?

3>

old
decryption
algorithm

1T

T

Dec

L N D
sk W

New approach ? Decrypter
runs Dec2
«
%e& [ Encryp’rer J
Tnnew | TLTILE__{ sends v
scheme,
f(sk,r) is in e Egﬁgvbzg
N public ke
Decl
TTTTTTTTTTTT TTTT
> f(sk, r)

Dec?2 should be less
complex than Dec

(Decl, Dec?2) should work on
any y that Dec works on




Abstractly, How Can We Lower the
Decryption Complexity?

L
New approach 1 Decrypter
o~ ' runs Dec?2
decryption _
e %e& [ EncrYPTer J
T 4 ~
1 l'r;1 hew TJkLT TTIT(/ sends y*
scneme,
f(skr)isi TTTT Encr'y ’rer'

n
ns D 1
\pubhc ke ru ec
Dec
Decl
L N D
sk W

TTTTTTTTTTTT TTTT
> f(sk, r)

[ Still semantically secure if f(sk,r) is computationally ]

indistinguishable from random given (pk, sk), but not sk*.




Concretely, How Does the
X Transformation Work?

Decrypt(ve, W) (W - [(ve)! x w]) mod (2)

Expensive Step: Computing  [(vg)?! x w] mod 2
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X Remember the Old Circuit...

Expensive Step: Computing  [(vg)?! x w] mod 2

11101.. + 0.0101.. + O0.1011.. + 11010.. + .

» Dominant computation: "3-for-2 trick” circuit of depth c log,,,n
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X Our New Circuit...

Expensive Step: Computing  [(vg)?! x w] mod 2

11101.. + 0.0101.. + O0.1011.. + 11010. + ..
» Dominant computation: "3-for-2 trick” circuit of depth c log,,,n
* Goal: Use /ess depth to get 2 vectors
(0.1011.., ..,1.0110..) + (1.0111., .., 1.1000..)

whose sum is same (mod 2) as:  (vg)?! x @

- Strategy: Start with much fewer than n vectors in the first placel
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Abstractly, How Can We Lower the
Decryption Complexity?

L
New approach 1 Decrypter
o~ ' runs Dec?2
decryption _
e %e& [ EncrYPTer J
T 4 ~
1 l'r;1 hew TJkLT TTIT(/ sends y*
scneme,
f(skr)isi TTTT Encr'y ’rer'

n
ns D 1
\pubhc ke ru ec
Dec
Decl
L N D
sk W

TTTTTTTTTTTT TTTT
> f(sk, r)

[ Still semantically secure if f(sk,r) is computationally ]

indistinguishable from random given (pk, sk), but not sk*.




Concretely, How Does the New

X AEEr'oach Work?

Expensive Step: Computing [(vg4)! x w] mod 2

What is the "hint" f(sk,r) that we put in the pub key?

- The Hint: a set S of vectors {w} that has a Aidden subset T of
vectors {x} whose sum is (vg ).

|S| =nb, B> 1. | T| = w(1) and o(n).
- Decl: Encrypter sends y and
p* = {¢, = wxy(mod2)} forallw in$S

- Dec?2: Decrypter sums up the |T| values that are “relevant.”
This takes clog |T| depth with 3-for-2 trick.
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Concretely, How Does the New
‘X Approach Work?

- The Hint: a set S of vectors {w} that has a Aidden subset T of / \
vectors {x;} whose sum is (vg ). In Dec?2, how
IS =nB,B>1.  |T| = w(l) and o(n). do we cheaply
Decl: Encrypter sends g and extract |T]

w* = {¢ = wxy(mod2)} forallw,ins vectors that

Dec2: Decrypter sums up the |T| vectors that are “relevant.” \ar'e r'elevan’r?/
This takes clog |T| depth with 3-for-2 trick.

+ Decrypter's secret key sk* consists of |T| 0/1-vectors {y;} of
dimension |S|; each encodes 1 member of |T].

2t 0O100O0O00O
Yo 0O 0100O00O
Y3 0O 00O0O010O0
 For each i, it inner-products y; with p*.

Key point: No carries to worry about in inner product -> We can use
a high fan-in add gate (cheap).



Concretely, How Does the New

X AEEr'oach Work?

Expensive Step: Computing [(vg4)! x w] mod 2

» Bottom line: Dec2 has about log | T| depth, | T| = w(1) and o(n).

* New Assumption: Given set S of vectors {w;} and vector v, decide
whether there exists a low-weight subset T = {x.} withv = 2x..

+ Can pick |S| s.t. there will be many subsets of size, say, |S|/2
whose sum is v.

- Known attacks: Finding T takes time roughly niT!.

- To evaluate depth log | T|, original scheme needs ry,./rg,. = ne™
This is also basically the approx factor of the lattice problem.

- Known attacks: Takes time roughly 2VITl,
- Optimal: Set |T| =n.

Fully Homomorphic Encryption Using Ideal Lattices 5/14/2009 Craig Gentry



X Performance

Well... a little slow.

- “Evaluating” a circuit homomorphically takes O(k7) computation
per circuit gate if you want 2% security against known attacks.

.. But a full exponentiation in RSA also takes O(k®); also, in
ElGamal (using finite fields).
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X Open Problems

- CCA1 Security

+ Improve efficiency

- System using linear codes (wouldn't be so surprising)
- System based on "conventional” crypto assumptions

- "Refreshing” a ciphertext without completely (homomorphically)
decrypting it
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Thank Youl Questions?
‘ ?
% )
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X Security of the Initial Ideal Lattice Scheme

Distributional CVP: Generate basis B, for ideal lattice J using KeyGen. Set bit b.
« Ifb=0,tisuniform in blue parallelepiped.
« If b=1,tisinblue parallelepiped, but according to a clumpy distribution.

@%
@@
@@
@@
@ @ O ® ®
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X Security of the Initial Ideal Lattice Scheme

Distributional CVP: Generate basis B, for ideal lattice J using KeyGen. Set bit b.
« Ifb=0,tisuniform in blue parallelepiped.
« If b=1,tisinblue parallelepiped, but according to a clumpy distribution.
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X Security of the Initial Ideal Lattice Scheme

Distributional CVP: Generate basis B, for ideal lattice J using KeyGen. Set bit b.
« Ifb=0,tisuniform in blue parallelepiped.
« If b=1,tisinblue parallelepiped, but according to a clumpy distribution.
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X Security

» Distributional CVP: Generate basis B, for ideal lattice J
using KeyGen. Seft bit b.

« If b=0,t is uniform in blue parallelepiped.
« If b=1, 1 is in blue parallelepiped, but according to a
clumpy distribution (say, of radius r).
« Security proof sketch:
« If b=1,t can be used to validly encrypt m, as follows:

e Let s be ashort vector in I, such that the ideal (s) is
relatively prime to the ideal J.

 Output c < m+sxtmod B,
 If b=0, then ¢ <~ m + s x ¥ mod B, will be random modulo
J and independent of m.
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Circuit Privacy

e Algorithm “Randomize’:

» Applied to outputs of Encrypt or Evaluate, it induces statistically
equivalent distributions.

e The Idea: Add a random encryption of 0 whose “‘error space” is
huge in comparison to the “error space” ciphertexts output by
Encrypt or Evaluate.

* New error space for Evaluate 1s B(r,../m) for super-polynomial m,
but no problem...

Fully Homomorphic Encryption Using Ideal Lattices 5/14/2009 Craig Gentry



Let Us Revisit the Initial Construction to
Get a Better Security Result...

Parameters: Ring R = Z[x]/(f(x)), basis B, of “small” ideal lattice I. Radii
Rp.. and R “x”

as before. The operations “+” and “x” are in R.
KeyGen: Output “good” and “bad” bases (B, B, ) of a “big” ideal lattice
J, which is relatively prime to I —1.e., I + J = R. Plaintext space: the
cosets of 1.

Enc

Encrypt(B ,, m): Set m’ «—® (m+I) N B(rg,.). Setc «— m’ mod B

pk’
Decrypt(By,, ¢): Output (¢ mod B, ) mod B, — m
Add(B,,

Mult(B

C1» ¢p): Output ¢ «— ¢, + ¢, mod B

oks €15 €)1 Output ¢ «— ¢, x ¢, mod B, which is inm,;” x m,” +J
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Let Us Revisit the Initial Construction to
Get a Better Security Result...

Parameters: Ring R = Z[x]/(f(x)), basis B, of “small” ideal lattice I. Radii
Rp.. and R “x”

as before. The operations “+” and “x” are in R.
KeyGen: Output “good” and “bad” bases (B, B, ) of a “big” ideal lattice
J, which is relatively prime to I —1.e., I + J = R. Plaintext space: the
cosets of 1.

Enc

Encrypt(B ,, m): Set m’ «—® (m+I) N B(rg,.). Setc «— m’ mod B

pk>
Decrypt(By,, ¢): Output (¢ modB,,) mod B, — m
Add(B,

Mult(B

C1» ¢p): Output ¢ «— ¢, \+ ¢, mod B

oks €15 €)1 Output ¢ «— ¢\x ¢, mod B, which is inm,” x m,” +J

First step: Sample from m+I according to a Gaussian distribution.
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Discrete Gaussian Distributions

+ We modify our initial construction to use discrete Gaussian
distributions over lattices.

»+ Sum of 2 discrete Gaussian distribution is statistically equivalent
to another discrete Gaussian distribution.

-6 .
Used without permission of Oded Regev. He'd
probably let me if I asked though. Thanks Oded!
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Security Inner Ideal Membership
X Problem (IIMP)

» The IIMP: Fix R, By, and real myrype. Run (Bg, B,,) < KeyGen(R, B;),
bases for some ideal J. Set b <R {0,1}.

- If b=0, one samples v «— Gauss(I, s, 0) and sets t «— v mod Bpk.
* If b=1, one samples v «— Gauss(Z", s, 0) and sets t < v mod Bk
- Given (B, 1) and the fixed values, decide b.

» Security proof sketch:
+ Set w « Gauss(I, s, -m,). Set ¢ — my+w+v mod B,
+ If b=0, (¢ mod B,) mod B; = (m,+w+v) mod B; = m,.
-+ If b=1, (c mod B,,) mod B; = (m,+w+v) mod B; = random.
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X From Modified IIMP

+ The MIIMP: Like the IIMP, except myrrmp < Mope-e/(n -1B:|) and
- If b=0, one sets v < I so that |v| < Myrrmp
- If b=1, one sets v not in I so that |v| < myrrap
+ Given (B, T = vmod B,) and the fixed values, decide b.
+ Sketch of reduction to IIMP:
- Set u to be very short, but random modulo I.
+ Set '« ux t + Gauss(I, meryp, 0) mod B,
- IIMP instance is (Bpk, ).
- If b =0, then indeed t' is "in the inner ideal."
- If b=1, 1 is uniformly random wrt I.
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From Average-Case CVP Using Hensel

X Lifting

- Average-case CVP: Set m,qp < Myrrme/ (YmoLt(R)Vn). Set v such
that |v| < m,.p, and set + — v mod B,

+ Given (B, 1), output v. (This is a search problem!)
+ Sketch of reduction to MIIMP:
+ Use MIIMP-oracle to get v; < v mod B;.

- Set w to be a short vector in I1, and use the MIIMP-oracle to
get v, — w x (v-v;) mod B;. This gives v, «— v mod I2

- Etc.

+ Given v, = v mod I we know v, - vis in IX. For large enough kK,
we can use LLL to solve this CVP in poly time (to get v).
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Average-Case / Worst-Case Connection
X for Ideal Lattices?

- Yes
» First ac / wc connection where ac problem is for ideal lattices.

- First ac / wc connection where ac lattice has same dimension as
wc lattice (usually the ac lattice is larger).

» T need quantum computation for the reduction...
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XWha’r is the average-case distribution?

- What is a random ideal?

* Our definition: uniformly random among ideals whose norm (i.e.,
determinant) is in a fixed interval - e.g., [n", 2n°"].
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How to Generate (a Basis of) a Random

X Tdeal...

* Our Technique: Adapt Kalai's technique for generating a random
factored number.

+ We generate a random factored normN of an ideal in R.
- It is easy to generate bases for an ideal whose norm is prime.

- We multiply together the bases of the individual primes to get a
basis whose norm is N.
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X KeyGen

* Goal: Ideal J, together with a good independent set for J-.
* Generate a random ideal K with norm in [nen, 2n<n].
*+ Generate v < Gauss(K!, s, t-e;). Le., valmost equalst -e;.
+ Set J « K- (v).
Already have a somewhat good independent set for K - i.e., {e;}.
* Our good independent set for J!is {e,/v}.

* Proving that J has a hice average-case distribution (in a different
interval) uses properties of discrete Gaussian distributions.
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How Do We "Randomize” a Worst-Case

X Ideal?

- Given worst-case CVP instance (B,,, u), how do we randomize it to
obtain average-case instance (B;, 1), such that solving the ac
instance helps us solve the wc instance?

* First, we multiply M by a random ideal K. Intuitively, the shape of
MK is essentially independent of M.

 Next, we multiply by v — Gauss((MK)!, s, t-e;) to "divide out” the
algebraic dependence on M.

- WesetJ — MK: (v)and t < uxwy xv, where w, is a very short
vector in K (of length poly(n)).

» But, wait, our method of generating a random K didn't also give a
short wy in K...
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How to Generate a Random Ideal with a
X Short Vector in It.. Quantumly

+ Generate the short w first via w — Gauss(Z", s, t-e,)

» Factor the ideal (w) by factoring the norm of (w) using Shor's
quantum factoring algorithm.

- Set K to be a random divisor of (w).
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Worst-Case CVP to Independent Vector
X Improvement Problem (IVIP)

* [Regev]: uses quantum computation
» Superposition 1: Gaussian distribution (Z", s, 0).

- Superposition 2: Reduce each point in the above distribution
modulo a basis B, for the lattice L.

- If there is a classical CVP oracle for L that solves it when t is
within sVn of a lattice point, this reduction is reversible.

- Superposition 3: Fourier transform to get distribution (L*, 1/s, O).
+ Measure, to get a point in L* of length at most Vn/s.
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IVIP to Shortest Independent Vector

X Problem

 The SIVP: Generate n linearly independent vectors in a given
lattice L, all of length at most mqpp - A, (L).

- Sketch of reduction to IVIP

* Given M, use the IVIP oracle to find an independent set of
M, ! with vectors of length at most 1/mqyp.

+ Set v — Gauss(Myt, s/mpyrp, (t/Mpyrp)-e;) and M; — My-(v).
- Recurse.

* Result: Let depyp = 3Y"dpygp. If there is an algorithm that solves
IVIP for mpyp = 8 - Ay (R) - n2° - log n whenever the given ideal
has det(M)" > d;y1p, then there is an algorithm that solves SIVP
for approximation factor de;p.
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X Correctness

Correctness: Decryption works on Evaluate(B; ., C, wy, ... @) if
C(mry+iy, ..., M+iy) is the disting. rep. of its coset w.r.t. B .

+ Ciphertext y, = m +i, + j,,withiinIand jinJ.
+ Evaluate(B; i, C, wy, ..., wy) = C(TM+ig*jy, ..., Ty+ig+jy)
in C(TTy+iy, ..., TTy+iy)

» If C(my*iy, ..., i+iy) is The disting. rep. of its coset of J w.r.t. B; g,
which is true if C(Y, .., Y) is a subset of R mod Bj;,, then Decrypt
returns C(1T*iy, ..., +i,) mod B; = C(1my, ..., ;) mod B;.
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i;r'yp’rogr'aphically Hard Problems Over Lattices

2" (logt-sn) Jn n oh loglogn/logn
] l LR ] -
y ) | I d I ” \_T_j
NP-hard NP int coNP crypto P

The LLL algorithm (with Babai's modifications) can approximate CVP to
within a factor of about 2" in polynomial time.

We do not know how to do better in general.
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Let us review our additively homomorphic
scheme...

§ Global Parameters: 1y, , I, Z", and a basis By, of an additive subgroup H of Z.
E.g., H could be the vectors with even coefficient sum. Plaintext space is the set
of “distinguished reps” of the cosets of H.

§ KeyGen: Secret and public bases B, and B, of some lattice L, where B,
circumscribes a ball of radius rp,_.

Encrypt(B;, m): Set m” «-® (m+H) N B(r, ). Setc < m’ mod B ;.

pk’
Decrypt(B,, ¢): Set m < (¢ mod B, ) mod By;. Note: m’ = (¢ mod B)).

Add(Bgg, ¢, ¢,): Set ¢ «— ¢, + ¢, mod By , whichisinm’, + m’, + L.

W W W W

Correctness: Let C be a mod-By circuit that adds at most rp, /rg . plaintexts.
Then, Evaluate(Bpk, C, ¢y, ..., ¢) decrypts correctly since:

1) m’+..+4m’ = ¢ +...+c, mod B, since it is in the secret parallelepiped.

2) my+..+m, =m’+..4+m’, mod By,.
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x How Does It All Work Together?

Epkl(n)
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x How Does It All Work Together?

E is the initial scheme.

E* has the squashed dec
circuit.

Epkl(Tr)
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E is the initial scheme.

E* has the squashed dec
circuit.
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x How Does It All Work Together?

E is the initial scheme.

E* has the squashed dec
circuit.

Eka(Skl*))

Epia(E™ (1))
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E,ka( Dec(skl*, E* (1)) )

Eka(Tr)
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X How Does It All Work Together?

E is the initial scheme.
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circuit.
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X How Does It All Work Together?

E k2( Dec(sk1*, E* =) )

E is the initial scheme.

E* has the squashed dec
circuit,

Eo(sk1*))

Epia(E™ (1))
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X’ How Does It All Work Together?

Eka(Tr')

Epve( Dec(sk1*, E*yq.(m) )

E is the initial scheme.

E* has the squashed dec
circuit,

Eo(sk1*))

/
Epko(E* (M) [
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