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Wouldn’t it be neat if you could…

Query encrypted data?
• Store your encrypted data on an untrusted server
• Query the data – i.e., make boolean queries on the data
• Get a useful response from the server, without the server 
just sending all of the data to you
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Wouldn’t it be neat if you could…

Query encrypted data?
• Store your encrypted data on an untrusted server
• Query the data – i.e., make boolean queries on the data
• Get a useful response from the server, without the server 
just sending all of the data to you

Query data privately?
• Send an encrypted query regarding stored data (e.g., on 
Google’s servers)

• Get a useful concise response
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Wouldn’t it be neat if you could…

Query encrypted data?
• Store your encrypted data on an untrusted server
• Query the data – i.e., make boolean queries on the data
• Get a useful response from the server, without the server 
just sending all of the data to you

Query data privately?
• Send an encrypted query regarding stored data (e.g., on 
Google’s servers)

• Get a useful concise response

Do both simultaneously?



Craig GentryFully Homomorphic Encryption Using Ideal Lattices 5/14/2009

Privacy Homomorphism (a.k.a. Fully 
Homomorphic Encryption)

Well, here’s how:
• Privacy homomorphism: Rivest, Adleman and Dertouzos 
proposed the concept in 1978.  (Rivest, Shamir, and 
Adleman proposed RSA in 1977, published in 1978.)

• Assume you have public-key encryption scheme that, in 
addition to algorithms (KeyGen, Enc, Dec), has an efficient 
algorithm “Evaluate”, such that:

Evaluate(pk, C, ψ1, …, ψt)   ≈ Enc(pk, C(π1, …, πt) )

for all pk, all circuits C, all ψi = Encrypt(pk, πi).
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• Assume you have public-key encryption scheme that, in addition to 

algorithms (KeyGen, Enc, Dec), has an efficient algorithm 
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Privacy Homomorphism

Well, here’s how:
• Assume you have public-key encryption scheme that, in addition to 

algorithms (KeyGen, Enc, Dec), has an efficient algorithm 
“Evaluate”, such that:

Evaluate(pk, C, ψ1, …, ψt)   ≈ Enc(pk, C(π1, …, πt) )

for all pk, all circuits C, all ψi = Encrypt(pk, πi).

Query encrypted data:

Ø Encrypt stored data: ψ1, …, ψt

Ø Query: send your circuit C

Ø Response: Eval(pk, C, ψ1, …, ψt)

Ø Decrypt response → C(π1, …, πt)

Query data privately:

Ø Send enc. queries ψi = Enc(pk, πi) 

Ø Server uses search circuit Cdata
Ø Response: Eval(pk, Cdata, ψ1, …, ψt)

Ø Decrypt response → Cdata(π1, …, πt)
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Problem is: We have no such encryption scheme.

The Quest for Privacy Homomorphisms

• What we have currently: 

• Multiplicatively homomorphic schemes: RSA, ElGamal, etc.

• Additively homomorphic schemes: GM, Paillier, etc.

• Quadratic formulas: BGN

• NC1: SYY

• What we don’t have:

• A fully homomorphic scheme for arbitrary circuits
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Fully Homomorphic Encryption: Construction

3 Steps

Scheme E can evaluate 
its own decryption circuit

Scheme E* can 
evaluate any circuit

• Step 2 – Ideal Lattices: Decryption in lattice-based systems has 
low circuit complexity.  Ideal lattices used to get + and × ops.

• Step 3 – Squashing the Decryption Circuit: the encrypter helps 
make decryption circuit smaller by starting decryption itself!  
Like server-aided decryption.

• Step 1 – Bootstrapping:
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Step 1: Bootstrapping
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What Circuits can RSA “Evaluate”?

c ← c1 × c2 mod N,      c = (m1 × m2)e mod N

×

c1 c2 ct

A circuit of multiplication (mod N) gates
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What Circuits can Goldwasser-Micali “Evaluate”?

c ← c1 × c2 mod N,      c = r2 × xm1+m2 mod N

+

c1 c2 ct

A circuit of XOR gates
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What Circuits can Boneh-Goh-Nissim “Evaluate”?

A quadratic formula

+

× × ×

c1 c2 ct

c’← e(c1 , ct)

c ← c’ × c’’

Uses a bilinear map or “pairing”:    e : G × G → GT

c’’← e(c2 , ct)



Craig GentryFully Homomorphic Encryption Using Ideal Lattices 5/14/2009

Fully Homomorphic Encryption:
Informal Definition

• A too-strong definition (indistinguishable distributions):

Evaluate(pk, C, ψ1, …, ψt)   ≈ Enc(pk, C(π1, …, πt) )

for all circuits C, all (sk,pk), and ψi = Encrypt(pk, πi).
• Indistinguishability unnecessary for many apps.
• But we can achieve this…

Can “evaluate” any circuit
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Fully Homomorphic Encryption:
Informal Definition

• What we want: 
• Correctness: 

Dec(sk, Evaluate(pk, C, ψ1, …, ψt))   =   C(π1, …, πt) 

for all circuits C, all (sk,pk), and ψi = Encrypt(pk, πi).

Can “evaluate” any circuit
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Fully Homomorphic Encryption:
Informal Definition

• What we want: 
• Correctness: 

Dec(sk, Evaluate(pk, C, ψ1, …, ψt))   =   C(π1, …, πt) 

for all circuits C, all (sk,pk), and ψi = Encrypt(pk, πi).
• Compactness:

• Output of Evaluate is short.
• The trivial solution doesn’t count:

Evaluate(pk, C, ψ1, …, ψt)   → (C, ψ1, …, ψt)
• Our requirement: Size of decryption circuit is a fixed 

polynomial in security parameter 

Can “evaluate” any circuit
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A Steppingstone?

• Given: a scheme E that Evaluates some set S of circuits

• Is S complete?: From E, can we construct a scheme that 
works for circuits of arbitrary depth?

A “Complete” Set of Circuits?
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A Steppingstone?

• Given: a scheme E that Evaluates some set S of circuits

• Is S complete?: From E, can we construct a scheme that 
works for circuits of arbitrary depth?

A “Complete” Set of Circuits?

Yes!
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A “Complete” Set of Circuits

sk

π

ψ

Decryption
Circuit

sk

π1

ψ1 sk

π2

ψ2

NAND

π

Decryption circuit 
“augmented” by NAND
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• Proxy re-encryption: Alice enables anyone to convert a 
ciphertext under PKAlice to one under PKBob:

Why is homomorphically evaluating the 
decryption circuit so powerful?

SKAlice

m EPKAlice(m)

Decryption 
function m

Blue means 
encrypted 
under PKBob.

Red means 
encrypted 
under PKAlice.
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If you can evaluate NAND-Dec…

SKAlice

m1 EPKAlice(m1)

NAND-Dec 
function

m1
NAND 
m2

Blue means 
encrypted 
under PKBob.

Red means 
encrypted 
under PKAlice. m2 EPKAlice(m2)
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If you can evaluate NAND-Dec

m3
NAND 
m4

Blue means 
encrypted 
under PKBob.

Green means 
encrypted 
under PKCarol.

m1
NAND 
m2

SKBob

NAND-Dec 
function

(m1 NAND m2)

NAND

(m3 NAND m4)

And so on...
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Circuits of Arbitrary Depth

Theorem (informal): 
• Suppose scheme E is bootstrappable – i.e., it evaluates its own 
decryption circuit augmented by gates in Γ.

• Then, there is a scheme Eδ that evaluates arbitrary circuits of 
depth δ with gates in Γ.

• Ciphertexts: Same size in Eδ as in E.
• Public key: 

• Consists of (δ+1) E pub keys: pk0, …, pkδ
• Along with δ encrypted secret keys: {Enc(pki, sk(i-1))}
• Linear in δ.
• Constant in δ, if you assume encryption is “circular secure.”
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Step 2: Ideal Lattices
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Our Task Now…

Find an encryption scheme E that can evaluate 
its own decryption circuit, plus some.
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Our Task Now…

Bootstrappability gives us a new angle:
• Don’t just maximize the scheme’s “evaluative capacity”
• Also minimize the circuit complexity of decryption

Find an encryption scheme E that can evaluate 
its own decryption circuit, plus some.
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Our Task Now…

Bootstrappability gives us a new angle:
• Don’t just maximize the scheme’s “evaluative capacity”
• Also minimize the circuit complexity of decryption

Find an encryption scheme E that can evaluate 
its own decryption circuit, plus some.

Where to Look?:
• Not RSA: Exponentiation is highly unparallelizable – i.e., it 
requires deep circuits

• Maybe schemes based on codes or lattices…
• “Decoding” is typically an inner product – parallelizable!
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What’s a Lattice?

A set of points, or vectors, that looks like this.

0 v1

v2
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What’s a Lattice?

0

v2’

v1’

v1

v2

• (v1, v2) is a basis of the lattice L, since L = { x1v1 + x2v2 : xi in Z (integers) }
• Bases are not unique

• (v1, v2) looks like a better basis, don’t you think?
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Parallelepipeds
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Parallelepipeds
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Good Basis
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• Formula for reducing a basis modulo B = {v1,v2}:    t mod B = t – B [B-1 t]

Good Basis
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Bad Basis
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Bad Basis

• Formula for reducing a basis modulo B = {v1,v2}:    t mod B = t – B [B-1 t]
• LLL 2n-approximates the best basis.
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Bad Basis

• Formula for reducing a basis modulo B = {v1,v2}:    t mod B = t – B [B-1 t]
• LLL 2n-approximates the best basis.

Closest lattice point?  
Not really...
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How Do We Encrypt Using Lattices?

• Ideas:

• Close / Far: Ciphertext for 0 is close to a lattice point, and a 
ciphertext for 1 is far.  

• Odd / Even: 

• Encryption of 0: vector that differs from closest lattice point by 
an “even” vector.

• Encryption of 1: vector that differs from closest lattice point by 
an “odd” vector.
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A Rough Lattice-Based Encryption Scheme 

“Processed”
plaintext ρ

• Encryption: ψ← ρ mod Bpk (public basis)

Ciphertext ψ
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A Rough Lattice-Based Encryption Scheme

• Encryption: ψ← ρ mod Bpk (public basis)

• Decryption: ρ← ψ mod Bsk (secret basis) = ψ – Bsk [Bsk-1 ψ]

“Processed”
plaintext ρ

Ciphertext ψ
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What if we add ciphertext vectors?

Sum of 
processed 
plaintexts Ciphertext 

sum

• Encryption: ψ← ρ mod Bpk (public basis)
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What if we add ciphertext vectors?

Sum of 
processed 
plaintexts Ciphertext 

sum

• Encryption: ψ← ρ mod Bpk (public basis)

• Decryption: ρ← ψ mod Bsk (secret basis) = ψ – Bsk [Bsk-1 ψ]
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What if we add ciphertext vectors?

Sum of 
processed 
plaintexts

• Encryption: ψ← ρ mod Bpk (public basis)

Ciphertext 
sum
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What if we add ciphertext vectors?

Sum of 
processed 
plaintexts

Ciphertext 
sum

What 
decryption 
returns

• Encryption: ψ← ρ mod Bpk (public basis)

• Decryption: ρ← ψ mod Bsk (secret basis) = ψ – Bsk [Bsk-1 ψ]
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How many ciphertexts can we add?

• Suppose a sphere of radius rDec is in private parallelepiped.

• Suppose a processed plaintext is in B(rEnc).

• We can add rDec/rEnc ciphertexts, and decrypt correctly.

Sum of 
processed 
plaintexts

Ciphertext 
sum

What 
decryption 
returns
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How many ciphertexts can we add?

§ Fortunately, rDec/rEnc can be huge – e.g., 2√n – and still secure.

§ LLL can find closest L-vector to t when    

λ1(L)/dist(L,t)     >     2n

where λ1(L) is the shortest nonzero vector in L.

§ rDec: can as large as λ1(L), up to a small (poly(n)) factor.

§ rEnc: can be very small, as long as:

§ λ1(L)/rEnc is not so large that LLL breaks security (2√n OK)

§ There is enough min-entropy in B(rEnc), roughly speaking.

§ Overall,  rDec/rEnc can be about 2√n.
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How Can We Multiply Ciphertexts?

• Ideas:

• Tensor Product: Would lead to huge ciphertexts 

• Use rings instead of (additive) groups: Good idea!
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Ideal Lattices

• Example: Z (integers) is a ring.  (2), the even integers, is an ideal. 

0 1 2 3 4 5 6 7 8 9-2 -1

What is an “ideal”? 

A subset J of a ring R that is 
closed under “+”, and also 
closed under “×” with R.

What is an “ideal lattice”? 
One object, both an ideal 

and a lattice

5/14/2009
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Ideal Lattices

• Example: Z[x]/(f(x)) is a polynomial ring, f(x) monic, deg(f) = n.
• (a(x))    is an ideal      { a(x)b(x) mod f(x) : b(x) in R }.   
Lattice basis below:

a(x)

x•a(x) mod f(x)

…

xn-1•a(x) mod f(x)

a1-an-1f2

a2

…

…

an-2-an-1fn-1…a0-an-1f1-an-1f0

an-1…a1a0

What is an “ideal”? 

A subset J of a ring R that is 
closed under “+”, and also 
closed under “×” with R.

What is an “ideal lattice”? 
One object, both an ideal 

and a lattice

5/14/2009
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Ideal Lattice Scheme: High-Level

message in {0,1}

Ciphertext form:       m    +     2·v    +     j

Random short even vector

Background:   CTs live in ring R = Z[x]/f(x), where deg(f) = n.
CTs can be added as vectors and multiplied as ring elements.

Random vector from public key ideal J

Multiplication: (m1 + 2v1 + j1) (m2 + 2v2 + j2)   
=  m1×m2 + 2(m1v2+m2v1+2v1v2) + (something in J)
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Ideal Lattice Scheme: More Concretely

The NTRU encryption scheme uses a similar approach with 2 relatively 

prime ideals. 

• Parameters: Ring R = Z[x]/(f(x)), basis BI of “small” ideal lattice I.  Radii 

rDec and rEnc as before.  The operations “+” and “×” are in R.

• KeyGen: Output “good” and “bad” bases (Bsk, Bpk) of a “big” ideal lattice 

J, which is relatively prime to I – i.e., I + J = R.  Plaintext space: the 

cosets of I.

• Encrypt(Bpk, m): Set m’←R (m+I) ∩ B(rEnc).   Set c ← m’ mod Bpk.  

• Decrypt(Bsk, c): Output (c mod Bsk) mod BI → m

• Add(Bpk, c1, c2): Output c ← c1 + c2 mod Bpk

• Mult(Bpk, c1, c2): Output c ← c1 × c2 mod Bpk, which is in m1’ × m2’ + J
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Ideal Lattice Scheme: Correctness

Correctness: Decryption works on Add(Bpk, c1, c2) if m’1+m’2 

is in the Bsk parallelepiped.

• Parameters: Ring R = Z[x]/(f(x)), basis BI of “small” ideal lattice I.  Radii 

rDec and rEnc as before.  The operations “+” and “×” are in R.

• KeyGen: Output “good” and “bad” bases (Bsk, Bpk) of a “big” ideal lattice 

J, which is relatively prime to I – i.e., I + J = R.  Plaintext space: the 

cosets of I.

• Encrypt(Bpk, m): Set m’←R (m+I) ∩ B(rEnc).   Set c ← m’ mod Bpk.  

• Decrypt(Bsk, c): Output (c mod Bsk) mod BI → m

• Add(Bpk, c1, c2): Output c ← c1 + c2 mod Bpk

• Mult(Bpk, c1, c2): Output c ← c1 × c2 mod Bpk, which is in m1’ × m2’ + J



Craig GentryFully Homomorphic Encryption Using Ideal Lattices 5/14/2009

Correctness: Decryption works on Mult(Bpk, c1, c2) if m’1×m’2 is 

in the Bsk parallelepiped.

• Parameters: Ring R = Z[x]/(f(x)), basis BI of “small” ideal lattice I.  Radii 

rDec and rEnc as before.  The operations “+” and “×” are in R.

• KeyGen: Output “good” and “bad” bases (Bsk, Bpk) of a “big” ideal lattice 

J, which is relatively prime to I – i.e., I + J = R.  Plaintext space: the 

cosets of I.

• Encrypt(Bpk, m): Set m’←R (m+I) ∩ B(rEnc).   Set c ← m’ mod Bpk.  

• Decrypt(Bsk, c): Output (c mod Bsk) mod BI → m

• Add(Bpk, c1, c2): Output c ← c1 + c2 mod Bpk

• Mult(Bpk, c1, c2): Output c ← c1 × c2 mod Bpk, which is in m1’ × m2’ + J

Ideal Lattice Scheme: Correctness
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Correctness: Correct for set S of circuits if C(m’1, …, m’t) is 

always in the Bsk parallelepiped..

• Parameters: Ring R = Z[x]/(f(x)), basis BI of “small” ideal lattice I.  Radii 

rDec and rEnc as before.  The operations “+” and “×” are in R.

• KeyGen: Output “good” and “bad” bases (Bsk, Bpk) of a “big” ideal lattice 

J, which is relatively prime to I – i.e., I + J = R.  Plaintext space: the 

cosets of I.

• Encrypt(Bpk, m): Set m’←R (m+I) ∩ B(rEnc).   Set c ← m’ mod Bpk.  

• Decrypt(Bsk, c): Output (c mod Bsk) mod BI → m

• Add(Bpk, c1, c2): Output c ← c1 + c2 mod Bpk

• Mult(Bpk, c1, c2): Output c ← c1 × c2 mod Bpk, which is in m1’ × m2’ + J

Ideal Lattice Scheme: Correctness
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Analyzing the Evaluative Capacity 
Geometrically

rEnc

rDec

Correctness: Correct for set S of circuits if C(m’1, …, m’t) is always

in the Bsk parallelepiped.

Question: for what arithmetic circuits C does this hold: 

for all (x1, ..., xt) in B(rEnc)
t , C(x1, ..., xt) is inside B(rDec) 
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Analyzing the Evaluative Capacity 
Geometrically

• Add operations: |u+v| ≤ |u| + |v| (triangle 

inequality)

• Mult operations: |u×v| ≤ γMult(R) · |u| · |v| for 

some factor γMult(R) that depends on the ring R, 

and which can be poly(n).

• Add vs. Mult: 

• Add causes much less expansion than Mult.

• Constant fan-in Mult is as bad as poly(n) 

fan-in Add.
rEnc

rDec

Question: for what arithmetic circuits C does this hold: 

for all (x1, ..., xt) in B(rEnc)
t , C(x1, ..., xt) is inside B(rDec) 
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Analyzing the Evaluative Capacity 
Geometrically

How much depth can we get?

• Let C be a fan-in-2, depth d arithmetic circuit

• Let ri be the max radius associated to a gate in C at 

level i, when rd = rEnc. 

• ri ≤ γMult(R)·ri+1
2

• Then, r0 ≤ (γMult(R)·rd)
2d

. 

• r0 ≤ rDec if d ≤ log log rDec – log log (γMult(R)·rEnc)

• E.g., (c1-c2) log n depth when rDec = 2nc1 and 

γMult(R)·rEnc = 2nc2.

• Bottom line: We get about log n depth.

Add: |u+v| ≤ |u| + |v|

Mult: |u×v| ≤ γMult(R)·|u|·|v|

rEnc

rDec

Question: for what arithmetic circuits C does this hold: 

for all (x1, ..., xt) in B(rEnc)
t , C(x1, ..., xt) is inside B(rDec) 
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Analyzing the Evaluative Capacity 
Geometrically

How much depth can we get?

• Let C be a fan-in-2, depth d arithmetic circuit

• Let ri be the max radius associated to a gate in C at 

level i, when rd = rEnc. 

• ri ≤ γMult(R)·ri+1
2

• Then, r0 ≤ (γMult(R)·rd)
2d

. 

• r0 ≤ rDec if d ≤ log log rDec – log log (γMult(R)·rEnc)

• E.g., (c1-c2) log n depth when rDec = 2nc1 and 

γMult(R)·rEnc = 2nc2.

• Bottom line: We get about log n depth.

• Is this enough to bootstrap??

Add: |u+v| ≤ |u| + |v|

Mult: |u×v| ≤ γMult(R)·|u|·|v|

rEnc

rDec

Question: for what arithmetic circuits C does this hold: 

for all (x1, ..., xt) in B(rEnc)
t , C(x1, ..., xt) is inside B(rDec) 
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Homomorphic Decryption to “Refresh”
Ciphertexts

• Intuition: When our ciphertext’s “error vector” becomes to long, 
we want to “refresh” the ciphertext:

• Get a new encryption of same plaintext with shorter error.

• How to do it?

• Decrypt it, then encrypt again!  

• But this requires the secret key…
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Homomorphic Decryption to “Refresh”
Ciphertexts

• Intuition: When our ciphertext’s “error vector” becomes to long, 
we want to “refresh” the ciphertext:

• Get a new encryption of same plaintext with shorter error.

• How to do it?

• Decrypt it, then encrypt again!  

• But this requires the secret key…

• Homomorphically decrypt it!!!
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The Decryption Circuit of the Initial 
Scheme

Decrypt(Bsk, ψ) =       (ψ mod Bsk)  mod BI
=       (ψ – Bsk · [Bsk-1 · ψ]) mod BI

Expensive Step:  Computing     [(vsk)-1 × ψ]  mod (2)

Can simplify this to:

Decrypt(vsk, ψ) =       (ψ - [(vsk)-1 × ψ])  mod (2)

Another “tweak”: Require ψ to be within rDec/2 of a lattice point. 
Then, the coeffs of (vsk)-1 × ψ will be within ¼ of an integer.      
Then, we need less precision to ensure correct rounding.
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Expensive Step:  Computing     [(vsk)-1 × ψ]  mod (2)

• Ring multiplication is like a bunch of parallel inner products

• Each inner product involves an addition of n terms, like this:

1.1101… +    0.0101… +    0.1011… +    1.1010… +  …

• We have to worry about carry bits ->   have high degree in input.

• When vectors are n-dimensional, the shallowest circuit I know of has 
depth O(log n), and is heavy on the MULTs.

The Decryption Circuit of the 
Initial Scheme
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Expensive Step:  Computing     [(vsk)-1 × ψ]  mod 2

1.1101… +    0.0101… +    0.1011… +   1.1010… +  …

• When vectors are n-dimensional, the least complex circuit I know of 
has depth O(log n), and is heavy on the MULTs.

• “3-for-2” trick: replaces 3 (binary) numbers with 2 numbers 
having the same sum.  

• c log 3/2n depth to get 2 numbers with same sum as n numbers.

0.1011… +    1.0111…

• Normally, depth of adding 2 numbers is log in their bit-lengths

• But, we can use fact that, for valid ciphertexts, (vsk)-1 × ψ is 
very close to an integer vector -> final sum is constant depth.

The Decryption Circuit of the 
Initial Scheme
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• Bottom line: Decryption circuit is also O(log n), but for a larger 
constant than the depth we can Evaluate.

• Blargh…

The Decryption Circuit of the 
Initial Scheme
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Still Not Bad...

• Boneh-Goh-Nissim does quadratic formulas: arbitrary number 
of additions, but multiplication depth of 1.

• Our scheme:
• Essentially arbitrary additions, but with log n 
multiplication depth.

• Also, larger plaintext space.
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Security of the scheme

• We’ll discuss this in more detail later if we have time...
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Step 3: Squashing the Decryption Circuit
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Abstractly, How Can We Lower the 
Decryption Complexity?

Old 
decryption 
algorithm

π

ψsk

Dec
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Abstractly, How Can We Lower the 
Decryption Complexity?
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decryption 
algorithm
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ψsk
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sk*

π
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Encrypter 
runs Dec1

Decrypter 
runs Dec2

In new 
scheme, 

f(sk,r) is in 
public key

Encrypter 
sends ψ*

New approach

(Dec1, Dec2) should work on 
any ψ that Dec works on

Dec2 should be less 
complex than Dec
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Abstractly, How Can We Lower the 
Decryption Complexity?

Old 
decryption 
algorithm

π

ψsk

Dec

ψf (sk, r)

Dec1

sk*

π

Dec2

ψ*
Encrypter 
runs Dec1

Decrypter 
runs Dec2

In new 
scheme, 

f(sk,r) is in 
public key

Encrypter 
sends ψ*

New approach

Still semantically secure if f(sk,r) is computationally 
indistinguishable from random given (pk, sk), but not sk*.
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Concretely, How Does the 
Transformation Work?

Expensive Step:  Computing     [(vsk)-1 × ψ]  mod 2

Decrypt(vsk, ψ) =       (ψ - [(vsk)-1 × ψ])  mod (2)
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Remember the Old Circuit…

Expensive Step:  Computing     [(vsk)-1 × ψ]  mod 2

1.1101… +    0.0101… +    0.1011… +   1.1010… +  …

• Dominant computation: “3-for-2 trick” circuit of depth c log 3/2n
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Our New Circuit…

Expensive Step:  Computing     [(vsk)-1 × ψ]  mod 2

1.1101… +    0.0101… +    0.1011… +   1.1010… +  …

• Dominant computation: “3-for-2 trick” circuit of depth c log 3/2n

• Goal: Use less depth to get 2 vectors 

(0.1011…, …, 1.0110…)    +    (1.0111…, …, 1.1000…)

whose sum is same (mod 2) as:   (vsk)-1 × ψ

• Strategy: Start with much fewer than n vectors in the first place!
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Abstractly, How Can We Lower the 
Decryption Complexity?
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decryption 
algorithm
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runs Dec1
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runs Dec2
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New approach

Still semantically secure if f(sk,r) is computationally 
indistinguishable from random given (pk, sk), but not sk*.



Craig GentryFully Homomorphic Encryption Using Ideal Lattices 5/14/2009

Concretely, How Does the New 
Approach Work?

Expensive Step:  Computing     [(vsk)-1 × ψ]  mod 2

• The Hint: a set S of vectors {wi} that has a hidden subset T of 
vectors {xi} whose sum is (vsk)-1.

• |S| = nβ, β > 1.       |T| = ω(1) and o(n).

• Dec1: Encrypter sends ψ and

ψ*   =   { ci =  wi × ψ (mod 2) }   for all wi in S

• Dec2: Decrypter sums up the |T| values that are “relevant.”
This takes   c log |T|   depth with 3-for-2 trick.

What is the “hint” f(sk,r) that we put in the pub key?
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Concretely, How Does the New 
Approach Work?

• The Hint: a set S of vectors {wi} that has a hidden subset T of 
vectors {xi} whose sum is (vsk)-1.

• |S| = nβ, β > 1.       |T| = ω(1) and o(n).

• Dec1: Encrypter sends ψ and
ψ*   =   { ci =  wi × ψ (mod 2) }   for all wi in S

• Dec2: Decrypter sums up the |T| vectors that are “relevant.”
This takes   c log |T|   depth with 3-for-2 trick.

• Decrypter’s secret key sk* consists of |T| 0/1-vectors {yi} of 
dimension |S|; each encodes 1 member of |T|.

y1: 0   1   0   0   0   0   0
y2: 0   0   1   0   0   0   0
y3: 0   0  0   0   0   1 0

• For each i, it inner-products yi with ψ*.
• Key point: No carries to worry about in inner product -> We can use 
a high fan-in add gate (cheap).

In Dec2, how 
do we cheaply 
extract |T| 
vectors that 
are relevant?
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Concretely, How Does the New 
Approach Work?

Expensive Step:  Computing     [(vsk)-1 × ψ]  mod 2

• Bottom line: Dec2 has about log |T| depth, |T| = ω(1) and o(n).

• New Assumption: Given set S of vectors {wi} and vector v, decide 
whether there exists a low-weight subset T = {xi} with v  = Σxi.

• Can pick |S| s.t. there will be many subsets of size, say, |S|/2
whose sum is v.

• Known attacks: Finding T takes time roughly n|T|.

• To evaluate depth log |T|, original scheme needs rDec/rEnc ≈ nΘ(|T|). 
This is also basically the approx factor of the lattice problem.

• Known attacks: Takes time roughly 2n/|T|.

• Optimal: Set |T| ≈ √n.
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Performance

• Well… a little slow.

• “Evaluating” a circuit homomorphically takes Õ(k7) computation 
per circuit gate if you want 2k security against known attacks.

• … But a full exponentiation in RSA also takes Õ(k6); also, in  
ElGamal (using finite fields).
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• CCA1 Security

• Improve efficiency

• System using linear codes (wouldn’t be so surprising)

• System based on “conventional” crypto assumptions

• “Refreshing” a ciphertext without completely (homomorphically) 
decrypting it

Open Problems
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Thank You!  Questions?

TIM
E

EXPIR
ED



Craig GentryFully Homomorphic Encryption Using Ideal Lattices

Security of the Initial Ideal Lattice Scheme

Distributional CVP: Generate basis Bpk for ideal lattice J using KeyGen.  Set bit b.  
• If b = 0, t is uniform in blue parallelepiped.
• If b = 1, t is in blue parallelepiped, but according to a clumpy distribution.
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Security

• Distributional CVP: Generate basis Bpk for ideal lattice J 
using KeyGen.  Set bit b.  

• If b = 0, t is uniform in blue parallelepiped.
• If b = 1, t is in blue parallelepiped, but according to a 
clumpy distribution (say, of radius r).

• Security proof sketch:
• If b=1, t can be used to validly encrypt m, as follows: 

• Let s be a short vector in I, such that the ideal (s) is 
relatively prime to the ideal J.

• Output c ← m + s × t mod Bpk.
• If b=0, then c ← m + s × t mod Bpk will be random modulo 
J and independent of m.
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Circuit Privacy

• Algorithm “Randomize”:

• Applied to outputs of Encrypt or Evaluate, it induces statistically 

equivalent distributions.

• The Idea: Add a random encryption of 0 whose “error space” is 

huge in comparison to the “error space” ciphertexts output by 

Encrypt or Evaluate.

• New error space for Evaluate is B(rDec/m) for super-polynomial m, 

but no problem...
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Let Us Revisit the Initial Construction to 
Get a Better Security Result…

• Parameters: Ring R = Z[x]/(f(x)), basis BI of “small” ideal lattice I.  Radii 

RDec and REnc as before.  The operations “+” and “×” are in R.

• KeyGen: Output “good” and “bad” bases (Bsk, Bpk) of a “big” ideal lattice 

J, which is relatively prime to I – i.e., I + J = R.  Plaintext space: the 

cosets of I.

• Encrypt(Bpk, m): Set m’←R (m+I) ∩ B(rEnc).   Set c ← m’ mod Bpk.  

• Decrypt(Bsk, c): Output (c mod Bsk) mod BI → m

• Add(Bpk, c1, c2): Output c ← c1 + c2 mod Bpk

• Mult(Bpk, c1, c2): Output c ← c1 × c2 mod Bpk, which is in m1’ × m2’ + J



Craig GentryFully Homomorphic Encryption Using Ideal Lattices

Let Us Revisit the Initial Construction to 
Get a Better Security Result…

• Parameters: Ring R = Z[x]/(f(x)), basis BI of “small” ideal lattice I.  Radii 

RDec and REnc as before.  The operations “+” and “×” are in R.

• KeyGen: Output “good” and “bad” bases (Bsk, Bpk) of a “big” ideal lattice 

J, which is relatively prime to I – i.e., I + J = R.  Plaintext space: the 

cosets of I.

• Encrypt(Bpk, m): Set m’←R (m+I) ∩ B(rEnc).   Set c ← m’ mod Bpk.  

• Decrypt(Bsk, c): Output (c mod Bsk) mod BI → m

• Add(Bpk, c1, c2): Output c ← c1 + c2 mod Bpk

• Mult(Bpk, c1, c2): Output c ← c1 × c2 mod Bpk, which is in m1’ × m2’ + J

First step: Sample from m+I according to a Gaussian distribution.
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Discrete Gaussian Distributions

• We modify our initial construction to use discrete Gaussian 
distributions over lattices.

• Sum of 2 discrete Gaussian distribution is statistically equivalent 
to another discrete Gaussian distribution.

Used without permission of Oded Regev.  He’d 
probably let me if I asked though.  Thanks Oded!
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Security Inner Ideal Membership 
Problem (IIMP)

• The IIMP: Fix R, BI, and real mIIMP.  Run (Bsk, Bpk) ← KeyGen(R, BI), 
bases for some ideal J.  Set b ←R {0,1}. 

• If b=0, one samples v ← Gauss(I, s, 0) and sets t ← v mod Bpk. 

• If b=1, one samples v ← Gauss(Zn, s, 0) and sets t ← v mod Bpk.

• Given (Bpk, t) and the fixed values, decide b.  

• Security proof sketch:

• Set w ← Gauss(I, s, -mb).  Set c ← mb+w+v mod Bpk.

• If b=0, (c mod Bsk) mod BI = (mb+w+v) mod BI = mb.

• If b=1, (c mod Bsk) mod BI = (mb+w+v) mod BI = random.
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From Modified IIMP

• The MIIMP: Like the IIMP, except mMIIMP < mIIMP·ε/(n ·|BI|) and

• If b=0, one sets v ← I so that |v| < mMIIMP

• If b=1, one sets v not in I so that |v| < mMIIMP

• Given (Bpk, t = v mod Bpk) and the fixed values, decide b.  

• Sketch of reduction to IIMP:

• Set u to be very short, but random modulo I.

• Set t’← u × t + Gauss(I, mIIMP, 0) mod Bpk. 

• IIMP instance is (Bpk, t’).

• If b = 0, then indeed t’ is “in the inner ideal.”

• If b = 1, t’ is uniformly random wrt I.
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• Average-case CVP: Set mACVP < mMIIMP/(γMULT(R)·√n).  Set v such 
that |v| < mACVP, and set t ← v mod Bpk. 

• Given (Bpk, t), output v.  (This is a search problem!)

• Sketch of reduction to MIIMP:

• Use MIIMP-oracle to get v1 ← v mod BI.

• Set w to be a short vector in I-1, and use the MIIMP-oracle to 
get v2‘← w × (v-v1) mod BI.  This gives v2 ← v mod I2.

• Etc.

• Given vk = v mod Ik, we know vk – v is in Ik.  For large enough k, 
we can use LLL to solve this CVP in poly time (to get v).

From Average-Case CVP Using Hensel 
Lifting
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• Yes

• First ac / wc connection where ac problem is for ideal lattices.

• First ac / wc connection where ac lattice has same dimension as 
wc lattice (usually the ac lattice is larger).

• I need quantum computation for the reduction…

Average-Case / Worst-Case Connection 
for Ideal Lattices?
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• What is a random ideal?

• Our definition: uniformly random among ideals whose norm (i.e., 
determinant) is in a fixed interval – e.g., [ncn, 2ncn].

What is the average-case distribution?
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• Our Technique: Adapt Kalai’s technique for generating a random 
factored number.

• We generate a random factored norm N of an ideal in R.

• It is easy to generate bases for an ideal whose norm is prime.

• We multiply together the bases of the individual primes to get a
basis whose norm is N.

How to Generate (a Basis of) a Random 
Ideal…



Craig GentryFully Homomorphic Encryption Using Ideal Lattices 5/14/2009

• Goal: Ideal J, together with a good independent set for J-1.

• Generate a random ideal K with norm in [ncn, 2ncn].

• Generate v ← Gauss(K-1, s, t·e1).  I.e., v almost equals t · e1.

• Set J ← K · (v).

• Already have a somewhat good independent set for K – i.e., {ei}.

• Our good independent set for J-1 is {ei/v}.

• Proving that J has a nice average-case distribution (in a different 
interval) uses properties of discrete Gaussian distributions.

KeyGen
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• Given worst-case CVP instance (BM, u), how do we randomize it to 
obtain average-case instance (BJ, t), such that solving the ac 
instance helps us solve the wc instance?

• First, we multiply M by a random ideal K.  Intuitively, the shape of 
MK is essentially independent of M.

• Next, we multiply by v ← Gauss((MK)-1, s, t·e1) to “divide out” the 
algebraic dependence on M.

• We set J ← MK · (v) and t ← u × wK × v, where wk is a very short 
vector in K (of length poly(n)).

• But, wait, our method of generating a random K didn’t also give a 
short wK in K…

How Do We “Randomize” a Worst-Case  
Ideal?
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• Generate the short w first via w ← Gauss(Zn, s, t·e1) 

• Factor the ideal (w) by factoring the norm of (w) using Shor’s 
quantum factoring algorithm.

• Set K to be a random divisor of (w).

How to Generate a Random Ideal with a 
Short Vector in It… Quantumly
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• [Regev]: uses quantum computation

• Superposition 1: Gaussian distribution (Zn, s, 0).

• Superposition 2: Reduce each point in the above distribution 
modulo a basis BL for the lattice L.

• If there is a classical CVP oracle for L that solves it when t is 
within s√n of a lattice point, this reduction is reversible.

• Superposition 3: Fourier transform to get distribution (L*, 1/s, 0).

• Measure, to get a point in L* of length at most √n/s.

Worst-Case CVP to Independent Vector 
Improvement Problem (IVIP)



Craig GentryFully Homomorphic Encryption Using Ideal Lattices 5/14/2009

• The SIVP: Generate n linearly independent vectors in a given 
lattice L, all of length at most mSIVP · λn(L).

• Sketch of reduction to IVIP

• Given M0, use the IVIP oracle to find an independent set of 
M0

-1 with vectors of length at most 1/mIVIP.

• Set v ← Gauss(M0
-1, s/mIVIP, (t/mIVIP)·e1) and M1 ←M0·(v).

• Recurse.

• Result: Let dSIVP = 31/n·dIVIP.  If there is an algorithm that solves 
IVIP for mIVIP = 8 · λMULT(R) · n2.5 · log n whenever the given ideal 
has det(M)1/n > dIVIP, then there is an algorithm that solves SIVP 
for approximation factor dSIVP.

IVIP to Shortest Independent Vector 
Problem
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Correctness

• Ciphertext ψk = πk + ik + jk, with i in I and j in J.

• Evaluate(BJ,pk, C, ψ1, …, ψt) = C(π1+i1+j1, …, πt+it+jt)

• in C(π1+i1, …, πt+it)

• If C(π1+i1, …, πt+it) is the disting. rep. of its coset of J w.r.t. BJ,sk, 
which is true if C(Y, …, Y) is a subset of R mod BJ,sk, then Decrypt 
returns C(π1+i1, …, πt+it) mod BI = C(π1, …, πt) mod BI.

Correctness: Decryption works on Evaluate(BJ,pk, C, ψ1, … ψt) if 
C(π1+i1, …, πt+it) is the disting. rep. of its coset w.r.t. BJ,sk.
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Cryptographically Hard Problems Over Lattices

• The LLL algorithm (with Babai’s modifications) can approximate CVP to 
within a factor of about 2n in polynomial time.

• We do not know how to do better in general.

NP-hard

2^(log1-εn)1 √n n

NP int coNP crypto P

2n loglogn/logn
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Let us review our additively homomorphic 
scheme...

§ Global Parameters: rDec, rEnc, Z
n, and a basis BH of an additive subgroup H of Zn.  

E.g., H could be the vectors with even coefficient sum.  Plaintext space is the set 

of “distinguished reps” of the cosets of H.  

§ KeyGen: Secret and public bases Bsk and Bpk of some lattice L, where Bsk

circumscribes a ball of radius rDec. 

§ Encrypt(Bpk, m): Set m’←R (m+H) ∩ B(rEnc).   Set c ← m’ mod Bpk. 

§ Decrypt(Bsk, c): Set m ← (c mod Bsk) mod BH. Note: m’ = (c mod Bsk).

§ Add(BPK, c1, c2): Set c ← c1 + c2 mod BPK , which is in m’1 + m’2 + L.

§ Correctness: Let C be a mod-BH circuit that adds at most rDec/rEnc plaintexts.  

Then, Evaluate(Bpk, C, c1, ..., ct) decrypts correctly since:                                    

1) m’1+...+m’t = c1+...+ct mod Bsk, since it is in the secret parallelepiped.          

2) m1+...+mt = m’1+...+m’t mod BH.   
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How Does It All Work Together?

Epk1(π)
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Epk1(π)

E is the initial scheme.
E* has the squashed dec 

circuit.

How Does It All Work Together?
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E* has the squashed dec 

circuit.

E*pk1*(π)

How Does It All Work Together?
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And so on…
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