Constructing cryptographic curves with complex multiplication

Reinier Bröker

$$
[\mathrm{I}]|\mid[\mathrm{II}]
$$

Microsoft Research

Fields Institute
May 2009

Curves and crypto

Curve cryptography comes in 2 flavours:

- standard: we want curves of prime order;
- pairing-based: we want 'pairing friendly curves'.

We are limited to (Jacobians of) genus 1 and genus 2 curves.
In this talk we'll focus mostly on finding elliptic curves and abelian surfaces of prime order.

Elliptic curves of prime order

For cryptography, we need

$$
N=\# E\left(\mathbf{F}_{p}\right) \approx 10^{60}
$$

prime. By Hasse's theorem, this means $p \approx 10^{60}$.

Four questions:

- given p, N, find E / \mathbf{F}_{p} with $\# E\left(\mathbf{F}_{p}\right)=N$
- given p, find E / \mathbf{F}_{p} of prime order
- given N, find p and E / \mathbf{F}_{p} with $\# E\left(\mathbf{F}_{p}\right)=N$
- given k, find p and E / \mathbf{F}_{p} with $\# E\left(\mathbf{F}_{p}\right) \approx 10^{k}$ prime

Prescribing p

For given N, a curve E with $\# E\left(\mathbf{F}_{p}\right)=N$ exists if and only if

$$
N \in[p+1-2 \sqrt{p}, p+1+2 \sqrt{p}] .
$$

To find E, we should count the number of points on randomly selected curves: this is faster than using 'CM-techniques'.

Run time I: $\widetilde{O}(\sqrt{p})$. (probabilistic)

If we only insist that E has prime order, then the run time drops significantly. Reason: there are many primes, but only one $N \ldots$

Run time II: $O\left((\log p)^{5}\right)$. (heuristic)
Stay tuned for a faster solution to problem 2.

Prescribing the group order

Efficient constructions for the other 2 problems rely on complex multiplication techniques.

Any elliptic curve E / \mathbf{F}_{p} has a Frobenius morphism

$$
\operatorname{Frob}(x, y)=\left(x^{p}, y^{p}\right)
$$

that satisfies

$$
\operatorname{Frob}^{2}-t \operatorname{Frob}+p=0 \in \operatorname{End}(E) .
$$

The ring $\mathbf{Z}[$ Frob $]$ is isomorphic to the imaginary quadratic order \mathcal{O}_{D} of discriminant $D=t^{2}-4 p<0$.

We will assume $t \neq 0$. The curve E is then ordinary and the index $[\operatorname{End}(E): \mathbf{Z}[$ Frob $]]$ is finite.

Complex multiplication constructions

The morphism Frob : $E \rightarrow E$ corresponds to an element $\pi \in \mathcal{O}_{D}$ of norm p and trace t.

If E / \mathbf{F}_{p} has endomorphism algebra $\mathbf{Q}\left(\sqrt{t^{2}-4 p}\right)$ then it has

$$
N=\# \operatorname{Ker}(1-\operatorname{Frob})=\operatorname{Norm}(1-\pi)=p+1 \pm t
$$

points.

We see: constructing curves of prescribed order is 'the same' as constructing curves with prescribed endomorphism algebra.

Curves with given endomorphism ring

Over \mathbf{C}, the j-invariants of the elliptic curves with endomorphism ring \mathcal{O}_{D} are roots of the Hilbert class polynomial

$$
P_{D}=\prod_{[I] \in \operatorname{Pic}\left(\mathcal{O}_{D}\right)}(X-j(I)) \in \mathbf{Z}[X]
$$

This polynomial has degree roughly $\sqrt{|D|}$ and coefficients of $\sqrt{|D|}$ bits.

If $p=\pi \bar{\pi}$ splits into principal primes in \mathcal{O}_{D}, then P_{D} factors into linear factors over \mathbf{F}_{p}.

The roots of $P_{D} \in \mathbf{F}_{p}[X]$ are j-invariants of curves with $p+1-t=N$ points.

Curve construction

If \mathcal{O}_{D} contains an element π with

$$
\operatorname{Norm}(1-\pi)=N(\text { prime }) \quad \text { and } \quad \operatorname{Norm}(\pi)=p(\text { prime })
$$

then we can use $P_{D} \in \mathbf{F}_{p}[X]$ to find a curve with N points.
Observation: the condition on D is symmetric in π in $1-\pi$. Hence: prescribing N or prescribing p is 'the same'.

Theorem. (Atkin-Morain-Bröker-Stevenhagen) An elliptic curve of prime order $\approx 10^{k}$ can be constructed in heuristic time $\widetilde{O}\left(k^{3}\right)$.

The method where N is prescribed can be generalized to non-prime N to yield a run time $O\left(2^{\omega(N)}(\log N)^{4+o(1)}\right)$.

The main tool

The fastest way to compute the Hilbert class polynomial P_{D} is the CRT-approach.

Three-stage-conception:

- Agashe, Lauter, Venkatesan (2004): $O\left(|D|^{3 / 2}\right)$
- Belding, Bröker, Enge, Lauter (2008): $O\left(|D|^{1+o(1)}\right)$
- Sutherland (2009): $O\left(|D|^{1+o(1)}\right)$. Smaller 'lower order term' and a huge practical speed up.

We saw yesterday: $D \approx-10^{14}$ is now feasible if we use smaller functions.

A key concept in the CRT-approach

The CRT-approach computes $P_{D} \in \mathbf{F}_{p}[X]$ for many, smartly chosen primes p.

To compute $P_{D} \bmod p$, we find one root by a random search and apply the Galois action of $\operatorname{Pic}\left(\mathcal{O}_{D}\right)$ to find the other roots.

A prime \mathcal{O}_{D}-ideal L of norm l acts on a root $j(E)$ via

$$
j(E) \mapsto j(E / E[L]),
$$

i.e., via an ' l-isogeny'. We can use the modular polynomial of level l to compute this action.

An extension to abelian surfaces should use the same technique!

How about genus 2?

Main Philosophy. Everything for elliptic curves can be generalized to (principally polarized) abelian surfaces.

We again want to construct abelian surfaces A / \mathbf{F}_{p} of prime order N.
By Hasse-Weil, we have $N \approx p^{2}$.

Basic questions:

- given p, find A / \mathbf{F}_{p} of prime order
- given N, find a finite field \mathbf{F}_{p} and A / \mathbf{F}_{p} with $\# A\left(\mathbf{F}_{p}\right)=N$
- given k, find a finite field \mathbf{F}_{p} and A / \mathbf{F}_{p} with $\# A\left(\mathbf{F}_{p}\right) \approx 10^{k}$ prime.

Bad news for first question

The generalization of Schoof's point counting algorithm to abelian surfaces is polynomial time.

We can find an abelian surface over \mathbf{F}_{p} of prime order in heuristic polynomial time.

However: that is only theory. In practice point counting is slow!
Point counting has been improved a lot recently, but it is not yet practical in the cryptographic range.

Question. How about the CM-approach?

CM-theory for genus 2

Just as for elliptic curves, we want to construct an abelian surface with prescribed endomorphism algebra K.

In the case that interests us, K is a degree 4 CM-field: a quadratic imaginary extension of a totally real field.

With $K=\mathbf{Q}(\pi)$ and $p=\pi \bar{\pi}$, an abelian surface with endomorphism algebra K and Frobenius π has

$$
N=\operatorname{Norm}(1-\pi)
$$

points over \mathbf{F}_{p}.
The analogue of the Hilbert class polynomial is the Igusa class polynomials. We get three polynomials for every field K.

Bad news, part II

A straightforward generalization of the elliptic curve construction does not work!

Theorem. (Howe, Lauter, Stevenhagen) The CM-method does not allow a polynomial time algorithm to construct, on input of a prime N, a field \mathbf{F}_{p} and an abelian surface A / \mathbf{F}_{p} with $\# A\left(\mathbf{F}_{p}\right)=N$.

The 'reason' is that there are not enough degree 4 CM-fields.

Sidenote. It does often allow for a fast algorithm to compute genus 2 curves of given order. Perhaps not useful for cryptography...

Natural question. Can we tweak the CM-approach for elliptic curves so that it does generalize?

Back to genus 1

An alternative approach to constructing an elliptic curve of prime order $\approx 10^{k}$ is as follows.

- fix a negative discriminant $D=5 \bmod 8$
- find a prime $p \approx 10^{k}$ that factors as $p=\pi \bar{\pi} \in \mathcal{O}_{D}$
- if $\operatorname{Norm}(1-\pi)$ is prime, construct the curve over \mathbf{F}_{p}. Else, find the next prime p.

The heuristic run time is $\widetilde{O}\left(k^{4}\right)$, due to the many primality tests.

However: the order \mathcal{O}_{D} is fixed now. This slower approach does generalize!

Remainder of talk. How to compute the Igusa class polynomials?

CM-theory for genus 2, the math

Let K be an imaginary quadratic extension of a real quadratic field, and let L be its Galois closure.

Lemma. We have $\operatorname{Gal}(L / \mathbf{Q}) \cong C_{4}, C_{2} \times C_{2}, D_{4}$.
The 4 embeddings $K \hookrightarrow \mathbf{C}$ naturally come in 2 pairs $\Phi=\left\{\varphi_{1}, \varphi_{2}\right\}$ and $\Phi^{\prime}=\left\{\varphi_{1}, \bar{\varphi}_{2}\right\}$. We exclude $\operatorname{Gal}(K / \mathbf{Q}) \cong C_{2} \times C_{2}$.

The reflex field of (K, Φ) is

$$
K_{\Phi}=\mathbf{Q}\left(\sum_{\varphi \in \Phi} \varphi(x) \mid x \in K\right)
$$

The fields K_{Φ} and $K_{\Phi^{\prime}}$ are isomorphic subfields of $L \subset \mathbf{C}$.

Leading example

Put $K=\mathbf{Q}[X] /\left(X^{4}+22 X^{2}+73\right)$. We have $\operatorname{Gal}(L / \mathbf{Q})=D_{4}$.

We have $K_{\Phi}=\mathbf{Q}[X] /\left(X^{4}+172 X^{3}+7840 X^{2}+11904 X+340992\right)$ and $K^{+}=\mathbf{Q}(\sqrt{3})$.

Abelian surfaces associated to ideals

For an ideal $I \subseteq \mathcal{O}_{K}$, the quotient $A_{I}=\mathbf{C}^{2} / \Phi(I)$ is an abelian surface. It has endomorphism ring \mathcal{O}_{K}.

Fact. We can choose I such that A_{I} is principally polarized.
The isomorphism class of the variety A_{I} is determined by three invariants $j_{1}\left(A_{I}\right), j_{2}\left(A_{I}\right), j_{3}\left(A_{I}\right)$. The Igusa functions j_{i} are explicitly given functions on the Siegel upper half space.

Theorem (weak version). The field $K_{\Phi}\left(j_{1}\left(A_{I}\right), j_{2}\left(A_{I}\right), j_{3}\left(A_{I}\right)\right)$ is a subfield of the Hilbert class field of K_{Φ}. The polynomial

$$
P_{K}=\prod_{\left\{[A / \mathrm{C}] \mid \operatorname{End}(A) \cong \mathcal{O}_{K}\right\}}\left(X-j_{1}(A)\right)
$$

has rational coefficients. Likewise for the polynomials Q_{K}, R_{K} giving the j_{2} and j_{3}-invariants.

Igusa class polynomials

Theorem. (Shimura) The Igusa class polynomials P_{K}, Q_{K}, R_{K} all have degree

$$
\varepsilon \frac{\# \operatorname{Pic}\left(\mathcal{O}_{K}\right)}{\# \operatorname{Pic}^{+}\left(\mathcal{O}_{K^{+}}\right)} \#\left(\left(\mathcal{O}_{K^{+}}^{*}\right)^{+} / N_{K / K^{+}}\left(\mathcal{O}_{K}^{*}\right)\right)
$$

with $\varepsilon \in\{1,2\}$ depending on whether K is Galois or not.

The polynomials P_{K}, Q_{K}, R_{K} have rational coefficients. Their denominators have only recently been bounded (Goren, Lauter).

The Igusa polynomials are typically not irreducible over \mathbf{Q}.

Computing P_{K}, Q_{K}, R_{K}

The methods for computing P_{K}, Q_{K}, R_{K} are far less developed.

- complex arithmetic: not for every K (Spallek ('94), Streng ('08))
- 2-adic arithmetic: compute a canonical lift, strong condition on the splitting behaviour of the prime 2 (Kohel-Ritzenthaler-Weng-Houtmann-Gaudry ('05))
- \mathbf{F}_{p}-arithmetic: Chinese remaindering (Eisenträger-Lauter ('05))

Remainder of talk. How far are we from using the Galois action in a CRT-approach?

Leading example

We have $\mathrm{Cl}\left(\mathcal{O}_{K}\right) \cong \mathbf{Z} / 4 \mathbf{Z}$. Of the 4 ideal classes, ideals I from only 2 classes yield p.p.a.s.'s A_{I}. We take $I=\mathcal{O}_{K}$ and $A_{I}=\mathbf{C}^{2} / \Phi\left(\mathcal{O}_{K}\right)$.

We have $\mathrm{Cl}\left(\mathcal{O}_{K_{\Phi}}\right) \cong \mathbf{Z} / 4 \mathbf{Z}$ and $\operatorname{Gal}\left(H\left(K_{\Phi}\right) / K_{\Phi}\right) \cong \mathbf{Z} / 4 \mathbf{Z}$.

The Galois action for $\operatorname{Gal}(L / \mathbf{Q}) \cong D_{4}$

The Artin map gives an isomorphism $\mathrm{Cl}\left(\mathcal{O}_{K_{\Phi}}\right) \xrightarrow{\sim} \operatorname{Gal}\left(H\left(K_{\Phi}\right) / K_{\Phi}\right)$.
An ideal $\mathfrak{p} \subset \mathcal{O}_{K_{\Phi}}$ yields an ideal in \mathcal{O}_{K} via the map

$$
N_{\Phi}(\mathfrak{p})=N_{L / K}\left(\mathfrak{p} \mathcal{O}_{L}\right)
$$

Let $\mathfrak{p} \subset \mathcal{O}_{K_{\Phi}}$ have norm p. We have $N_{\Phi}(\mathfrak{p}) \mid(p) \subset \mathcal{O}_{K}$ and we get a subspace

$$
V=\left\{P \in A_{I} \mid \forall \alpha \in N_{\Phi}(\mathfrak{p}): \alpha(P)=0\right\}
$$

of $A[p]$. This space is 2-dimensional as \mathbf{F}_{p}-vector space.
The ideal $\mathfrak{p} \subset \mathcal{O}_{K_{\Phi}}$ acts on A_{I} via

$$
A_{I} \mapsto A_{I} / V
$$

where A_{I} / V has the induced principal polarization.

Leading example

We have $(3)=\mathfrak{p}_{1} \mathfrak{p}_{2} \mathfrak{p}_{3}^{2} \subset \mathcal{O}_{K_{\Phi}}$. All ideals have norm 3 .
In \mathcal{O}_{K}, we compute $(3)=\widetilde{\mathfrak{p}}_{1}^{2} \widetilde{\mathfrak{p}}_{2}^{2}$.
The images under N_{Φ} are given by

$$
N_{\Phi}\left(\mathfrak{p}_{1}\right)=\tilde{\mathfrak{p}}_{1}^{2} \quad N_{\Phi}\left(\mathfrak{p}_{2}\right)=\tilde{\mathfrak{p}}_{2}^{2} \quad N_{\Phi}\left(\mathfrak{p}_{3}\right)=\widetilde{\mathfrak{p}}_{1} \widetilde{\mathfrak{p}}_{2}
$$

All three \mathcal{O}_{K}-ideals have norm 9 and divide (p). They yield three different 2-dimensional subspaces of $A_{I}[p]$.

Towards computing the CM-action

Both in dimension $1([K: \mathbf{Q}]=2)$ and dimension 2 , the CM-action is given by isogenies.

In genus 1 we can use the curve $Y_{0}(p)$ parametrizing elliptic curves with a p-isogeny to explicitly compute the CM-action.

The Siegel modular variety $Y_{0}^{(2)}(p)$ is the 'correct analogue' of $Y_{0}(p)$. Points on $Y_{0}^{(2)}(p)$ are p.p.a.s.'s together with an isotropic (p, p) isogeny.

Bröker, Lauter (preprint, '08): investigate explicit models for $Y_{0}^{(2)}(p)$. A model for $Y_{0}^{(2)}(p)$ is given by an ideal $I_{p} \subset \mathbf{Z}\left[X_{1}, Y_{1}, Z_{1}, X_{2}, Y_{2}, Z_{2}\right]$. A point

$$
\left(j_{1}(\tau), j_{2}(\tau), j_{3}(\tau), j_{1}\left(\tau^{\prime}\right), j_{2}\left(\tau^{\prime}\right), j_{3}\left(\tau^{\prime}\right)\right)
$$

belongs to $Y_{0}^{(2)}(p)$ iff it lies in I_{p}.

Computing the CM-action over finite fields

Setup:

- A / \mathbf{F}_{q} with endomorphism ring \mathcal{O}_{K}
- a prime $p \neq q$ such that there is a prime \mathfrak{p} of K_{Φ} of norm p
- the ideal $I_{p} \subseteq \mathbf{F}_{q}\left[X_{1}, Y_{1}, Z_{1}, X_{2}, Y_{2}, Z_{2}\right]$ describing $Y_{0}^{(2)}(p)$ over \mathbf{F}_{q}.

Specialize I_{p} in $\left(X_{1}, Y_{1}, Z_{1}\right)=\left(j_{1}(A), j_{2}(A), j_{3}(A)\right) \in \mathbf{F}_{q}^{3}$. There are exactly $\left(p^{4}-1\right) /(p-1)$ solutions over $\overline{\mathbf{F}}_{q}$ of the remaining system of equations.

All solutions are p.p.a.s.'s with endomorphism algebra K. The ones with endomorphism ring \mathcal{O}_{K} are defined over \mathbf{F}_{q}.

The leading example

The prime $q=1609$ splits as $\pi_{1} \pi_{2} \pi_{3} \pi_{4}$ in $\mathcal{O}_{K_{\Phi}}$. It splits completely in $H_{K_{\Phi}}$.

The denominator bounds yield that 1609 does not divide the denominators of P_{K}, Q_{K}, R_{K}.

The polynomials P_{K}, Q_{K}, R_{K} factor completely modulo q.
A random search over $\left(j_{1}, j_{2}, j_{3}\right) \in \mathbf{F}_{q}^{3}$ yields that A / \mathbf{F}_{q} with

$$
\left(j_{1}(A), j_{2}(A), j_{3}(A)\right)=(1563,789,704)
$$

has endomorphism ring \mathcal{O}_{K}.

A practical problem

The ideal I_{p} is huge. It has only been computed for $p=2$, it takes 50 Megabytes to store it. Computing I_{3} has not yet been undertaken.

Idea. Use smaller functions to get something reasonable.

For $x \in \mathbf{Z}^{2}$, define $\theta_{x}: \mathbf{H}_{2} \rightarrow \mathbf{C}$ by

$$
\theta_{x}(\tau)=\sum_{n \in \mathbf{Z}^{2}} \exp \left(\pi i n^{T} \tau n+2 \pi i n^{T} x\right)
$$

We consider $f_{1}=\theta_{(0,0)}, f_{2}=\theta_{(0,1)}, f_{3}=\theta_{(1,0)}$ and $f_{4}=\theta_{(1,1)}$.
The quotients $f_{1} / f_{4}, f_{2} / f_{4}, f_{3} / f_{4}$ are weakly modular functions for the subgroup $\Gamma(8) \subset \operatorname{Sp}(4, \mathbf{Z})$. Let $\operatorname{Stab}(f)$ be their stabilizer.

The Satake compactification $X(f)$ of the quotient $\operatorname{Stab}(f) \backslash \mathbf{H}_{2}$ is a projective variety. It has coordinate ring $\mathbf{C}\left[f_{1}, f_{2}, f_{3}, f_{4}\right]$.

A 'smaller' function

The functions f_{i} are Siegel modular forms of level 8. Affine points on $X(f)$ can be viewed as tuples (A, L) with A a p.p.a.s. and L a level-8 structure.

Let $p \neq 2$ be prime. A (p, p)-isogeny $A \rightarrow A^{\prime}$ induces an isomorphism $A[8] \xrightarrow{\sim} A^{\prime}[8]$.

On the affine part $Y(f)=\operatorname{Stab}(f) \backslash \mathbf{H}_{2}$, we get a natural map

$$
(A, L) \rightarrow\left(A^{\prime}, L^{\prime}\right)
$$

for every (p, p)-isogeny.
Idea. Since the f_{i} 's are 'smaller', perhaps we can compute this map for 'large' p.

The Siegel modular variety $X(f ; p)$

Affine points on $X(f ; p)$ are triples (A, L, G) with $(A, L) \in X(f)$ and $G \subset A[p]$ isotropic and of dimension 2. The map t is induced by $A \rightarrow A / G$ and s is the forgetful map.

A model for $X(f ; p)$

Using the Fourier expansions of the f_{i} 's we can use linear algebra to find a model for $X(f ; p)$.

For $p=3$ this is 'easy'. We find 85 homogeneous degree 6 polynomials describing $X(f ; 3)$.

One of them is
$a_{1}^{6}-7 a_{1}^{4} c_{1}^{2}+24 a_{1}^{3} a_{4} c_{1} c_{4}-3 a_{1}^{2} a_{2}^{4}-6 a_{1}^{2} a_{2}^{2} c_{2}^{2}+24 a_{1}^{2} a_{2} a_{3} c_{2} c_{3}-3 a_{1}^{2} a_{3}^{4}$ $-6 a_{1}^{2} a_{3}^{2} c_{3}^{2}+3 a_{1}^{2} a_{4}^{4}+6 a_{1}^{2} a_{4}^{2} c_{4}^{2}-21 a_{1}^{2} c_{1}^{4}+9 a_{1}^{2} c_{2}^{4}+9 a_{1}^{2} c_{3}^{4}-9 a_{1}^{2} c_{4}^{4}$ $+48 a_{1} a_{2} c_{1}^{3} c_{2}+48 a_{1} a_{3} c_{1}^{3} c_{3}-24 a_{1} a_{4} c_{1}^{3} c_{4}-a_{2}^{4} c_{1}^{2}-6 a_{2}^{2} a_{3}^{2} a_{4}^{2}+6 a_{2}^{2} a_{3}^{2} c_{4}^{2}$ $+6 a_{2}^{2} a_{4}^{2} c_{3}^{2}+6 a_{2}^{2} c_{1}^{2} c_{2}^{2}+18 a_{2}^{2} c_{3}^{2} c_{4}^{2}-24 a_{2} a_{3} c_{1}^{2} c_{2} c_{3}+48 a_{2} a_{4} c_{1}^{2} c_{2} c_{4}-a_{3}^{4} c_{1}^{2}$ $+6 a_{3}^{2} a_{4}^{2} c_{2}^{2}+6 a_{3}^{2} c_{1}^{2} c_{3}^{2}+18 a_{3}^{2} c_{2}^{2} c_{4}^{2}+48 a_{3} a_{4} c_{1}^{2} c_{3} c_{4}+5 a_{4}^{4} c_{1}^{2}-30 a_{4}^{2} c_{1}^{2} c_{4}^{2}$ $+18 a_{4}^{2} c_{2}^{2} c_{3}^{2}+27 c_{1}^{6}+27 c_{1}^{2} c_{2}^{4}+27 c_{1}^{2} c_{3}^{4}-135 c_{1}^{2} c_{4}^{4}-162 c_{2}^{2} c_{3}^{2} c_{4}^{2}$.

Computing the CM-action over finite fields, II

Setup:

- a CM-field K such that there is a prime of norm 3 in K_{Φ}
- A / \mathbf{F}_{q} with endomorphism ring \mathcal{O}_{K}
- the ideal $I_{3}^{f} \subseteq \mathbf{F}_{q}\left[W_{1}, \ldots, Z_{1}, W_{2}, \ldots, Z_{2}\right]$ describing $X(f)$ over \mathbf{F}_{q}.

Choose a point (w, x, y, z) on $X(f)$ mapping to $\left(j_{1}(A), j_{2}(A), j_{3}(A)\right)$. This requires working over a degree 24 extension.

Specialize I_{3}^{f} in $\left(W_{1}, X_{1}, Y_{1}, Z_{1}\right)=(w, x, y, z)$. There are exactly 40 solutions over $\overline{\mathbf{F}}_{q}$ of the remaining system of equations. Map them 'down' to find 40 Igusa triples.

All solutions are p.p.a.s.'s with endomorphism algebra K. The ones with endomorphism ring \mathcal{O}_{K} are defined over \mathbf{F}_{q}.

The leading example

Put $\mathbf{F}_{q^{4}}=\mathbf{F}_{q}(\alpha)=\mathbf{F}_{q}[X] /\left(X^{4}+5 X^{2}+1277 X+7\right)$.
We choose

$$
\begin{aligned}
& w=450 \alpha^{3}+100 \alpha^{2}+437 \alpha+830 \\
& x=311 \alpha^{3}+1375 \alpha^{2}+498 \alpha+817 \\
& y=738 \alpha^{3}+276 \alpha^{2}+1004 \alpha+354 \\
& z=21 \alpha^{3}+363 \alpha^{2}+1403 \alpha+1310
\end{aligned}
$$

lying over $\left(j_{1}(A), j_{2}(A), j_{3}(A)\right)=(1563,789,704) \in \mathbf{F}_{q}^{3}$.
Specializing the ideal I_{3}^{f} in w, x, y, z yields a system of equations in 4 variables over $\mathbf{F}_{q^{4}}$. It has 40 solutions over $\overline{\mathbf{F}}_{q}$. We only look at solutions over $\mathbf{F}_{q^{24}}$.

The leading example

We map all ' f-tuples' down to Igusa triples. Over \mathbf{F}_{q} we find
$(1563,789,704),(587,1085,931),(961,509,36),(1396,1200,1520)$

$$
(1350,1316,1483),(1310,1550,449),(1442,671,281) .
$$

Some of these triples are invariants of p.p.a.s.'s with endomorphism ring \mathcal{O}_{K}, some are not.

We run an 'endomorphism ring check' to decide which ones are roots of $P_{K}, Q_{K}, R_{K} \in \mathbf{F}_{q}[X]$.

The leading example

We compute

$$
\begin{gathered}
(1563,789,704) \xrightarrow{\mathfrak{p}_{1}}(1396,1200,1520) \xrightarrow{\mathfrak{p}_{1}}(1276,1484,7) \xrightarrow{\mathfrak{p}_{1}} \\
(1350,1316,1483) \xrightarrow{\mathfrak{p}_{1}}(1563,789,704) .
\end{gathered}
$$

The polynomial $(X-1563) \cdot \ldots \cdot(X-1350) \in \mathbf{F}_{q}[X]$ divides the degree 8 polynomial P_{K}.

To find the other degree 4 factor, we do a 2 nd random search. In the end, we compute

$$
\begin{aligned}
& P_{K}=X^{8}+455 X^{7}+410 X^{6}+259 X^{5}+323 X^{4} \\
& \quad+153 X^{3}+289 X^{2}+942 X+416 \bmod 1609
\end{aligned}
$$

The leading example

To compute $P_{K} \in \mathbf{Q}[X]$ we compute it modulo various primes q and use Chinese remaindering.

The resulting polynomial factors over K_{Φ} into 2 irreducible quartics.
Over \mathbf{Q}, the denominator is 2^{28} and the largest coefficient has 50 decimal digits.

The polynomial P_{K} defines the Hilbert class field of K_{Φ}.

What remains to be done

Right now, we can only compute the CM-action for ideals of norm 2 and norm 3.

The norm 5 ideals are computationally out of reach: the naive way of computing I_{5}^{f} takes too long.

Questions.

- how much trickery is there to speed up the computation of I_{5}^{f} ?
- are there even smaller functions out there?
- does it help to work inside weighted projective space?
- how to compute isogenies between abelian surfaces?

