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Curves and crypto

Curve cryptography comes in 2 flavours:

• standard : we want curves of prime order;

• pairing-based : we want ‘pairing friendly curves’.

We are limited to (Jacobians of) genus 1 and genus 2 curves.

In this talk we’ll focus mostly on finding elliptic curves and abelian
surfaces of prime order.



Elliptic curves of prime order

For cryptography, we need

N = #E(Fp) ≈ 1060

prime. By Hasse’s theorem, this means p ≈ 1060.

Four questions:

• given p,N , find E/Fp with #E(Fp) = N

• given p, find E/Fp of prime order

• given N , find p and E/Fp with #E(Fp) = N

• given k, find p and E/Fp with #E(Fp) ≈ 10k prime



Prescribing p

For given N , a curve E with #E(Fp) = N exists if and only if

N ∈ [p + 1 − 2
√

p, p + 1 + 2
√

p].

To find E, we should count the number of points on randomly selected
curves: this is faster than using ‘CM-techniques’.

Run time I: Õ(
√

p). (probabilistic)

If we only insist that E has prime order, then the run time drops
significantly. Reason: there are many primes, but only one N . . .

Run time II: O((log p)5). (heuristic)

Stay tuned for a faster solution to problem 2.



Prescribing the group order

Efficient constructions for the other 2 problems rely on complex mul-

tiplication techniques.

Any elliptic curve E/Fp has a Frobenius morphism

Frob(x, y) = (xp, yp)

that satisfies
Frob2 − tFrob + p = 0 ∈ End(E).

The ring Z[Frob] is isomorphic to the imaginary quadratic order OD

of discriminant D = t2 − 4p < 0.

We will assume t 6= 0. The curve E is then ordinary and the index
[End(E) : Z[Frob]] is finite.



Complex multiplication constructions

The morphism Frob : E → E corresponds to an element π ∈ OD of
norm p and trace t.

If E/Fp has endomorphism algebra Q(
√

t2 − 4p) then it has

N = #Ker(1 − Frob) = Norm(1 − π) = p + 1 ± t

points.

We see: constructing curves of prescribed order is ‘the same’ as con-
structing curves with prescribed endomorphism algebra.



Curves with given endomorphism ring

Over C, the j-invariants of the elliptic curves with endomorphism
ring OD are roots of the Hilbert class polynomial

PD =
∏

[I]∈Pic(OD)

(X − j(I)) ∈ Z[X].

This polynomial has degree roughly
√
|D| and coefficients of

√
|D|

bits.

If p = ππ splits into principal primes in OD, then PD factors into
linear factors over Fp.

The roots of PD ∈ Fp[X] are j-invariants of curves with p+1−t = N
points.



Curve construction

If OD contains an element π with

Norm(1 − π) = N (prime) and Norm(π) = p (prime)

then we can use PD ∈ Fp[X] to find a curve with N points.

Observation: the condition on D is symmetric in π in 1 − π. Hence:
prescribing N or prescribing p is ‘the same’.

Theorem. (Atkin-Morain-Bröker-Stevenhagen)
An elliptic curve of prime order ≈ 10k can be constructed in heuristic
time Õ(k3).

The method where N is prescribed can be generalized to non-prime N
to yield a run time O(2ω(N)(log N)4+o(1)).



The main tool

The fastest way to compute the Hilbert class polynomial PD is the
CRT-approach.

Three-stage-conception:

• Agashe, Lauter, Venkatesan (2004): O(|D|3/2)

• Belding, Bröker, Enge, Lauter (2008): O(|D|1+o(1))

• Sutherland (2009): O(|D|1+o(1)). Smaller ‘lower order term’
and a huge practical speed up.

We saw yesterday: D ≈ −1014 is now feasible if we use smaller
functions.



A key concept in the CRT-approach

The CRT-approach computes PD ∈ Fp[X] for many, smartly chosen
primes p.

To compute PD mod p, we find one root by a random search and
apply the Galois action of Pic(OD) to find the other roots.

A prime OD-ideal L of norm l acts on a root j(E) via

j(E) 7→ j(E/E[L]),

i.e., via an ‘l-isogeny’. We can use the modular polynomial of level l
to compute this action.

An extension to abelian surfaces should use the same technique!



How about genus 2?

Main Philosophy. Everything for elliptic curves can be generalized
to (principally polarized) abelian surfaces.

We again want to construct abelian surfaces A/Fp of prime order N .

By Hasse-Weil, we have N ≈ p2.

Basic questions:

• given p, find A/Fp of prime order

• given N , find a finite field Fp and A/Fp with #A(Fp) = N

• given k, find a finite field Fp and A/Fp with #A(Fp) ≈ 10k

prime.



Bad news for first question

The generalization of Schoof’s point counting algorithm to abelian
surfaces is polynomial time.

We can find an abelian surface over Fp of prime order in heuristic
polynomial time.

However: that is only theory. In practice point counting is slow!

Point counting has been improved a lot recently, but it is not yet
practical in the cryptographic range.

Question. How about the CM-approach?



CM-theory for genus 2

Just as for elliptic curves, we want to construct an abelian surface
with prescribed endomorphism algebra K.

In the case that interests us, K is a degree 4 CM-field: a quadratic
imaginary extension of a totally real field.

With K = Q(π) and p = ππ, an abelian surface with endomorphism
algebra K and Frobenius π has

N = Norm(1 − π)

points over Fp.

The analogue of the Hilbert class polynomial is the Igusa class poly-

nomials. We get three polynomials for every field K.



Bad news, part II

A straightforward generalization of the elliptic curve construction
does not work!

Theorem. (Howe, Lauter, Stevenhagen) The CM-method does
not allow a polynomial time algorithm to construct, on input of a
prime N , a field Fp and an abelian surface A/Fp with #A(Fp) = N .

The ‘reason’ is that there are not enough degree 4 CM-fields.

Sidenote. It does often allow for a fast algorithm to compute genus
2 curves of given order. Perhaps not useful for cryptography. . .

Natural question. Can we tweak the CM-approach for elliptic
curves so that it does generalize?



Back to genus 1

An alternative approach to constructing an elliptic curve of prime
order ≈ 10k is as follows.

• fix a negative discriminant D = 5 mod 8

• find a prime p ≈ 10k that factors as p = ππ ∈ OD

• if Norm(1−π) is prime, construct the curve over Fp. Else, find
the next prime p.

The heuristic run time is Õ(k4), due to the many primality tests.

However: the order OD is fixed now. This slower approach does

generalize!

Remainder of talk. How to compute the Igusa class polynomials?



CM-theory for genus 2, the math

Let K be an imaginary quadratic extension of a real quadratic field,
and let L be its Galois closure.

Lemma. We have Gal(L/Q) ∼= C4, C2 × C2,D4.

The 4 embeddings K →֒ C naturally come in 2 pairs Φ = {ϕ1, ϕ2}
and Φ′ = {ϕ1, ϕ2}. We exclude Gal(K/Q) ∼= C2 × C2.

The reflex field of (K,Φ) is

KΦ = Q
(∑

ϕ∈Φ

ϕ(x) | x ∈ K
)
.

The fields KΦ and KΦ′ are isomorphic subfields of L ⊂ C.



Leading example

Put K = Q[X]/(X4 + 22X2 + 73). We have Gal(L/Q) = D4.

L

·

66mmmmmmmmmmmmmmmm
K

<<zzzzzzzzz

L+

OO

KΦ

bbDDDDDDDD

KΦ′

hhRRRRRRRRRRRRRRRR

K+

__?????????

OO ==||||||||
·

OO

K+
Φ

aaBBBBBBBB

OO ==zzzzzzzz

Q

aaBBBBBBBB

OO ==||||||||

We have KΦ = Q[X]/(X4 + 172X3 + 7840X2 + 11904X + 340992)
and K+ = Q(

√
3).



Abelian surfaces associated to ideals

For an ideal I ⊆ OK , the quotient AI = C2/Φ(I) is an abelian
surface. It has endomorphism ring OK .

Fact. We can choose I such that AI is principally polarized.

The isomorphism class of the variety AI is determined by three in-
variants j1(AI), j2(AI), j3(AI). The Igusa functions ji are explicitly
given functions on the Siegel upper half space.

Theorem (weak version). The field KΦ(j1(AI), j2(AI), j3(AI)) is
a subfield of the Hilbert class field of KΦ. The polynomial

PK =
∏

{[A/C] | End(A)∼=OK}

(X − j1(A))

has rational coefficients. Likewise for the polynomials QK , RK giving
the j2 and j3-invariants.



Igusa class polynomials

Theorem. (Shimura) The Igusa class polynomials PK , QK , RK all
have degree

ε
#Pic(OK)

#Pic+(OK+)
#((O∗

K+)+/NK/K+(O∗
K))

with ε ∈ {1, 2} depending on whether K is Galois or not.

The polynomials PK , QK , RK have rational coefficients. Their de-
nominators have only recently been bounded (Goren, Lauter).

The Igusa polynomials are typically not irreducible over Q.



Computing PK , QK , RK

The methods for computing PK , QK , RK are far less developed.

• complex arithmetic: not for every K (Spallek (’94), Streng (’08))

• 2-adic arithmetic: compute a canonical lift , strong condition on
the splitting behaviour of the prime 2 (Kohel-Ritzenthaler-Weng-
Houtmann-Gaudry (’05))

• Fp-arithmetic: Chinese remaindering (Eisenträger-Lauter (’05))

Remainder of talk. How far are we from using the Galois action
in a CRT-approach?



Leading example

We have Cl(OK) ∼= Z/4Z. Of the 4 ideal classes, ideals I from only
2 classes yield p.p.a.s.’s AI . We take I = OK and AI = C2/Φ(OK).

We have Cl(OKΦ
) ∼= Z/4Z and Gal(H(KΦ)/KΦ) ∼= Z/4Z.

H(K) H(KΦ)

KΦ(ji(AI))

OO

K

OO

KΦ

OO

Q
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The Galois action for Gal(L/Q) ∼= D4

The Artin map gives an isomorphism Cl(OKΦ
)

∼−→ Gal(H(KΦ)/KΦ).

An ideal p ⊂ OKΦ
yields an ideal in OK via the map

NΦ(p) = NL/K(pOL).

Let p ⊂ OKΦ
have norm p. We have NΦ(p) | (p) ⊂ OK and we get a

subspace
V = {P ∈ AI | ∀α ∈ NΦ(p) : α(P ) = 0}

of A[p]. This space is 2-dimensional as Fp-vector space.

The ideal p ⊂ OKΦ
acts on AI via

AI 7→ AI/V

where AI/V has the induced principal polarization.



Leading example

We have (3) = p1p2p
2
3 ⊂ OKΦ

. All ideals have norm 3.

In OK , we compute (3) = p̃2
1 p̃2

2.

The images under NΦ are given by

NΦ(p1) = p̃
2
1 NΦ(p2) = p̃

2
2 NΦ(p3) = p̃1p̃2.

All three OK -ideals have norm 9 and divide (p). They yield three
different 2-dimensional subspaces of AI [p].



Towards computing the CM-action

Both in dimension 1 ([K : Q] = 2) and dimension 2, the CM-action
is given by isogenies.

In genus 1 we can use the curve Y0(p) parametrizing elliptic curves
with a p-isogeny to explicitly compute the CM-action.

The Siegel modular variety Y
(2)
0 (p) is the ‘correct analogue’ of Y0(p).

Points on Y
(2)
0 (p) are p.p.a.s.’s together with an isotropic (p, p)-

isogeny.

Bröker, Lauter (preprint, ’08): investigate explicit models for Y
(2)
0 (p).

A model for Y
(2)
0 (p) is given by an ideal Ip ⊂ Z[X1, Y1, Z1,X2, Y2, Z2].

A point
(j1(τ), j2(τ), j3(τ), j1(τ

′), j2(τ
′), j3(τ

′))

belongs to Y
(2)
0 (p) iff it lies in Ip.



Computing the CM-action over finite fields

Setup:

• A/Fq with endomorphism ring OK

• a prime p 6= q such that there is a prime p of KΦ of norm p

• the ideal Ip ⊆ Fq[X1, Y1, Z1,X2, Y2, Z2] describing Y
(2)
0 (p) over Fq.

Specialize Ip in (X1, Y1, Z1) = (j1(A), j2(A), j3(A)) ∈ F3
q . There are

exactly (p4 − 1)/(p− 1) solutions over Fq of the remaining system of
equations.

All solutions are p.p.a.s.’s with endomorphism algebra K. The ones
with endomorphism ring OK are defined over Fq.



The leading example

The prime q = 1609 splits as π1π2π3π4 in OKΦ
. It splits completely

in HKΦ
.

The denominator bounds yield that 1609 does not divide the denom-
inators of PK , QK , RK .

The polynomials PK , QK , RK factor completely modulo q.

A random search over (j1, j2, j3) ∈ F3
q yields that A/Fq with

(j1(A), j2(A), j3(A)) = (1563, 789, 704)

has endomorphism ring OK .



A practical problem

The ideal Ip is huge. It has only been computed for p = 2, it takes 50
Megabytes to store it. Computing I3 has not yet been undertaken.

Idea. Use smaller functions to get something reasonable.

For x ∈ Z2, define θx : H2 → C by

θx(τ) =
∑

n∈Z2

exp(πinT τn + 2πinT x).

We consider f1 = θ(0,0), f2 = θ(0,1), f3 = θ(1,0) and f4 = θ(1,1).

The quotients f1/f4, f2/f4, f3/f4 are weakly modular functions for
the subgroup Γ(8) ⊂ Sp(4,Z). Let Stab(f) be their stabilizer.

The Satake compactification X(f) of the quotient Stab(f)\H2 is a
projective variety. It has coordinate ring C[f1, f2, f3, f4].



A ‘smaller’ function

The functions fi are Siegel modular forms of level 8. Affine points
on X(f) can be viewed as tuples (A,L) with A a p.p.a.s. and L a
level-8 structure.

Let p 6= 2 be prime. A (p, p)-isogeny A → A′ induces an isomorphism
A[8]

∼−→ A′[8].

On the affine part Y (f) = Stab(f)\H2, we get a natural map

(A,L) → (A′, L′)

for every (p, p)-isogeny.

Idea. Since the fi’s are ‘smaller’, perhaps we can compute this map
for ‘large’ p.



The Siegel modular variety X(f ; p)

X(f ; p)

s
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Affine points on X(f ; p) are triples (A,L,G) with (A,L) ∈ X(f) and
G ⊂ A[p] isotropic and of dimension 2. The map t is induced by
A → A/G and s is the forgetful map.



A model for X(f ; p)

Using the Fourier expansions of the fi’s we can use linear algebra to
find a model for X(f ; p).

For p = 3 this is ‘easy’. We find 85 homogeneous degree 6 polyno-
mials describing X(f ; 3).

One of them is
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Computing the CM-action over finite fields, II

Setup:

• a CM-field K such that there is a prime of norm 3 in KΦ

• A/Fq with endomorphism ring OK

• the ideal If
3 ⊆ Fq[W1, . . . , Z1,W2, . . . , Z2] describing X(f) over Fq.

Choose a point (w, x, y, z) on X(f) mapping to (j1(A), j2(A), j3(A)).
This requires working over a degree 24 extension.

Specialize If
3 in (W1,X1, Y1, Z1) = (w, x, y, z). There are exactly 40

solutions over Fq of the remaining system of equations. Map them
‘down’ to find 40 Igusa triples.

All solutions are p.p.a.s.’s with endomorphism algebra K. The ones
with endomorphism ring OK are defined over Fq.



The leading example

Put Fq4 = Fq(α) = Fq[X]/(X4 + 5X2 + 1277X + 7).

We choose
w = 450α3 + 100α2 + 437α + 830

x = 311α3 + 1375α2 + 498α + 817

y = 738α3 + 276α2 + 1004α + 354

z = 21α3 + 363α2 + 1403α + 1310

lying over (j1(A), j2(A), j3(A)) = (1563, 789, 704) ∈ F3
q .

Specializing the ideal If
3 in w, x, y, z yields a system of equations in

4 variables over Fq4 . It has 40 solutions over Fq. We only look at
solutions over Fq24 .



The leading example

We map all ‘f -tuples’ down to Igusa triples. Over Fq we find

(1563, 789, 704), (587, 1085, 931), (961, 509, 36), (1396, 1200, 1520)

(1350, 1316, 1483), (1310, 1550, 449), (1442, 671, 281).

Some of these triples are invariants of p.p.a.s.’s with endomorphism
ring OK , some are not.

We run an ‘endomorphism ring check’ to decide which ones are roots
of PK , QK , RK ∈ Fq[X].



The leading example

We compute

(1563, 789, 704)
p1−→ (1396, 1200, 1520)

p1−→ (1276, 1484, 7)
p1−→

(1350, 1316, 1483)
p1−→ (1563, 789, 704).

The polynomial (X − 1563) · . . . · (X − 1350) ∈ Fq[X] divides the
degree 8 polynomial PK .

To find the other degree 4 factor, we do a 2nd random search. In the
end, we compute

PK = X8 + 455X7 + 410X6 + 259X5 + 323X4

+153X3 + 289X2 + 942X + 416 mod 1609.



The leading example

To compute PK ∈ Q[X] we compute it modulo various primes q and
use Chinese remaindering.

The resulting polynomial factors over KΦ into 2 irreducible quartics.

Over Q, the denominator is 228 and the largest coefficient has 50
decimal digits.

The polynomial PK defines the Hilbert class field of KΦ.



What remains to be done

Right now, we can only compute the CM-action for ideals of norm 2
and norm 3.

The norm 5 ideals are computationally out of reach: the naive way
of computing If

5 takes too long.

Questions.

• how much trickery is there to speed up the computation of If
5 ?

• are there even smaller functions out there?

• does it help to work inside weighted projective space?
...

• how to compute isogenies between abelian surfaces?


