

Multiscale Lung Cancer Modeling

Zhihui Wang & Thomas S. Deisboeck

Complex Biosystems Modeling Laboratory

Massachusetts General Hospital

Background — clinical statistics

- ► More than 160,000 people die every year of lung cancer in the United States.
- ▶ Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancer cases; advanced NSCLC is the leading cause of cancer-related deaths.
- ▶ Up until now, the outcome of current clinical treatment for NSCLC has been discouraging.
- ▶ Only a small fraction of patients with NSCLC, who failed to respond to conventional chemotherapy, respond clinically to molecular targeted drugs including e.g., gefitinib (Iressa) and erlotinib (Tarceva).

Background - NSCLC, a metastatic disease

▶ NSCLC originates in lung epithelial cells and most patients with advanced NSCLC present with metastatic disease.

Example: data from a patient with metastatic NSCLC to the brain

Background — cell signaling & computational model

Overexpression and mutations of epidermal growth factor receptor (EGFR), a member of the ErbB family of cell-surface receptors, are frequently reported in most NSCLC cases.

Necessity of Multiscale for Cancer Models

Complex cancer systems are context-dependent.

Molecular Network

Wang et al., Theor Biol Med Model 2007, 4:50.

Equation

$$[A]+[B] \xrightarrow{k_f} [A \cdot B]$$

For example:

$$[EGF] + [EGFR] \xrightarrow{k_{1f}} [EGF \cdot EGFR] \quad [EGF \cdot EGFR] + [EGF \cdot EGFR] \xrightarrow{k_{2f}} [EGF \cdot EGFR] 2$$

$$\begin{cases} v_1 = k_{1f} [EGF] [EGFR] - k_{1r} [EGF \cdot EGFR] \\ v_2 = k_{2f} [EGF \cdot EGFR] - k_{2r} [EGF \cdot EGFR] 2 \end{cases}$$

To determine the change in concentration of a certain reaction component $[X_i]$ over time

$$\frac{d[X_i]}{dt} = \sum v_{\text{Production}} - \sum v_{\text{Consumption}}$$

Reaction rates producing $[X_i]$ Reaction rates consuming $[X_i]$

Microenvironment

Linking Molecular Signals to Cellular Behavior

Cellular Phenotype Decision Algorithm

Four situations exist at any time step, t_i :

Typical Simulations

$$ROC_{PLC\gamma} > \sigma_{PLC\gamma} \& ROC_{ERK} > \sigma_{ERK}$$

Rule A: migration advantage

Inite A. Inigration advantage

Change of EGF on Multi-Cellular Dynamics

Rule A (Migration Advantage)

145 time steps

EGF concentration: 2.65 x 50 (nM)

102 time steps

Molecular Changes with Increasing EGF

Sensitivity Analysis

Current Condition:

In Cancer Systems:

Cancer cells react and respond to heterogeneous biochemical environments.

Cross-Scale Sensitivity Analysis

Sensitivity Coefficient:

$$S_p^M = \frac{\delta M / M}{\delta p / p}$$

where p represents the parameter that is varied in a simulation and M the response of the system; δM is the change in M due to δp ,

Wang et al., Biosystems 2008, 92(3):249-258.

Critical Components

PKC, MEK & ERK are considered to be critical.

Smaller Changes in Critical Components

Critical Reaction Steps

Model Validation — on microscopic level

- The maximal change in cell proliferation occurs in the control group with EGF stimuli.
- *PLC*y plays a role in regulating cell proliferation.
- Inhibition of PLCy reduces the activity of tumor cells in proliferation.

- The maximal change in cell migration occurs in the control group with EGF stimuli.
- *PLC*γ, as a key downstream signaling component of classic MAPK pathway, plays a role in regulating cell migration.
- Inhibition of *PLC*γ reduces the activity of tumor cells in migration.

Model Validation — on molecular level

- Inhibition of PLCg effectively suppresses the activation of ERK to some level at the early stage.
- The activation of ERK gets recovered at the later stage, part of which is probably due to compensation of other pathways in activating ERK via a cross-talk manner.

Model Extension — on microscopic level

Why Three-Dimensional (3D)?

- 1) A 3D environment is a more accurate representation of a real tumor, thus supports translation to clinical application.
- 2) Tumor growth dynamics in 3D may be different from that in 2D.

Model Extension — on molecular level

Tumor Growth in 3D

EGF concentration: <u>2.65</u> (nM)

EGF concentration: 2.65 x 10 (nM)

Impact of Change of EGF & TGF_{β}

Conclusion & Future Works

- ▶ Re-validating model parameters at both molecular and cellular levels with experimental data.
- ▶ With the 3D model, examining cross-talk behavior of the signaling network, in coordinating and processing different inputs (EGF and TGF β) into biological responses at the multi-cellular level.
- ► Exploring the possibilities of combined effects of parameter variations simultaneously within the 3D model.
- ► A potential path in cancer modeling:

Hybrid, Multi-scale and Multi-resolution.

Wang and Deisboeck, Scientific Modeling and Simulation. in press.

Acknowledgement

Complex Biosystems Modeling Laboratory

Harvard-MIT (HST) Martinos Center for Biomedical Imaging

Translational Genomics Research Institute

Harvard-Partners Center for Genetics and Genomics

Funding: NIH/NCI-Integrative Cancer Biology Program (ICBP)