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Overview

n State of the ‘War on Cancer’

n Challenges
n Signs of promise
n Introducing a new conceptual framework for
cellular networks: focusing on mechanisms

n Mathematical models of targeted therapies:-

n mTOR pathway

n Combination therapies




Cancer Statistics: Progress on the
‘War on Cancer’

/2-million people will die of cancer in the United States
in 2008 (ACS)

Cancer currently accounts for nearly /4 of deaths in the
U.S., exceeded only by heart disease

1.4 million new cases of cancer will be diagnosed in

2008 (ACS)
1971: President Richard Nixon declared the “War on

Cancet’; cancer death rates have remained
approximately the same since that time while death
rates for other major chronic diseases have diminished
significantly.




Cancer R&D Spending

n US$200 billion of public and private investment in
basic and clinical cancer research in the U.S. since 1971

n Oncology is one of the most active sectors of
therapeutic development

o R&D spending by pharmaceutical industry > US$50 billion
annually, T 147%0 since 1993

n Drug approval applications T 38%

n Approval rates for drugs against NEW targets: only 2-3 from
entire industry each year




Technological Advances

n ‘Omics technologies (genomics, proteomics)

n Gene arrays, protein arrays

n High-performance computing/data-
mining/digital storage technologies

n Technologies to create, screen, test & evaluate
targeted chemical compounds




Successes in Molecularly Targeted

Therapeutics

n Imatinib mesylate (Gleevec; Nowvartis)

n Chronic myelogenous leukaemia (CML)
n BCR/ABL oncogene

n Gefitinib (Iressa; AstraZeneca)
n Non-small-cell lung cancer (NSCLC)
n Somatic mutations in EGFR: 1.858R, AE749-A750

*R* Tumor recurrence




The ‘Simple Complexity’ Theory of
Cell Signaling

Full text provided by www.sciencedirect.com
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n ‘Simplicity within Complexity™
n Versatility & sophistication  wide variety of responses

to wide variety of possible stimuli

n Overarching simplicity: able to orchestrate well-defined
and mathematically-tractable mechanisms. Eg. Switch,
oscillations, etc.

n ‘Sensitivity within Robustness’

n Robustness to unwanted perturbations, while responding
specifically and sensitively to relevant inputs




Mathematical Models of ‘Network-
Targeted’ Therapies

Nature Reviews Drug Discovery | AOP, published online 12 October 2007; doi:10.1038/nrd 2381

inhibitor gefitinib (Iressa; AstraZeneca) for
patients with non-small-cell lung cancer
(NSCLC)“ . Even the problem of tumour

P rotei n S, d r u g ta rgets a n d th e' recurrence in these responsive NSCLC and

CML tumeour types reveals that the majority

mecC h an i SMs th ey CONn t Fo I : th e Si m pl @  ofrelapses involve resistance mutations in

the target (‘addictive’) kinase, rather than a
tr ut h a bo ut CO m pI ex n etWO r kS novel oncu::_genic expedient, which suggests

that room for evolutionary manoeuvre in
surviving tumour cells is highly constrained,

Robyn P. Araujo, Lance A. Liotta and Emanuel F. Petricoin even in the face of genomic instability™7=",
o ) S This characteristic, in turn, increases the
Abstract | Realizing the promise of molecularly targeted inhibitors for cancer  |ikelihood of avercoming the problem of
therapy willrequire a new level of knowledge about how a drug targetiswired into  resistance through future pathway-directed
the control circuitry of a complex cellular network. Here we review general —combination therapies®*'™*.
homeostatic principles of cellular networks that enable the cell to be resilientin 11 this article, we focus on the par-
. . . . . ticularly challenging realm of cancer drug
the face of molecular perturbations, while at the same time being sensitive to . . N
bile | anals. Insiahts | hani facil he devel discovery and treatment, as emerging
subtle input signals. Insights into such mechanisms may facilitate the development 4.0 00 e e to corroborate the

of combination therapies that take advantage of the cellular control circuitry, with  potion that each patient’s tumour is unique

R.P Araujo, L.A. Liotta and E.F. Petricoin, 2007. Proteins, drug targets and the mechanisms
they control: the simple truth about complex networks. Nat. Rev. Drug Discov. 6(11):871-880




Feedback loops and
targeted therapies: a case
study using the mTOR

pathway




Feedback loops and targeted

therapies: a case study using the
mTOR pathway
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KEY CONCEPT:

A protein’s suitability as a therapeutic target is
determined by the nature of its contribution to the
sighaling network’s control mechanisms, rather

than by its aberrant activity.




‘Network-Targeted’ Combination
Therapies and Overcoming Tumor
Resistance to Targeted Therapeutics
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Benefits of Combination Therapies

Potential to combat the problem of tumor
resistance

Simultaneous inhibition of a cascade of
proteins significantly enhances the potency of
the therapy

Inhibition achieved with significantly lower

drug doses

Potential for synergy in inhibition




Questions?

Robyn Araujo

Email: raraujo@gmu.edu




