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This semester’s Thematic Program at the Fields Institute is titled:

“Arithmetic Geometry, Hyperbolic Geometry, and Related Topics”

• Arithmetic (Diophantine) Geometry

• Hyperbolic Geometry (Nevanlinna Theory)

• Arakelov Theory



Some Diophantine Equations

A diophantine equation is a system of polynomial equations in which the solutions
are assumed to lie in Q or Z (or some more general rings).

Equation Solutions

x3 + y3 = 1 , x, y ∈ Q {(1, 0), (0, 1)}
3x3 + 4y3 = 5 , x, y ∈ Q ∅ (Selmer)
y2 + y = x3 − x , x, y ∈ Q Infinitely many

All of these are cubics in two variables, and all will give a Riemann surface of
genus 1 (minus one or two points) if you graph them in C2 (allowing x, y ∈ C ).

In each case there is a number field k (i.e., an extension field k ⊇ Q with
[k : Q] finite) for which the equation has infinitely many solutions with x, y ∈ k .

Question. Given a system of polynomial equations in n variables with coeffi-
cients in Q . Assume that the graph of solutions in Cn is a compact connected
Riemann surface, minus finitely many points. Does there exist a number field
k over which this system has infinitely many solutions?

Genus Answer

0, 1 Yes
≥ 2 No (Faltings)



Question. Let X be a compact connected Riemann surface. Does there exist
a non-constant holomorphic function f : C→ X ?

Genus Answer

0, 1 Yes
≥ 2 No (Picard)

Given a number field k , let Ok denote the integral closure of Z in k . It is
called the ring of integers of k .

Question. Given a system of polynomial equations in n variables with coeffi-
cients in Q . Assume that the graph of solutions in Cn is a compact connected
Riemann surface, minus s points. Does there exist a number field k such
that this system has infinitely many solutions in On

k ?

x2 − 2y2 = 1 : yes ( k = Q , Pell) 9x2 − 18y2 = 1 : no.
In each case the genus is 0 and s = 2 .

For a finite set S of prime numbers, let Z[1/S] = Z[1/p : p ∈ S] . (This is the
set of rational numbers that can be written as a fraction whose denominator is
a product of powers of primes in S .) For a number field k and S as above, let
Ok,S denote the integral closure of Z[1/S] in k .



Question. Given a system of polynomial equations in n variables with coeffi-
cients in Q . Assume that the graph of solutions in Cn is a compact connected
Riemann surface, minus s points. Does there exist a number field k and a
set S (as above) such that this system has infinitely many solutions in On

k,S ?

Genus s Answer

0 ≤ 2 Yes
0 > 2 No (Siegel)
1 0 Yes
1 > 0 No (Siegel)
≥ 2 ≥ 0 No (Siegel & Faltings)

Question. Let X be a compact connected Riemann surface. Does there exist a
non-constant holomorphic function f : C → X whose image omits (at least)
s points?

Genus s Answer

0 ≤ 2 Yes
0 > 2 No (Picard)
1 0 Yes
1 > 0 No (Picard)
≥ 2 ≥ 0 No (Picard)

(If g is the genus, then the answer is yes if and only if 2g − 2 + s ≤ 0 .)



What is going on here?



Nevanlinna Theory

Nevanlinna theory is part (most) of value distribution theory of holomorphic func-
tions

Consider the function ez . It has no zeroes or poles, so as a map C → P1(C)
it omits the values 0 and ∞ .

Theorem (Picard). There is no non-constant holomorphic function C → P1(C)
omitting three or more values.

[draw exp−1(2) ]

Note that exp−1(w) =
{ {log w + 2πin : n ∈ Z} w ∈ C \ {0},
∅ w = 0,∞

∴ #{z ∈ C : ez = w and |z| ≤ r } =
{ r

π + Ow(1) w ∈ C \ {0},
0 w = 0,∞

From now on assume f(0) 6= 0,∞ .
Let log+ x = max{0, log x} . Also let f : C→ C be meromorphic.

Definition. The proximity function is

mf (r) =
∫ 2π

0

log+ |f(reiθ)| dθ

2π
, and

mf (a, r) = m1/(f−a)(r) = −
∫ 2π

0

log− |f(reiθ)− a| dθ

2π
a ∈ C .

Also let mf (∞, r) = mf (r) .



Definition. The counting function is

Nf (r) =
∑

|z|<r

ord+
z (1/f) · log

r

|z| , and

Nf (a, r) = N1/(f−a)(r) =
∑

|z|<r

ord+
z (f − a) · log

r

|z| .

Also let Nf (∞, r) = Nf (r) .

Finally, we define the height function by

Tf (r) = mf (r) + Nf (r) .

If f(z) = ez then Nf (∞, r) = 0 and

mf (∞, r) =
∫

log+ er cos θ dθ

2π
= r

∫ π/2

−π/2

cos θ
dθ

2π
=

r

π
.

Theorem (First Main Theorem (FMT)). For all a ∈ C ,

mf (a, r) + Nf (a, r) = Tf (r) + Of,a(1) .

Since mf (a, r) ≥ 0 , this gives an upper bound on Nf (a, r) .



Compare with Jensen’s formula

log |cλ| =
∫ 2π

0

log |f(reiθ)| dθ

2π
+ Nf (∞, r)−Nf (0, r) .

Theorem (Second Main Theorem (SMT)). Let a1, . . . , aq ∈ P1(C) be distinct.
Then

(*)
q∑

i=1

mf (ai, r) ≤exc 2 Tf (r) + O(log+ Tf (r)) + o(log r) ,

where O( ) and o( ) depend only on f and a1, . . . , aq , and ≤exc means that the
inequality holds for all r ∈ (0,∞) outside of a set of finite Lebesgue measure.

Corollary (Picard). If f : C→ P1(C) \ {a1, a2, a3} is holomorphic with a1, a2, a3 dis-
tinct, then f is constant.

Proof. Since f never equals ai , we have Nf (ai, r) = 0 , so the FMT gives
mf (ai, r) = Tf (r) + O(1) . The left-hand side of (*) is therefore 3Tf (r) + O(1) ,
so (*) becomes Tf (r) ≤exc O(log+ Tf (r)) + o(log r) . But, if f is nonconstant then
Tf (r) ≥ O(log r) , a contradiction. Therefore f is constant. ¤



One can view the SMT as a lower bound on Nf (a, r) : the left-hand side of
(*) is q Tf (r)−∑

mf (ai, r) , so (*) is equivalent to

q∑

i=1

Nf (ai, r) ≥exc (q − 2)Tf (r)−O(log+ Tf (r))− o(log r) .

Advantages:

(1). q − 2 = χ(P1 \ q points) ,
(2). The left-hand side is independent of metrics; and
(3). One can phrase it using truncated counting functions (abc conjecture).



Number Theory

For a number field k , let Mk be its set of places. This is in one-to-one corre-
spondence with the disjoint union

{nonzero primes in Ok }
∐
{σ : k ↪→ R}

∐
{unordered pairs (σ, σ̄) : σ 6= σ̄ : k ↪→ C } .

For v ∈ Mk we define norms ‖ · ‖v by

‖x‖ =





(Ok : p)− ordp(x) if v -∞, x 6= 0,

|σ(x)| if v is real,

|σ(x)|2 if v is complex.

We then have a product formula
∏

v∈Mk
‖x‖v = 1 for all x ∈ k , x 6= 0 .

Let S∞ denote the set of archimedean (real or complex) places.
Let S ⊇ S∞ be a finite set of places of k ; for x ∈ k we then define

mS(x) = mS(∞, x) =
∑

v∈S

log+ ‖x‖v ,

mS(a, x) = mS

(
1

x− a

)
=

∑

v∈S

log+

∥∥∥∥
1

x− a

∥∥∥∥
v

,



NS(x) = NS(∞, x) =
∑

v/∈S

log+ ‖x‖v =
∑

v/∈S

ord+
v

(
1
x

)
· log(Ok : p) ,

NS(a, x) = NS

(
1

x− a

)
=

∑

v/∈S

log+

∥∥∥∥
1

x− a

∥∥∥∥
v

.

hk(x) = mS(x) + NS(x) =
∑

v∈Mk

log+ ‖x‖v = log
∏
v

max{1, ‖x‖v} .

Corresponding to the FMT, we have

mS(a, x) + NS(a, x) = hk

(
1

x− a

)
= hk(x) + Oa,k(1) ,

a property of heights.



Theorem (Roth). Let k and S be as above, and for all v ∈ S let αv ∈ Q . Let
ε > 0 . Then the inequality

∏

v∈S

min{1, ‖x− αv‖v} ≤ 1
Hk(x)2+ε

.

holds for only finitely many x ∈ k . Here Hk(x) = exp(hk(x)) =
∏
v

max{1, ‖x‖v} .

This is equivalent to the same statement with αv ∈ k for all v (expand k ).
Equivalently, given k , S , ε , and a1, . . . , aq ∈ k , then the inequality

q∏

i=1

∏

v∈S

min{1, ‖x− ai‖v} ≤ 1
Hk(x)2+ε

holds for only finitely many x ∈ k .
Taking − log of both sides, and rearranging the logic, we then have that

q∑

i=1

mS(ai, x) ≤ (2 + ε)hk(x) + O(1)

for almost all x ∈ k .



The Dictionary

Recall the definitions of the proximity function

mf (r) =
∫ 2π

0

log+ |f(reiθ)| dθ

2π
and mS(x) =

∑

v∈S

log+ ‖x‖v

in Nevanlinna theory and number theory, respectively.
Also, the counting function is

Nf (r) =
∑

|z|<r

ord+
z

(
1
f

)
· log

r

|z| and NS(x) =
∑

v/∈S

ord+
v

(
1
x

)
· log(Ok : p)

in Nevanlinna theory and number theory, respectively.
We can see some similarities.

Nevanlinna Theory Number Theory

f : C→ C, non-constant {x} ⊆ k , infinite
r x
θ v ∈ S

|f(reiθ)| ‖x‖v, v ∈ S
ordz f ordv x, v /∈ S
log r

|z| log(Ok : p)



Important:

• One holomorphic map corresponds to an infinite set of rational points.
• One rational point may correspond to f

∣∣
Dr

.



The abc conjecture

Conjecture (Masser-Oesterlé “abc conjecture”). For all ε > 0 there is a constant
C with the following property. All integers a, b, c satisfying a + b + c = 0 and
gcd(a, b, c) = 1 must satisfy the inequality

max{|a|, |b|, |c|} ≤ C
∏

p|abc

p1+ε .

There is something in Nevanlinna theory which corresponds to this:

Definition. The truncated counting function in Nevanlinna theory is defined by

N
(1)
f (r) = N

(1)
f (∞, r) =

∑

|w|<r

min
{

1, ord+
w

(
1
f

)}
log

r

|w|

and N
(1)
f (a, r) = N

(1)
1/(f−a)(r) for a ∈ C .

Theorem (Second Main Theorem with Truncated Counting Functions). Let
a1, . . . , aq ∈ P1(C) be distinct. Then

q∑

i=1

N
(1)
f (ai, r) ≥exc (q − 2)Tf (r)−O(log+ Tf (r))− o(log r) .

where O( ) and o( ) depend only on f and a1, . . . , aq .



In number theory, we have:

Definition. The truncated counting function in number theory is defined by

N
(1)
S (x) = N

(1)
S (∞, x) =

∑

v/∈S

min
{

1, ord+
v

(
1
x

)}
log(Ok : p)

and N
(1)
S (a, x) = N

(1)
S (1/(x− a)) for a ∈ k , a 6= x . Here, as usual, p is the place

of k corresponding to each place v /∈ S .

Conjecture. Let k be a number field, let S ⊇ S∞ be a finite set of places of k ,
let a1, . . . , aq be elements of k ∪ {∞} , let ε > 0 , and let c ∈ R . Then

q∑

i=1

N
(1)
S (ai, x) ≥ (q − 2− ε)hk(x) + c

holds for all but finitely many x ∈ k .

When k = Q , S = {∞} , q = 3 , and {a1, a2, a3} = {0, 1,∞} , this is the abc
conjecture.



Making things geometrical

One can think of a finite set of points on a Riemann surface (or on an algebraic
curve) as a divisor, which is reduced since the points are distinct. If D denotes
such a divisor, then we can phrase the proximity, counting, and truncated counting
functions in terms of divisors:

mf (D, r) =
q∑

i=1

mf (ai, r) , etc.

Thus, we have:

Theorem (SMT for Riemann Surfaces with Truncated Counting Functions). Let
X be a compact connected Riemann surface, let D be an effective reduced
divisor on X , let K be the canonical line sheaf on X , let A be an ample
line sheaf on X , and let f : C→ X be a non-constant holomorphic function.
Then

N
(1)
f (D, r) ≥exc Tf,K (D)(r)−O(log+ TA ,f (r))− o(log r) .

Conjecture (Diophantine SMT with Truncated Counting Functions). Let k and
S be as usual, let X be a smooth projective curve over k , let D be an
effective reduced divisor on X , let K be the canonical line sheaf on X , let
A be an ample line sheaf on X , and let ε > 0 . Then, for all but finitely many
x ∈ X(k) ,

N
(1)
S (D, x) ≥ hk,K (D)(x)− ε hk,A (x) + O(1) .

These then imply Picard’s and Faltings’ theorems when the genus is ≥ 2 .



Finite ramified coverings and algebraic points

One can generalize the latter conjecture to deal with points over varying num-
ber fields of bounded degree over k . In Nevanlinna theory, this corresponds to
replacing the domain C with a finite ramified covering of C .

Theorem (SMT for Riemann Surfaces with Truncated Counting Functions and
Finite Ramified Coverings). Let X be a compact connected Riemann surface,
let D be an effective reduced divisor on X , let K be the canonical line
sheaf on X , let A be an ample line sheaf on X , let B be a connected
Riemann surface, let π : B → C be a proper surjective holomorphic map, and
let f : C→ X be a non-constant holomorphic function. Then

N
(1)
f (D, r) + NRam(π)(r) ≥exc Tf,K (D)(r)−O(log+ TA ,f (r))− o(log r) .

Here the additional term NRam(π)(r) is a counting function for ramification
points of π .



Its counterpart in number theory is related to the discriminant:

dk(x) =
1

[k(x) : k]
log |Dk(x)| .

Conjecture (Diophantine SMT with Truncated Counting Functions for Algebraic
Points). Let k and S be as usual, let r ∈ Z>0 , let X be a smooth projective
curve over k , let D be an effective reduced divisor on X , let K be the
canonical line sheaf on X , let A be an ample line sheaf on X , and let ε > 0 .
Then, for all but finitely many x ∈ X(k) with [k(x) : k] ≤ r ,

N
(1)
S (D,x) + dk(x) ≥ hk,K (D)(x)− ε hk,A (x) + O(1) .



The conjecture when dim X > 1
This conjecture has been posed also in higher dimensions, the only difference
being that non-constant functions and infinite sets need to be replaced by Zariski-
dense functions and sets, respectively.

And, both statements are conjectural.

Conjecture (Griffiths). Let X be a smooth complex projective variety, let D be
a normal crossings divisor on X , let K be the canonical line sheaf on X , let
A be an ample line sheaf on X , let ε > 0 , let B be a connected Riemann
surface, and let π : B → C be a proper surjective holomorphic map. Then
there is a proper Zariski-closed subset Z of X , depending only on X , D ,
A , and ε , such that

N
(1)
f (D, r) + NRam(π)(r) ≥exc TK (D),f (r)− ε TA ,f (r)−O(1)

holds for all holomorphic curves f : B → X whose image is not contained in
Z .

Conjecture. Let k and S be as usual, let X be a smooth projective variety
over k , let D be a normal crossings divisor on X , let K be the canonical
line sheaf on X , let A be an ample line sheaf on X , let r ∈ Z>0 , and let
ε > 0 . Then there is a proper Zariski-closed subset Z of X , depending only
on X , D , A , and ε , such that the inequality

N
(1)
S (D, x) + dk(x) ≥ hK (D),k(x)− ε hA ,k(x)−O(1)

holds for all x ∈ (X \ Z)(k) with [k(x) : k] ≤ r .



Many things imply abc

This latter conjecture implies the abc conjecture in a number of ways:

• If k = Q , r = 1 , and X = P1 (as noted already)
• Without truncated counting functions, with dim X = 1 (“ 1+ε conjecture”)
• Without truncated counting functions, with r = 1 (rational points)

The abc conjecture seems to be at the center of these types of conjectures.



A less sweeping conjecture

This conjecture is a bit less sweeping, being based on something in Nevanlinna
theory that is actually proved.

If E is a vector sheaf on a scheme X , then we recall that

P(E ) := Proj
⊕

d≥0

SdE .

This is the space of hyperplanes in fibers of E .

Theorem (McQuillan’s “Tautological inequality”). Let X be a nonsingular com-
plex projective variety, let D be a normal crossings divisor on X , let A be
an ample line sheaf on X , let π : B → C be as usual, let f : B → X be a
non-constant holomorphic map, and let f ′ : B → P(ΩX(log D)) be its lifting.
Then

TO(1),f ′(r) ≤exc N
(1)
f (D, r) + NRam(π)(r) + O(log TA ,f (r) + log r) .



Conjecture. Let k and S be as usual, let X be a smooth projective variety over
k with dim X > 0 , let D be a normal crossings divisor on X , let r ∈ Z>0 , let
A be an ample line sheaf on X , and let ε > 0 . Then, for all x ∈ X(k) with
[k(x) : k] ≤ r , there is a closed point x′ ∈ P(ΩX/k(log D)) lying over x such that

hO(1),k(x′) ≤ N
(1)
S (D,x) + dk(x) + ε hA ,k(x) + O(1) .

Moreover, given a finite collection of rational maps gi : X 99K Wi to varieties
Wi , there are finite sets Σi of closed points on Wi for each i with the
following property. For each x as above, x′ may be chosen so that, for each
i , if x lies in the domain of gi and if gi(x) /∈ Σi , then x′ lies in the domain
of the induced rational map P(ΩX/k) 99K P(ΩWi/k) .

This conjecture obviously deserves to be called the tautological conjecture.


