The ABCs of Diophantine Geometry

Paul Vojta
University of California, Berkeley

and

The Fields Institute



This semester’'s Thematic Program at the Fields Institute is titled:

“Arithmetic Geometry, Hyperbolic Geometry, and Related Topics”

Arithmetic (Diophantine) Geometry
Hyperbolic Geometry (Nevanlinna Theory)

Arakelov Theory



Some Diophantine Equations

A diophantine equation is a system of polynomial equations in which the solutions
are assumed to liein Q or Z (or some more general rings).

Equation Solutions
+y° =1, z,y € Q {(1,0),(0,1)}
3x3 +4y3 =5, z,y €Q 0 (Selmer)
V+y=x>—z, z,yeQ Infinitely many

All of these are cubics in two variables, and all will give a Riemann surface of

genus 1 (minus one or two points) if you graph them in C? (allowing z,y € C).
In each case there is a number field k (i.e., an extension field k£ O Q with

[k : Q] finite) for which the equation has infinitely many solutions with z,y € k.

Genus Answer

0, 1 Yes
> 2 No (Faltings)




Let X be a compact connected Riemann surface. Does there exist
a non-constant holomorphic function f: C — X 7

Genus Answer
0, 1 Yes
> 2 No (Picard)

Given a number field k, let 0, denote the integral closure of Z in k. It is
called the ring of integers of k.

Given a system of polynomial equations in n variables with coeffi-
cients in Q. Assume that the graph of solutions in C" is a compact connected
Riemann surface, minus s points. Does there exist a nhumber field k such
that this system has infinitely many solutions in 07 7

z? -2y =1: yes (k=Q, Pell) 922 — 18y? =1: no.
In each case the genus is 0 and s=2.

For a finite set S of prime numbers, let Z[1/S] =Z[1/p:p € S]. (This is the
set of rational numbers that can be written as a fraction whose denominator is
a product of powers of primes in S.) For a number field £ and S as above, let
O).s denote the integral closure of Z[1/S] in k.



Given a system of polynomial equations in n variables with coeffi-
cients in Q. Assume that the graph of solutions in C" is a compact connected
Riemann surface, minus s points. Does there exist a number field k and a
set S (as above) such that this system has infinitely many solutions in Ops?

Genus S Answer
0 <2 Yes
0 > 2 No (Siegel)
1 0 Yes
1 > 0 No (Siegel)
> 2 >0 No (Siegel & Faltings)

Let X be a compact connected Riemann surface. Does there exist a

non-constant holomorphic function f: C — X whose image omits (at least)
s points?

Genus S Answer
0 < 2 Yes
0 > 2 No (Picard)
1 0 Yes
1 > 0 No (Picard)
> 2 >0 No (Picard)

(If ¢ is the genus, then the answer is yes if and only if 2g—-2+s<0.)



What is going on here?



Nevanlinna Theory

is part (most) of value distribution theory of holomorphic func-
tions

Consider the function e*. It has no zeroes or poles, so as a map C — P!(C)
it omits the values 0 and ~o.

[draw exp~1(2)]

logw + 2min : n € Z e C\ {0},
Note that eXp_l(w):{{ng min:n €Zp w€C\{0}

) w = 0,00

—+O0y(1 c C\ {0},

. #{zeC: e* =w and \z|§r}:{ﬁ+ (1) w \ 10}
0 w = 0,00

From now on assume f(0) # 0,00 .
Let log™ z = max{0,logz}. Also let f: C — C be meromorphic.

proximity function



The counting function is
Ni(r)= Y ordj(l/f)-log‘r—’ | and
<
| z|<r
.

Ny(a, ) = Nyjp—ay(r) = »_ ord}(f —a)-log — .

|
|z| <7
Also let N¢(oo,r) = Ng(r).
Finally, we define the height function by

Ts(r) =myg(r) + Ng(r) .

If f(z) =€* then N¢(oco,r) =0 and

do /2 do
m (oo, r) = /log+ erCOSQ% = r/w/2 COSQ% = % :

For all a € C,

mf(a7 T) + Nf(av T) — Tf(r) + Of,af(l) '

Since mg(a,r) > 0, this gives an upper bound on Ng(a,r).



Compare with Jensen’s formula

27
o1 0
logeal = [ log £(re)| 5+ Ny(o0,r) = Ny(0.7).
0

Let ay,...,a, € PY(C) be distinct.

Then
q
(*) > my(ai7) Sexc 2T4(r) + O(log™* Ty(r)) + o(logr) ,
1=1
where O( ) and o( ) depend only on f and ai,...,a,, and <. means that the

inequality holds for all r € (0,¢) outside of a set of finite Lebesgue measure.

If f: C— Pl(C)\{al,CLQ,CLg} Is holomorphic with ai,as,a3 dis-
tinct, then f is constant.

Proof. Since f never equals a;, we have Ng(a;,r) = 0, so the FMT gives
my(a;,r) = Tr(r) + O(1). The left-hand side of (*) is therefore 37T%(r) + O(1),
so (*) becomes Ty(r) <exe O(log™ T (r)) + o(logr) . But, if f is nonconstant then
T¢(r) > O(logr), a contradiction. Therefore f is constant. []



One can view the SMT as a lower bound on Ng(a,r): the left-hand side of
(*¥) is qTy(r) — S my(a;,r), so (*) is equivalent to

q

Z Ni(ai, ™) Zexe (¢ —2)T¢(r) — O(log™ T4 (r)) — o(log ) .

Advantages:

(1). g—2=x(Pt\ ¢ points),
(2). The left-hand side is independent of metrics; and
(3). One can phrase it using truncated counting functions (abc conjecture).



Number Theory

For a number field k, let M be its set of places. This is in one-to-one corre-
spondence with the disjoint union

{nonzero primes in O} |[{c: k — R} [ [{unordered pairs (0,5): o #5: k< C}.

For v € My we define norms | -], by
( (O :p)~ @) if vfoo, x#£0,
|z|| = ¢ |o(x)] if v is real,
L |o(2)[? if v is complex.

We then have a product formula [[,cu llzllo =1 forall z ek, x#0.
Let S, denote the set of archimedean (real or complex) places.
Let SO S, be a finite set of places of k; for x € £k we then define

ms(z) = mg(co,z) = Y log™ [z ,
veS

ms(a,z) = mg (x i a) =) log"



1
Ng(x) = Ng(oo, ) z:logJr |||, = z:ord;L (;) log(Ok : p) ,

véS véS
Ns(a.x) = (x_) > log* |
veES
hi(z) = ms(x) + Ns(z) = ) log* ||z, = logHmax{l,Ha:HU}.
veE My, v

Corresponding to the FMT, we have

1

r — a

ms(a,x) + Ng(a,x) = hk( ) = hi(x) + O (1) ,

a property of heights.



This is equivalent to the same statement with «, € & for all v (expand k).
Equivalently, given k£, S, €, and ay,...,a4 € k, then the inequality

q
1
. 1 — W |lv S
[LITmind1, e ) < g

1=1veSsS

holds for only finitely many x € k.
Taking —log of both sides, and rearranging the logic, we then have that

q

> ms(as,x) < (2+ )hg(a) + O(1)

1=1

for almost all z € k.



The Dictionary
Recall the definitions of the proximity function

27
o db
m(r) = / log* F(re)| 2 and  ms@) = log* [,

27T
VES

in Nevanlinna theory and number theory, respectively.
Also, the counting function is

Ni(r)= Y ordf (1) Jog—  and  Ns(z)= > ordf G) Nog(6y : p)

|z| <7 f |Z‘ vegS

in Nevanlinna theory and number theory, respectively.
We can see some similarities.

Nevanlinna Theory Number Theory
f: C—C, non-constant {z} Ck, infinite
r xr
0 veSs
£ (re®) |zllo, vES
ord, f ord,z, v¢S
log log(Ok : p)




Important:

e One holomorphic map corresponds to an infinite set of rational points.
e One rational point may correspond to f

D,



The abc conjecture

For all e >0 there is a constant
C' with the following property. All integers a,b,c satisfying a+b+c=0 and
gcd(a,b,c) =1 must satisfy the inequality

max{al, o], le[} < € T »**.

p|abc

There is something in Nevanlinna theory which corresponds to this:

The truncated counting function in Nevanlinna theory is defined by

1
N](cl)(r) — N](cn(oo,?“) — Z min {l,ord:[) <}> } log ‘;—‘

|lw|<r

and N](cl)(a,r) = N

1/(f_a)(7“) for a € C.

Let
ai,...,aq € PY(C) be distinct. Then

SN (@i, 1) Zexe (g — 2)T5(r) — O(log™ Ty (r)) — o(logr) .

1=1

where O() and o( ) depend only on f and aq,...,a,.



In number theory, we have:

The truncated counting function in number theory is defined by

NP (z) = NP (00, 2) me{l ord; ( )}log(ﬁ’k )

véS

and Nél)(a,w) = Ngl)(l/(a:—a)) for a €k, a#x. Here, as usual, p is the place
of k corresponding to each place v ¢ S.

Let £k be a number field, let S O S.. be a finite set of places of k,
let aq,...,a, be elements of kU{oco}, let ¢ >0, and let ce R. Then

ZN”% > (g —2 — )hy(x) + ¢

holds for all but finitely many x € k.

When k£ = Q, S = {0}, ¢ =3, and {aj,as,a3} = {0,1,00}, this is the abc
conjecture.



Making things geometrical

One can think of a finite set of points on a Riemann surface (or on an algebraic
curve) as a divisor, which is reduced since the points are distinct. If D denotes
such a divisor, then we can phrase the proximity, counting, and truncated counting
functions in terms of divisors:

q

m¢(D,r) :me(a,i,r) : etc.

1=1
T hus, we have:

L et
X be a compact connected Riemann surface, let D be an effective reduced
divisor on X, let # be the canonical line sheaf on X, let o/ be an ample
line sheaf on X, and let f: C — X be a non-constant holomorphic function.
T hen

N(D,7) Zexe T, (p) (1) — O(log™ Ty, (1)) — o(log ) .

Let k£ and
S be as usual, let X be a smooth projective curve over k, let D be an
effective reduced divisor on X, let ¥ be the canonical line sheaf on X, let
o/ be an ample line sheaf on X, and let ¢ > 0. Then, for all but finitely many
re X(k),

NS(D, 2) > hi e () (@) — € hi oy () + O(1) .

These then imply Picard’s and Faltings’ theorems when the genus is > 2.



Finite ramified coverings and algebraic points

One can generalize the latter conjecture to deal with points over varying num-
ber fields of bounded degree over k. In Nevanlinna theory, this corresponds to
replacing the domain C with a finite ramified covering of C.

Let X be a compact connected Riemann surface,
let D be an effective reduced divisor on X, let # be the canonical line

sheaf on X, let &/ be an ample line sheaf on X, let B be a connected
Riemann surface, let m: B — C be a proper surjective holomorphic map, and
let f: C— X be a non-constant holomorphic function. Then

Ni(D,7) + Nram(m) (1) Zexe Ty, (py(r) — O(log™ Toy (1)) — o(log ) .

Here the additional term Ngamr)(r) IS @ counting function for ramification
points of .



Its counterpart in number theory is related to the discriminant:

(@) = 08| Dy |

Let Kk and S be as usual, let r € Z~,, let X be a smooth projective
curve over k, let D be an effective reduced divisor on X, let # be the
canonical line sheaf on X, let &/ be an ample line sheaf on X, and let ¢ > 0.

Then, for all but finitely many z € X(k) with [k(x): k] <r,

NSU(D, x) + dp(2) > hi e (D) (@) — € hg o (z) + O(1) .



The conjecture when dim X > 1

This conjecture has been posed also in higher dimensions, the only difference
being that non-constant functions and infinite sets need to be replaced by Zariski-
dense functions and sets, respectively.

And, both statements are conjectural.

Let X be a smooth complex projective variety, let D be
a normal crossings divisor on X, let ¥ be the canonical line sheaf on X, let
o/ be an ample line sheaf on X, let ¢ >0, let B be a connected Riemann
surface, and let m: B — C be a proper surjective holomorphic map. Then
there is a proper Zariski-closed subset Z of X, depending only on X, D,
o/ , and e, such that

N}1>(D7r) + NRam(w) (T) Zexc T%(D),f(r) — GTd,f(T) — 0(1)

holds for all holomorphic curves f: B — X whose image is not contained in
Z .

Let £ and S be as usual, let X be a smooth projective variety
over k, let D be a normal crossings divisor on X, let ¥ be the canonical
line sheaf on X, let o/ be an ample line sheaf on X, let r € Z~y, and let
e >0. Then there is a proper Zariski-closed subset Z of X, depending only
on X, D, o/, and €, such that the inequality

NSU(D, ©) + di(2) > hoy Dy (@) — € hey x(z) — O(1)

holds for all x € (X \ Z)(k) with [k(x): k] <r.



Many things imply abc

This latter conjecture implies the abc conjecture in a number of ways:

o If k=Q, r=1, and X =P! (as noted already)
e Without truncated counting functions, with dimX =1 (“1+e€ conjecture’)
e Without truncated counting functions, with r =1 (rational points)

The abc conjecture seems to be at the center of these types of conjectures.



A less sweeping conjecture

This conjecture is a bit less sweeping, being based on something in Nevanlinna
theory that is actually proved.

If & is a vector sheaf on a scheme X, then we recall that

P(&) := Projp s .
d>0

This is the space of in fibers of & .

Let X be a nonsingular com-
plex projective variety, let D be a normal crossings divisor on X, let &/ be

an ample line sheaf on X, let n: B — C be as usual, let f: B — X be a

non-constant holomorphic map, and let f': B — P(Qx(logD)) be its lifting.
T hen

Tﬁ(l),f’(r) <exc N}1)<D7 T) T NRam(ﬂ') (T) + O(lOg Tﬁf,f(r) + 1Og T) ‘



Let £k and S be as usual, let X be a smooth projective variety over
k with dimX >0, let D be a normal crossings divisor on X, let r € Lo, let

o/ be an ample line sheaf on X, and let ¢ > 0. Then, for all x € X(k) with
k(x) : k] <r, there is a closed point x' € P({x/,(log D)) lying over x such that

hﬁ(1)7k(x,) < Ng)(D, x) + di(x) + Ehd,k;(x) + O(1) .

Moreover, given a finite collection of rational maps g,: X --» W, to varieties
W, , there are finite sets >,; of closed points on W; for each : with the
following property. For each x as above, ' may be chosen so that, for each
i, If x lies in the domain of g; and if g;(x) & 3;, then x' lies in the domain
of the induced rational map P(Qx /) ——» P(Qw, /i) -

This conjecture obviously deserves to be called the tautological conjecture.



