The Evolution of Dispersal

Yuan Lou

Department of Mathematics Ohio State University Columbus, OH 43210, USA Iou@math.ohio-state.edu

Applied Math Seminar, Oct 8 2008, Fields Institute, Univ. of Toronto

Talk Outline

- Evolution of dispersal
- An eigenvalue problem
- Applications to evolution of dispersal
- Proof: behavior of principal eigenvalue
- Some recent progress

Dispersal is probably one of the most common features

- Dispersal is probably one of the most common features
- How did organisms adopt their dispersal behaviors?

- Dispersal is probably one of the most common features
- How did organisms adopt their dispersal behaviors?
- What are potential impact of dispersals?

- Dispersal is probably one of the most common features
- How did organisms adopt their dispersal behaviors?
- What are potential impact of dispersals?
- How will these dispersal behaviors evolve?

Dilemma: To disperse or not to disperse?

- Dilemma: To disperse or not to disperse?
- Resource, resource, resource

- Dilemma: To disperse or not to disperse?
- Resource, resource, resource
- Species often compete for the same/similar resource

- Dilemma: To disperse or not to disperse?
- Resource, resource, resource
- Species often compete for the same/similar resource
- Can competition be a driving force in the selection of dispersal strategies?

A. Hastings (TPB, 83)

A. Hastings (TPB, 83)

$$u_t = \mu \Delta u + u f(u + v, x)$$
 in $\Omega \times (0, \infty)$,
 $v_t = \nu \Delta v + v f(u + v, x)$ in $\Omega \times (0, \infty)$, (1)
 $\frac{\partial u}{\partial p} = \frac{\partial v}{\partial p} = 0$ on $\partial \Omega \times (0, \infty)$.

A. Hastings (TPB, 83)

$$u_t = \mu \Delta u + u f(u + v, x)$$
 in $\Omega \times (0, \infty)$,
$$v_t = \nu \Delta v + v f(u + v, x)$$
 in $\Omega \times (0, \infty)$,
$$\frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = 0$$
 on $\partial \Omega \times (0, \infty)$. (1)

• u(x, t), v(x, t): densities of species

A. Hastings (TPB, 83)

$$u_t = \mu \Delta u + u f(u + v, x)$$
 in $\Omega \times (0, \infty)$, $v_t = \nu \Delta v + v f(u + v, x)$ in $\Omega \times (0, \infty)$, (1) $\frac{\partial u}{\partial \rho} = \frac{\partial v}{\partial \rho} = 0$ on $\partial \Omega \times (0, \infty)$.

- u(x, t), v(x, t): densities of species
- $\mu, \nu >$ 0: random dispersal rates

A. Hastings (TPB, 83)

$$u_t = \mu \Delta u + u f(u + v, x)$$
 in $\Omega \times (0, \infty)$, $v_t = \nu \Delta v + v f(u + v, x)$ in $\Omega \times (0, \infty)$, (1) $\frac{\partial u}{\partial \rho} = \frac{\partial v}{\partial \rho} = 0$ on $\partial \Omega \times (0, \infty)$.

- u(x, t), v(x, t): densities of species
- $\mu, \nu > 0$: random dispersal rates
- Ω : bounded domain in R^d with C^2 boundary; n: outward unit normal vector on $\partial \Omega$.

Dockery et al. (JMB 98): The slower diffuser is the winner.

Dockery et al. (JMB 98): The slower diffuser is the winner.

• f(u+v,x) = m(x) - u - v, m(x) is positive and non-constant.

Dockery et al. (JMB 98): The slower diffuser is the winner.

- f(u+v,x) = m(x) u v, m(x) is positive and non-constant.
- \bullet $\mu < \nu$.

Dockery et al. (JMB 98): The slower diffuser is the winner.

- f(u+v,x)=m(x)-u-v, m(x) is positive and non-constant.
- \bullet $\mu < \nu$.

Then $(\tilde{u}, 0)$ is globally asymptotically stable,

Dockery et al. (JMB 98): The slower diffuser is the winner.

- f(u+v,x) = m(x) u v, m(x) is positive and non-constant.
- \bullet $\mu < \nu$.

Then $(\tilde{u},0)$ is globally asymptotically stable, where \tilde{u} is the unique positive steady-state of

$$\tilde{u}_t = \mu \Delta \tilde{u} + \tilde{u}(m - \tilde{u}) \quad \text{in } \Omega \times (0, \infty),$$

$$\frac{\partial \tilde{u}}{\partial n} = 0$$
 on $\partial \Omega \times (0, \infty)$

 Conditional dispersal: Organisms can sense and respond to local environmental cues

- Conditional dispersal: Organisms can sense and respond to local environmental cues
- Continuous model: Cantrell, Cosner and L. (Math.Biosci. 06)

- Conditional dispersal: Organisms can sense and respond to local environmental cues
- Continuous model: Cantrell, Cosner and L. (Math.Biosci. 06)

$$u_t = \nabla \cdot [\mu \nabla u - \alpha \mathbf{u} \nabla \mathbf{m}] + u(\mathbf{m} - u - v)$$
 in $\Omega \times (0, \infty)$,

- Conditional dispersal: Organisms can sense and respond to local environmental cues
- Continuous model: Cantrell, Cosner and L. (Math.Biosci. 06)

$$u_t = \nabla \cdot [\mu \nabla u - \alpha \mathbf{u} \nabla \mathbf{m}] + u(m - u - v)$$
 in $\Omega \times (0, \infty)$, $v_t = \nu \Delta v + v(m - u - v)$ in $\Omega \times (0, \infty)$,

- Conditional dispersal: Organisms can sense and respond to local environmental cues
- Continuous model: Cantrell, Cosner and L. (Math.Biosci. 06)

$$u_t = \nabla \cdot [\mu \nabla u - \alpha \mathbf{u} \nabla \mathbf{m}] + u(m - u - v) \quad \text{in } \Omega \times (0, \infty),$$

$$v_t = \nu \Delta v + v(m - u - v) \quad \text{in } \Omega \times (0, \infty),$$

$$[\mu \nabla u - \alpha u \nabla m] \cdot n = \nabla v \cdot n = 0 \quad \text{on } \partial \Omega \times (0, \infty)$$
(2)

- Conditional dispersal: Organisms can sense and respond to local environmental cues
- Continuous model: Cantrell, Cosner and L. (Math.Biosci. 06)

$$u_t = \nabla \cdot [\mu \nabla u - \alpha \mathbf{u} \nabla \mathbf{m}] + u(m - u - v) \quad \text{in } \Omega \times (0, \infty),$$

$$v_t = \nu \Delta v + v(m - u - v) \quad \text{in } \Omega \times (0, \infty),$$

$$[\mu \nabla u - \alpha u \nabla m] \cdot n = \nabla v \cdot n = 0 \quad \text{on } \partial \Omega \times (0, \infty)$$
(2)

• α : the strength of advection

• Can such conditional dispersal evolve?

- Can such conditional dispersal evolve?
- Convex domains: conditional dispersal can evolve.

- Can such conditional dispersal evolve?
- Convex domains: conditional dispersal can evolve. Cantrell, Cosner and L. (Proc. Roy Soc. Edin. 07): for convex domains with $\mu=\nu$ and α positive small,

- Can such conditional dispersal evolve?
- Convex domains: conditional dispersal can evolve. Cantrell, Cosner and L. (Proc. Roy Soc. Edin. 07): for convex domains with $\mu = \nu$ and α positive small, $(\tilde{u}, 0)$ is globally asymptotically stable.

- Can such conditional dispersal evolve?
- Convex domains: conditional dispersal can evolve. Cantrell, Cosner and L. (Proc. Roy Soc. Edin. 07): for convex domains with $\mu=\nu$ and α positive small, $(\tilde{u},0)$ is globally asymptotically stable.
- Non-convex domains: conditional dispersal may not evolve.

- Can such conditional dispersal evolve?
- Convex domains: conditional dispersal can evolve. Cantrell, Cosner and L. (Proc. Roy Soc. Edin. 07): for convex domains with $\mu=\nu$ and α positive small, $(\tilde{u},0)$ is globally asymptotically stable.
- Non-convex domains: conditional dispersal may not evolve. There exist some non-convex domains and m(x) such that with $\mu = \nu$ and α positive small, species v is always the winner.

Strong advection induced coexistence

• What happens for large α ?

- What happens for large α ?
- Cantrell et al. (07): Suppose that $|\nabla m| > 0$ a.e in Ω .

- What happens for large α ?
- Cantrell et al. (07): Suppose that $|\nabla m| > 0$ a.e in Ω . For any given μ and ν , if α is large, system (2) has a stable positive steady state.

- What happens for large α ?
- Cantrell et al. (07): Suppose that $|\nabla m| > 0$ a.e in Ω . For any given μ and ν , if α is large, system (2) has a stable positive steady state.
- Chen and L. (Indiana Univ. Math. J, 08): for large α , if m has a unique local maximum, u concentrates around this maximum.

Evolution of conditional dispersal

 What if both species employ both random diffusion and directed movement? (Chen, Hambrock and L., JMB 08)

Evolution of conditional dispersal

 What if both species employ both random diffusion and directed movement? (Chen, Hambrock and L., JMB 08)

$$u_{t} = \nabla \cdot [\mu \nabla u - \alpha u \nabla m] + u(m - u - v) \quad \text{in } \Omega \times (0, \infty),$$

$$v_{t} = \nabla \cdot [\nu \nabla v - \beta v \nabla m] + v(m - u - v) \quad \text{in } \Omega \times (0, \infty),$$

$$\mu \frac{\partial u}{\partial n} - \alpha u \frac{\partial m}{\partial n} = \nu \frac{\partial u}{\partial n} - \beta v \frac{\partial m}{\partial n} = 0 \quad \text{on } \partial \Omega \times (0, \infty)$$
(3)

Evolution of conditional dispersal

 What if both species employ both random diffusion and directed movement? (Chen, Hambrock and L., JMB 08)

$$u_{t} = \nabla \cdot [\mu \nabla u - \alpha u \nabla m] + u(m - u - v) \quad \text{in } \Omega \times (0, \infty),$$

$$v_{t} = \nabla \cdot [\nu \nabla v - \beta v \nabla m] + v(m - u - v) \quad \text{in } \Omega \times (0, \infty),$$

$$\mu \frac{\partial u}{\partial n} - \alpha u \frac{\partial m}{\partial n} = \nu \frac{\partial u}{\partial n} - \beta v \frac{\partial m}{\partial n} = 0 \quad \text{on } \partial\Omega \times (0, \infty)$$
(3)

• Any difference with the case $\beta = 0$?

• $\theta = \theta(x; \beta, \nu) > 0$ satisfies

$$\nabla \cdot [\nu \nabla \theta - \beta \theta \nabla m] + \theta (m - \theta) = 0 \quad \text{in } \Omega,$$

$$\nu \frac{\partial \theta}{\partial n} - \beta \theta \frac{\partial m}{\partial n} = 0$$
 on $\partial \Omega$.

• $\theta = \theta(x; \beta, \nu) > 0$ satisfies

$$\nabla \cdot [\nu \nabla \theta - \beta \theta \nabla m] + \theta (m - \theta) = 0 \quad \text{in } \Omega,$$

$$\nu \frac{\partial \theta}{\partial n} - \beta \theta \frac{\partial m}{\partial n} = 0 \qquad \text{on } \partial \Omega.$$

• Two semi-trivial steady states: $(\theta(x; \alpha, \mu), 0)$ and $(0, \theta(x; \beta, \nu))$

• $\theta = \theta(x; \beta, \nu) > 0$ satisfies

$$\nabla \cdot [\nu \nabla \theta - \beta \theta \nabla m] + \theta (m - \theta) = 0 \quad \text{in } \Omega,$$

$$\nu \frac{\partial \theta}{\partial n} - \beta \theta \frac{\partial m}{\partial n} = 0 \quad \text{on } \partial \Omega.$$

- Two semi-trivial steady states: $(\theta(x; \alpha, \mu), 0)$ and $(0, \theta(x; \beta, \nu))$
- If $|\nabla m| > 0$ a.e in Ω , $(\theta, 0)$ is unstable for large α

• What about the stability of $(0, \theta)$?

- What about the stability of $(0, \theta)$?
- Stability of $(0, \theta)$: the sign of the principal eigenvalue $\lambda(\alpha)$

- What about the stability of $(0, \theta)$?
- Stability of $(0, \theta)$: the sign of the principal eigenvalue $\lambda(\alpha)$

$$\nabla \cdot [\mu \nabla \varphi - \alpha \varphi \nabla \mathbf{m}] + \varphi (\mathbf{m} - \theta) = -\lambda \varphi \quad \text{in } \Omega,$$

$$\mu \frac{\partial \varphi}{\partial n} - \alpha \varphi \frac{\partial m}{\partial n} = 0$$
 on $\partial \Omega$

Eigenvalue problem

• Set
$$\psi = e^{-(\alpha/\mu)m}\varphi$$
.

Eigenvalue problem

• Set $\psi = e^{-(\alpha/\mu)m}\varphi$. Then ψ satisfies $-\mu\Delta\psi - \alpha\nabla\mathbf{m}\cdot\nabla\psi + \psi(\theta - \mathbf{m}) = \lambda(\alpha)\psi \quad \text{in } \Omega,$ $\frac{\partial \psi}{\partial \mathbf{n}} = \mathbf{0}$ on $\partial \Omega$.

Eigenvalue problem

• Set $\psi = e^{-(\alpha/\mu)m}\varphi$. Then ψ satisfies $-\mu\Delta\psi - \alpha\nabla m\cdot\nabla\psi + \psi(\theta-m) = \lambda(\alpha)\psi \quad \text{in } \ \Omega,$ $\frac{\partial\psi}{\partial n} = 0 \quad \text{on } \ \partial\Omega.$

• What is the behavior of $\lambda(\alpha)$ for large α ?

Consider the principal eigenvalue, denoted by $\lambda(\alpha)$, of the problem

$$-\Delta\varphi + \alpha\mathbf{v} \cdot \nabla\varphi + \mathbf{c}(\mathbf{x})\varphi = \lambda\varphi \quad \text{in } \Omega, \quad \frac{\partial\varphi}{\partial\mathbf{n}}|_{\partial\Omega} = \mathbf{0},$$

Consider the principal eigenvalue, denoted by $\lambda(\alpha)$, of the problem

$$-\Delta \varphi + \alpha \mathbf{v} \cdot \nabla \varphi + \mathbf{c}(\mathbf{x})\varphi = \lambda \varphi \quad \text{in } \Omega, \quad \frac{\partial \varphi}{\partial \mathbf{n}}|_{\partial \Omega} = \mathbf{0},$$

• $\alpha > 0$; $\mathbf{v}(x)$: L^{∞} vector field; $\mathbf{c}(x) \in \mathbf{C}(\bar{\Omega})$

Consider the principal eigenvalue, denoted by $\lambda(\alpha)$, of the problem

$$-\Delta \varphi + \alpha \mathbf{v} \cdot \nabla \varphi + c(\mathbf{x})\varphi = \lambda \varphi \quad \text{in } \Omega, \quad \frac{\partial \varphi}{\partial \mathbf{n}}|_{\partial \Omega} = \mathbf{0},$$

- $\alpha > 0$; $\mathbf{v}(x)$: L^{∞} vector field; $\mathbf{c}(x) \in \mathbf{C}(\bar{\Omega})$
- For any α , $\min_{\bar{O}} c \leq \lambda(\alpha) \leq \max_{\bar{O}} c$.

Consider the principal eigenvalue, denoted by $\lambda(\alpha)$, of the problem

$$-\Delta \varphi + \alpha \mathbf{v} \cdot \nabla \varphi + c(\mathbf{x})\varphi = \lambda \varphi \quad \text{in } \Omega, \quad \frac{\partial \varphi}{\partial \mathbf{n}}|_{\partial \Omega} = \mathbf{0},$$

- $\alpha > 0$; $\mathbf{v}(x)$: L^{∞} vector field; $\mathbf{c}(x) \in \mathbf{C}(\bar{\Omega})$
- For any α , $\min_{\bar{\Omega}} c \leq \lambda(\alpha) \leq \max_{\bar{\Omega}} c$.
- Stability: the sign of $\lambda(\alpha)$

• Does $\lim_{\alpha\to\infty}\lambda(\alpha)$ exist? If so, what's the limit?

- Does $\lim_{\alpha\to\infty}\lambda(\alpha)$ exist? If so, what's the limit?
- Berestycki, Hamel and Nadirashvili (Comm. Math Phys. 05):

- Does $\lim_{\alpha\to\infty}\lambda(\alpha)$ exist? If so, what's the limit?
- Berestycki, Hamel and Nadirashvili (Comm. Math Phys. 05): Suppose that $div(\mathbf{v}) = 0$ in Ω and $\mathbf{v} \cdot \mathbf{n} = 0$ on $\partial \Omega$, then

- Does $\lim_{\alpha\to\infty}\lambda(\alpha)$ exist? If so, what's the limit?
- Berestycki, Hamel and Nadirashvili (Comm. Math Phys. 05): Suppose that $div(\mathbf{v}) = 0$ in Ω and $\mathbf{v} \cdot \mathbf{n} = 0$ on $\partial \Omega$, then

$$\lim_{\alpha \to \infty} \lambda(\alpha) = \inf_{\varphi \in \mathcal{I}} \frac{\int_{\Omega} (|\nabla \varphi|^2 + c(x)\varphi^2)}{\int_{\Omega} \varphi^2},$$

- Does $\lim_{\alpha\to\infty}\lambda(\alpha)$ exist? If so, what's the limit?
- Berestycki, Hamel and Nadirashvili (Comm. Math Phys. 05): Suppose that $div(\mathbf{v}) = 0$ in Ω and $\mathbf{v} \cdot \mathbf{n} = 0$ on $\partial \Omega$, then

$$\lim_{\alpha \to \infty} \lambda(\alpha) = \inf_{\varphi \in \mathcal{I}} \frac{\int_{\Omega} (|\nabla \varphi|^2 + c(x)\varphi^2)}{\int_{\Omega} \varphi^2},$$

where $\mathcal{I} = \{ \varphi \in H^1(\Omega) : \varphi \neq 0, \mathbf{v} \cdot \nabla \varphi = 0 \text{ in } \Omega \}.$

• Consider the case when $\mathbf{v} = -\nabla m$, i.e.,

$$-\Delta\varphi - \alpha\nabla\boldsymbol{m}\cdot\nabla\varphi + \boldsymbol{c}(\boldsymbol{x})\varphi = \lambda\varphi \quad \text{in } \Omega, \quad \frac{\partial\varphi}{\partial\boldsymbol{n}}|_{\partial\Omega} = 0.$$

• Consider the case when $\mathbf{v} = -\nabla m$, i.e.,

$$-\Delta \varphi - \alpha \nabla m \cdot \nabla \varphi + c(x)\varphi = \lambda \varphi \quad \text{in } \Omega, \quad \frac{\partial \varphi}{\partial n}|_{\partial \Omega} = 0.$$

• Chen and L. (Indiana Math Univ. J, 08): suppose that $m \in C^2(\bar{\Omega})$ and all critical points of m are non-degenerate.

• Consider the case when $\mathbf{v} = -\nabla m$, i.e.,

$$-\Delta \varphi - \alpha \nabla m \cdot \nabla \varphi + c(x)\varphi = \lambda \varphi \quad \text{in } \Omega, \quad \frac{\partial \varphi}{\partial n}|_{\partial \Omega} = 0.$$

• Chen and L. (Indiana Math Univ. J, 08): suppose that $m \in C^2(\bar{\Omega})$ and all critical points of m are non-degenerate. Then

$$\lim_{\alpha \to \infty} \lambda(\alpha) = \min_{\mathbf{x} \in \mathcal{M}} c(\mathbf{x}),$$

• Consider the case when $\mathbf{v} = -\nabla m$, i.e.,

$$-\Delta \varphi - \alpha \nabla m \cdot \nabla \varphi + c(x)\varphi = \lambda \varphi \quad \text{in } \Omega, \quad \frac{\partial \varphi}{\partial n}|_{\partial \Omega} = 0.$$

• Chen and L. (Indiana Math Univ. J, 08): suppose that $m \in C^2(\bar{\Omega})$ and all critical points of m are non-degenerate. Then

$$\lim_{\alpha \to \infty} \lambda(\alpha) = \min_{\mathbf{x} \in \mathcal{M}} \mathbf{c}(\mathbf{x}),$$

where \mathcal{M} is the set of points of local maximum of m.

Previous work

 Dirichlet boundary conditions: Wentzell (75), Friedman(73), Devinatz, Ellis, Friedman (73/74), Berestycki, Hamel and Nadirashvili (05)...

Previous work

- Dirichlet boundary conditions: Wentzell (75), Friedman(73), Devinatz, Ellis, Friedman (73/74), Berestycki, Hamel and Nadirashvili (05)...
- Front propagation in heterogeneous media: Xin (92), Fannjiang and Papanicolaou (94), Wentzell and Freidlin (98), Xin (02), Berestycki, Hamel and Nadirashvili (05)...

Previous work

- Dirichlet boundary conditions: Wentzell (75), Friedman(73), Devinatz, Ellis, Friedman (73/74), Berestycki, Hamel and Nadirashvili (05)...
- Front propagation in heterogeneous media: Xin (92), Fannjiang and Papanicolaou (94), Wentzell and Freidlin (98), Xin (02), Berestycki, Hamel and Nadirashvili (05)...
- Frame extiction/propagation in fluid: Constantin, Kiselev, Ryzhik and Zalatos

Back to dispersal

Back to dispersal

Recall

$$-\mu\Delta\psi - \alpha\nabla\boldsymbol{m}\cdot\nabla\psi + \psi(\theta-\boldsymbol{m}) = \lambda(\alpha)\psi \quad \text{in } \Omega,$$

$$\frac{\partial\psi}{\partial\boldsymbol{n}} = 0 \quad \text{on } \partial\Omega.$$

Back to dispersal

Recall

$$-\mu\Delta\psi - \alpha\nabla\boldsymbol{m}\cdot\nabla\psi + \psi(\theta-\boldsymbol{m}) = \lambda(\alpha)\psi \quad \text{in } \Omega,$$

$$\frac{\partial\psi}{\partial\boldsymbol{n}} = 0 \quad \text{on } \partial\Omega.$$

It follows from previous result of Chen and L. that

$$\lim_{\alpha \to \infty} \lambda(\alpha) = \min_{\mathcal{M}} (\theta - m),$$

where \mathcal{M} =the set of points of local maximum of m(x).

Recall

$$\nabla \cdot [\nu \nabla \theta - \beta \theta \nabla m] + \theta (m - \theta) = 0 \quad \text{in } \Omega,$$

$$\nu \frac{\partial \theta}{\partial n} - \beta \theta \frac{\partial m}{\partial n} = 0 \quad \text{on } \partial \Omega.$$

Recall

$$\nabla \cdot [\nu \nabla \theta - \beta \theta \nabla m] + \theta (m - \theta) = 0 \quad \text{in } \Omega,$$

$$\nu \frac{\partial \theta}{\partial n} - \beta \theta \frac{\partial m}{\partial n} = 0 \quad \text{on } \partial \Omega.$$

• If $\beta \leq \nu / \max_{\overline{\Omega}} m$,

Recall

$$\nabla \cdot [\nu \nabla \theta - \beta \theta \nabla m] + \theta (m - \theta) = 0 \quad \text{in } \Omega,$$

$$\nu \frac{\partial \theta}{\partial n} - \beta \theta \frac{\partial m}{\partial n} = 0 \quad \text{on } \partial \Omega.$$

• If $\beta \leq \nu / \max_{\overline{\Omega}} m$,

$$\theta(\mathbf{x};\alpha,\mu) < \max_{\bar{\Omega}} \mathbf{m} \cdot \mathbf{e}^{(\beta/\nu)[\mathbf{m}(\mathbf{x}) - \max_{\bar{\Omega}} \mathbf{m}]}, \quad \forall \mathbf{x} \in \bar{\Omega}.$$

Recall

$$\nabla \cdot [\nu \nabla \theta - \beta \theta \nabla m] + \theta (m - \theta) = 0 \quad \text{in } \Omega,$$

$$\nu \frac{\partial \theta}{\partial n} - \beta \theta \frac{\partial m}{\partial n} = 0 \quad \text{on } \partial \Omega.$$

• If $\beta \leq \nu / \max_{\overline{\Omega}} m$,

$$\theta(\mathbf{X};\alpha,\mu) < \max_{\bar{\Omega}} \mathbf{m} \cdot \mathbf{e}^{(\beta/\nu)[\mathbf{m}(\mathbf{X}) - \max_{\bar{\Omega}} \mathbf{m}]}, \quad \forall \mathbf{X} \in \bar{\Omega}.$$

• If $\beta \geq \nu / \min_{\overline{\Omega}} m$,

Recall

$$\nabla \cdot [\nu \nabla \theta - \beta \theta \nabla m] + \theta (m - \theta) = 0 \quad \text{in } \Omega,$$

$$\nu \frac{\partial \theta}{\partial n} - \beta \theta \frac{\partial m}{\partial n} = 0 \quad \text{on } \partial \Omega.$$

• If $\beta \leq \nu / \max_{\overline{\Omega}} m$,

$$\theta(\mathbf{x}; \alpha, \mu) < \max_{\bar{\Omega}} \mathbf{m} \cdot \mathbf{e}^{(\beta/\nu)[\mathbf{m}(\mathbf{x}) - \max_{\bar{\Omega}} \mathbf{m}]}, \quad \forall \mathbf{x} \in \bar{\Omega}.$$

• If $\beta \geq \nu / \min_{\overline{\Omega}} m$,

$$\theta(x; \alpha, \mu) > \max_{\bar{\Omega}} m \cdot e^{(\beta/\nu)[m(x) - \max_{\bar{\Omega}} m]}, \quad \forall x \in \bar{\Omega}.$$

• If $\beta \leq \nu / \max_{\overline{\Omega}} m$, then $\min_{\mathcal{M}} (\theta - m) < 0$;

• If $\beta \leq \nu / \max_{\overline{\Omega}} m$, then $\min_{\mathcal{M}} (\theta - m) < 0$; i.e., $(0, \theta)$ is unstable for large α .

- If $\beta \leq \nu / \max_{\overline{\Omega}} m$, then $\min_{\mathcal{M}} (\theta m) < 0$; i.e., $(0, \theta)$ is unstable for large α .
- If $\beta \geq \nu / \min_{\overline{\Omega}} m$, then $\min_{\mathcal{M}} (\theta m) > 0$ provided that \mathcal{M} consists of one point;

- If $\beta \leq \nu / \max_{\overline{\Omega}} m$, then $\min_{\mathcal{M}} (\theta m) < 0$; i.e., $(0, \theta)$ is unstable for large α .
- If $\beta \geq \nu / \min_{\overline{\Omega}} m$, then $\min_{\mathcal{M}} (\theta m) > 0$ provided that \mathcal{M} consists of one point; i.e., $(0, \theta)$ is stable for large α .

Advection-induced coexistence: $\beta \leq \nu / \max_{\overline{O}} m$

Advection-induced coexistence: $\beta \leq \nu / \max_{\overline{O}} m$

Theorem

Suppose that $|\nabla m| > 0$ a.e. in Ω . If $\beta \le \nu / \max_{\overline{\Omega}} m$, system (3) has one stable positive steady state.

Advection-induced coexistence: $\beta \leq \nu / \max_{\overline{O}} m$

Theorem

Suppose that $|\nabla m| > 0$ a.e. in Ω . If $\beta \le \nu / \max_{\overline{\Omega}} m$, system (3) has one stable positive steady state.

 For large α, the species u concentrates at places of locally most favorable environments, leaving the other species to utilize other resources in the habitat.

Advection-induced extinction: $\beta \ge \nu / \min_{\overline{\Omega}} m$

(A1) $\partial m/\partial n < 0$ on $\partial \Omega$, m has only one critical point x_0 in $\overline{\Omega}$, with $x_0 \in \Omega$ and $D^2m(x_0) < 0$.

Advection-induced extinction: $\beta \ge \nu / \min_{\overline{\Omega}} m$

(A1) $\partial m/\partial n < 0$ on $\partial \Omega$, m has only one critical point x_0 in $\overline{\Omega}$, with $x_0 \in \Omega$ and $D^2m(x_0) < 0$.

Theorem

Suppose that **(A1)** holds. If $\beta \ge \nu / \min_{\overline{\Omega}} m$, then $(0, \theta(x; \beta, \nu))$ is globally asymptotically stable for large α .

Advection-induced extinction: $\beta \ge \nu / \min_{\overline{\Omega}} m$

(A1) $\partial m/\partial n < 0$ on $\partial \Omega$, m has only one critical point x_0 in $\overline{\Omega}$, with $x_0 \in \Omega$ and $D^2m(x_0) < 0$.

Theorem

Suppose that (A1) holds. If $\beta \ge \nu / \min_{\overline{\Omega}} m$, then $(0, \theta(x; \beta, \nu))$ is globally asymptotically stable for large α .

 Strong biased movement of both species can induce the extinction of the species with stronger biased movement

Recall that

$$-\Delta \varphi - \alpha \nabla \mathbf{m} \cdot \nabla \varphi + \mathbf{c}(\mathbf{x})\varphi = \lambda(\alpha)\varphi \quad \text{in } \Omega, \quad \nabla \varphi \cdot \mathbf{n}|_{\partial \Omega} = \mathbf{0}.$$

Recall that

$$-\Delta \varphi - \alpha \nabla \mathbf{m} \cdot \nabla \varphi + \mathbf{c}(\mathbf{x})\varphi = \lambda(\alpha)\varphi \quad \text{in } \Omega, \quad \nabla \varphi \cdot \mathbf{n}|_{\partial \Omega} = 0.$$

By the variational characterization,

$$\lambda(\alpha) = \min_{\{\varphi \in H^1: \varphi \neq 0\}} \frac{\int_{\Omega} e^{\alpha m} (|\nabla \varphi|^2 + c\varphi^2) dx}{\int_{\Omega} e^{\alpha m} \varphi^2 dx}$$

Recall that

$$-\Delta \varphi - \alpha \nabla \mathbf{m} \cdot \nabla \varphi + \mathbf{c}(\mathbf{x})\varphi = \lambda(\alpha)\varphi \quad \text{in } \Omega, \quad \nabla \varphi \cdot \mathbf{n}|_{\partial \Omega} = 0.$$

By the variational characterization,

$$\lambda(\alpha) = \min_{\{\varphi \in H^1: \varphi \neq 0\}} \frac{\int_{\Omega} e^{\alpha m} (|\nabla \varphi|^2 + c\varphi^2) dx}{\int_{\Omega} e^{\alpha m} \varphi^2 dx}$$

• Fix $z \in \mathcal{M}$. For $\delta > 0$, Choose $\epsilon < \delta$ such that

$$\min_{\bar{B}(z,\epsilon)} m =: M_1 > M_2 := \max_{\bar{B}(z,2\delta) \setminus B(z,\delta)} m.$$

Upper bound

Let

$$\varphi(x) = \begin{cases} 1 & \text{if } x \in B(z, \delta), \\ (2\delta - |x|)/\delta & \text{if } x \in B(z, 2\delta) \setminus B(z, \delta), \\ 0 & \text{if } x \notin B(z, 2\delta). \end{cases}$$

Upper bound

Let

$$\varphi(x) = \begin{cases} 1 & \text{if } x \in B(z, \delta), \\ (2\delta - |x|)/\delta & \text{if } x \in B(z, 2\delta) \setminus B(z, \delta), \\ 0 & \text{if } x \notin B(z, 2\delta). \end{cases}$$

Then

$$\begin{split} \lambda(\alpha) &\leqslant \frac{\int_{\Omega} \mathrm{e}^{\alpha m} c \varphi^2}{\int_{\Omega} \mathrm{e}^{\alpha m} \varphi^2} + \frac{\int_{\Omega} \mathrm{e}^{\alpha m} |\nabla \varphi|^2}{\int_{\Omega} \mathrm{e}^{\alpha m} \varphi^2} \\ &\leqslant \max_{\bar{B}(z,2\delta)} c + \frac{\mathrm{e}^{\alpha M_2} \cdot (2\delta)^N}{\delta^2 \cdot \epsilon^N \cdot \mathrm{e}^{\alpha M_1}}. \end{split}$$

Upper bound

Let

$$\varphi(x) = \begin{cases} 1 & \text{if } x \in B(z, \delta), \\ (2\delta - |x|)/\delta & \text{if } x \in B(z, 2\delta) \setminus B(z, \delta), \\ 0 & \text{if } x \notin B(z, 2\delta). \end{cases}$$

Then

$$\begin{split} \lambda(\alpha) &\leqslant \frac{\int_{\Omega} \mathrm{e}^{\alpha m} c \varphi^2}{\int_{\Omega} \mathrm{e}^{\alpha m} \varphi^2} + \frac{\int_{\Omega} \mathrm{e}^{\alpha m} |\nabla \varphi|^2}{\int_{\Omega} \mathrm{e}^{\alpha m} \varphi^2} \\ &\leqslant \max_{\bar{B}(z,2\delta)} c + \frac{\mathrm{e}^{\alpha M_2} \cdot (2\delta)^N}{\delta^2 \cdot \epsilon^N \cdot \mathrm{e}^{\alpha M_1}}. \end{split}$$

• Sending $\alpha \to \infty$ then $\delta \to 0$ we obtain $\overline{\lim}_{\alpha \to \infty} \lambda(\alpha) \leqslant c(z)$.

• By the substitution $\varphi = e^{-(\alpha/2)m}w$,

• By the substitution $\varphi = e^{-(\alpha/2)m}w$,

$$\lambda(\alpha) = \min_{\{w \in H^1: \int_{\Omega} w^2 dx = 1\}} \int_{\Omega} \left\{ |\nabla w - \frac{\alpha}{2} w \nabla m|^2 + c w^2 \right\} dx$$

• By the substitution $\varphi = e^{-(\alpha/2)m}w$,

$$\lambda(\alpha) = \min_{\{w \in H^1: \int_{\Omega} w^2 dx = 1\}} \int_{\Omega} \left\{ |\nabla w - \frac{\alpha}{2} w \nabla m|^2 + c w^2 \right\} dx$$
$$\geq \int_{\Omega} c w^2 dx.$$

• By the substitution $\varphi = e^{-(\alpha/2)m}w$,

$$\lambda(\alpha) = \min_{\{w \in H^1: \int_{\Omega} w^2 dx = 1\}} \int_{\Omega} \left\{ |\nabla w - \frac{\alpha}{2} w \nabla m|^2 + c w^2 \right\} dx$$
$$\geq \int_{\Omega} c w^2 dx.$$

• $\{w^2(\alpha,\cdot)\}_{\alpha>0}$ converges weakly to some probability measure μ^* in the following sense:

• By the substitution $\varphi = e^{-(\alpha/2)m}w$,

$$\lambda(\alpha) = \min_{\{w \in H^1: \int_{\Omega} w^2 dx = 1\}} \int_{\Omega} \left\{ |\nabla w - \frac{\alpha}{2} w \nabla m|^2 + c w^2 \right\} dx$$
$$\geq \int_{\Omega} c w^2 dx.$$

• $\{w^2(\alpha,\cdot)\}_{\alpha>0}$ converges weakly to some probability measure μ^* in the following sense:

$$\lim_{\alpha \to \infty} \int_{\Omega} w^{2}(\alpha, x) \zeta(x) dx = \int_{\bar{\Omega}} \zeta(x) \mu^{*}(dx) \qquad \forall \, \zeta \in C(\bar{\Omega}).$$

• The support of μ^* is contained in \mathcal{M} (technical part)

• The support of μ^* is contained in \mathcal{M} (technical part)

•

$$\underline{\lim}_{\alpha \to \infty} \lambda(\alpha) \ \geqslant \lim_{\alpha \to \infty} \int_{\Omega} c(x) w^2(\alpha, x) dx$$

• The support of μ^* is contained in \mathcal{M} (technical part)

•

$$\underline{\lim}_{\alpha \to \infty} \lambda(\alpha) \ge \lim_{\alpha \to \infty} \int_{\Omega} c(x) w^{2}(\alpha, x) dx$$
$$= \int_{\Omega} c(x) \mu^{*}(dx)$$

• The support of μ^* is contained in \mathcal{M} (technical part)

•

$$\underline{\lim}_{\alpha \to \infty} \lambda(\alpha) \quad \geqslant \lim_{\alpha \to \infty} \int_{\Omega} c(x) w^{2}(\alpha, x) dx$$

$$= \int_{\Omega} c(x) \mu^{*}(dx)$$

$$= \int_{\mathcal{M}} c(x) \mu^{*}(dx)$$

Lower bound

• The support of μ^* is contained in \mathcal{M} (technical part)

$$\underline{\lim}_{\alpha \to \infty} \lambda(\alpha) \geqslant \lim_{\alpha \to \infty} \int_{\Omega} c(x) w^{2}(\alpha, x) dx$$

$$= \int_{\Omega} c(x) \mu^{*}(dx)$$

$$= \int_{\mathcal{M}} c(x) \mu^{*}(dx)$$

$$\geqslant \min_{\mathcal{M}} c \cdot \int_{\mathcal{M}} \mu^{*}(dx)$$

Lower bound

• The support of μ^* is contained in \mathcal{M} (technical part)

•

$$\underline{\lim}_{\alpha \to \infty} \lambda(\alpha) \geqslant \lim_{\alpha \to \infty} \int_{\Omega} c(x) w^{2}(\alpha, x) dx$$

$$= \int_{\Omega} c(x) \mu^{*}(dx)$$

$$= \int_{\mathcal{M}} c(x) \mu^{*}(dx)$$

$$\geqslant \min_{\mathcal{M}} c \cdot \int_{\mathcal{M}} \mu^{*}(dx)$$

$$= \min_{\mathcal{M}} c$$

Lower bound

• The support of μ^* is contained in \mathcal{M} (technical part)

•

$$\underline{\lim}_{\alpha \to \infty} \lambda(\alpha) \geqslant \lim_{\alpha \to \infty} \int_{\Omega} c(x) w^{2}(\alpha, x) dx$$

$$= \int_{\Omega} c(x) \mu^{*}(dx)$$

$$= \int_{\mathcal{M}} c(x) \mu^{*}(dx)$$

$$\geqslant \min_{\mathcal{M}} c \cdot \int_{\mathcal{M}} \mu^{*}(dx)$$

$$= \min_{\mathcal{M}} c$$

$$\geqslant \overline{\lim}_{\alpha \to \infty} \lambda(\alpha).$$

$$\int_{\Omega} |\nabla w - \frac{\alpha}{2} w \nabla m|^2 = \lambda(\alpha) - \int_{\Omega} c w^2 \le \max_{\bar{\Omega}} c - \min_{\bar{\Omega}} c$$

 $\int_{\Omega} |\nabla w - \frac{\alpha}{2} w \nabla m|^2 = \lambda(\alpha) - \int_{\Omega} c w^2 \leq \max_{\bar{\Omega}} c - \min_{\bar{\Omega}} c$

Formally,

$$\int_{\Omega} |\nabla m|^2 \mu^*(\,dx) = \lim_{\alpha \to \infty} \int_{\Omega} |\nabla m|^2 w^2 = 0$$

 $\int_{\Omega} |\nabla w - \frac{\alpha}{2} w \nabla m|^2 = \lambda(\alpha) - \int_{\Omega} c w^2 \le \max_{\bar{\Omega}} c - \min_{\bar{\Omega}} c$

Formally,

$$\int_{\Omega} |\nabla m|^2 \mu^*(\,dx) = \lim_{\alpha \to \infty} \int_{\Omega} |\nabla m|^2 w^2 = 0$$

ullet The support of μ^* is contained in the set of the critical points of m

(Hambrock and L., BMB in revision)

Theorem

Suppose $\mu = \nu$, $\Omega = (0, 1)$, and $m_x > 0$ on [0, 1].

(Hambrock and L., BMB in revision)

Theorem

Suppose $\mu = \nu$, $\Omega = (0, 1)$, and $m_x > 0$ on [0, 1].

(i) If $0 \le \beta < \nu / \max_{\overline{\Omega}} m$, then there exists $\delta_1 > 0$ such that for $\alpha \in (\beta, \beta + \delta_1)$, species u wins.

(Hambrock and L., BMB in revision)

Theorem

Suppose $\mu = \nu$, $\Omega = (0, 1)$, and $m_x > 0$ on [0, 1].

- (i) If $0 \le \beta < \nu / \max_{\overline{\Omega}} m$, then there exists $\delta_1 > 0$ such that for $\alpha \in (\beta, \beta + \delta_1)$, species u wins.
- (ii) If $\beta > \nu / \min_{\overline{\Omega}} m$, then there exists $\delta_2 > 0$ such that for $\alpha \in (\beta, \beta + \delta_2)$, species ν wins.

(Hambrock and L., BMB in revision)

Theorem

Suppose $\mu = \nu$, $\Omega = (0, 1)$, and $m_x > 0$ on [0, 1].

- (i) If $0 \le \beta < \nu / \max_{\overline{\Omega}} m$, then there exists $\delta_1 > 0$ such that for $\alpha \in (\beta, \beta + \delta_1)$, species u wins.
- (ii) If $\beta > \nu / \min_{\overline{\Omega}} m$, then there exists $\delta_2 > 0$ such that for $\alpha \in (\beta, \beta + \delta_2)$, species ν wins.
 - The stronger advector wins if advection rates are not large; The weaker advector wins if advection rates are large.

Theorem

Suppose $\alpha = \beta$, $\Omega = (0,1)$ and $m_x > 0$ on [0,1].

Theorem

Suppose $\alpha = \beta$, $\Omega = (0,1)$ and $m_x > 0$ on [0,1].

(i) If $0 \le \alpha < \mu / \max_{\overline{\Omega}} m$, then there exists $\delta_3 > 0$ such that for $\nu \in (\mu, \mu + \delta_3)$, species u wins.

Theorem

Suppose $\alpha = \beta$, $\Omega = (0,1)$ and $m_x > 0$ on [0,1].

- (i) If $0 \le \alpha < \mu / \max_{\overline{\Omega}} m$, then there exists $\delta_3 > 0$ such that for $\nu \in (\mu, \mu + \delta_3)$, species u wins.
- (ii) If $\alpha > \max(\mu/\min_{\overline{\Omega}} m, \max_{\overline{\Omega}} m/\min_{\overline{\Omega}} m_x)$, there exists $\delta_4 > 0$ such that for $\nu \in (\mu, \mu + \delta_4)$, species ν wins.

Theorem

Suppose $\alpha = \beta$, $\Omega = (0,1)$ and $m_x > 0$ on [0,1].

- (i) If $0 \le \alpha < \mu / \max_{\overline{\Omega}} m$, then there exists $\delta_3 > 0$ such that for $\nu \in (\mu, \mu + \delta_3)$, species u wins.
- (ii) If $\alpha > \max(\mu/\min_{\overline{\Omega}} m, \max_{\overline{\Omega}} m/\min_{\overline{\Omega}} m_x)$, there exists $\delta_4 > 0$ such that for $\nu \in (\mu, \mu + \delta_4)$, species ν wins.
 - The slower diffuser wins when advection rates are not large, and the faster diffuser wins if advection rates are large.

Predator and prey dispersal strategies

Predator and prey dispersal strategies

 Patch models for mutual behaviorial adjustments of predator and perys: Iwasa 1982; Sih 1984, 1988; Schwinning and Rosenzweig 1990; Abrams 1992; Hugie and Dill 1994; Alonzo 2002; Abrams 2007; Abrams, Cressman, and Krivan; etc

Predator and prey dispersal strategies

- Patch models for mutual behaviorial adjustments of predator and perys: Iwasa 1982; Sih 1984, 1988; Schwinning and Rosenzweig 1990; Abrams 1992; Hugie and Dill 1994; Alonzo 2002; Abrams 2007; Abrams, Cressman, and Krivan; etc
- Reaction-diffusion model: Kareiva and Odell 1987

 "Leapfrogging": Some predators appear to ignore the prey and pay attention only to the resource of the prey

 "Leapfrogging": Some predators appear to ignore the prey and pay attention only to the resource of the prey

$$P_{i,t} = \nabla \cdot [d_i \nabla P_i - \alpha_i P_i \nabla \mathbf{f_i}(\mathbf{R}, \mathbf{V})] + P_i(-k_i + a_i V), \ i = 1, 2,$$

$$V_t = d_V \Delta V + V[R(x) - V - b_1 P_1 - b_2 P_2]$$

$$[d_i \nabla P_i - \alpha_i P_i \nabla f_i(R, V)] \cdot n = \nabla V \cdot n = 0 \text{ on } \partial \Omega \times (0, \infty)$$

 "Leapfrogging": Some predators appear to ignore the prey and pay attention only to the resource of the prey

$$P_{i,t} = \nabla \cdot [d_i \nabla P_i - \alpha_i P_i \nabla \mathbf{f_i}(\mathbf{R}, \mathbf{V})] + P_i (-k_i + a_i V), \ i = 1, 2,$$

$$V_t = d_v \Delta V + V[R(x) - V - b_1 P_1 - b_2 P_2]$$

$$[d_i \nabla P_i - \alpha_i P_i \nabla f_i(R, V)] \cdot n = \nabla V \cdot n = 0 \text{ on } \partial \Omega \times (0, \infty)$$

 The resource tracking predator can invade before the prey tracking predator when both are rare;

 "Leapfrogging": Some predators appear to ignore the prey and pay attention only to the resource of the prey

$$P_{i,t} = \nabla \cdot [d_i \nabla P_i - \alpha_i P_i \nabla \mathbf{f_i}(\mathbf{R}, \mathbf{V})] + P_i(-k_i + a_i V), \ i = 1, 2,$$

$$V_t = d_v \Delta V + V[R(x) - V - b_1 P_1 - b_2 P_2]$$

$$[d_i \nabla P_i - \alpha_i P_i \nabla f_i(R, V)] \cdot n = \nabla V \cdot n = 0 \text{ on } \partial \Omega \times (0, \infty)$$

 The resource tracking predator can invade before the prey tracking predator when both are rare; When one predator has invaded and the other is rare, the resource tracking predator can invade the prey tracking predator, but not vice versa.

Acknowledgement

Collaborators:

- Stephen Cantrell (University of Miami)
- Xinfu Chen (University of Pittsburgh)
- Chris Cosner (University of Miami)
- Samuel Flaxman (University of Colorado at Boulder)
- Richard Hambrock (Ohio State University)

Acknowledgement

Collaborators:

- Stephen Cantrell (University of Miami)
- Xinfu Chen (University of Pittsburgh)
- Chris Cosner (University of Miami)
- Samuel Flaxman (University of Colorado at Boulder)
- Richard Hambrock (Ohio State University)

Support:

- NSF
- Mathematical Biosciences Institute

Thank you