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Outline

� Overview of regulation, definition of the IRC

� Important modeling issues

Default and migration probabilities for short horizons

Embedding a multivariate migration model in a multistep process

Estimating liquidity horizon

� Sample portfolio results

� Conclusion
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Incremental Risk Charge (IRC)

� Motivation 1:  regulatory capital for bank trading portfolios was too small.

� Motivation 2:  losses were not simply due to defaults, but also to downgrades.

� BIS issued third consultative paper in February 2009.  Implementation 

expected for 2010.

� New minimum trading book capital is composed of

99%, 10 day Value-at-Risk (old)

99%, 10 day “stressed” Value-at-Risk (new)

Incremental Risk Charge (new)
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Incremental Risk Charge (IRC) defined

� Covers corporate bonds, CDS, equity, NOT securitizations

� One-year, 99.9% Value-at-Risk

� Changes due to default and migration

� Liquidity horizon

... represents the time required to sell the position or to hedge all material risks …
in a stressed market. The liquidity horizon … should be sufficiently long that the act 
of selling or hedging, in itself, does not materially affect market prices.

Minimum of three months for each position

� “Constant level of risk”

… a bank rebalances … its trading positions over the one-year capital horizon in a 
manner that maintains the initial risk level, as indicated by a metric such as VaR or 
the profile of exposure by credit rating and concentration. … The frequency of the 
assumed rebalancing must be governed by the liquidity horizon for a given position.
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How to estimate short-horizon transition 
probabilities?

� Infer from pricing

No migrations

Physical or risk neutral?

Through the cycle?

Limited liquidity inside one year

� Directly from default and ratings data

Estimation error

� Infer from empirical one-year transition matrix

Assumption of Markov process (no ratings momentum, for instance)

Assumption of time homogeneity (can be relaxed)

Not always possible … arbitrary “regularization” needed

For better or worse, generally accepted



6www.riskmetrics.com 6Risk Management  

Simple explanation of Markov problems

� Consider the one-year TM:

2/3 1/3 0

1/3 1/3 1/3

0 0 1

� What is six-month TM under time homogeneous Markov assumptions?

Clearly, bottom category can default in six months

If top category can downgrade in six months, then it can default in one year.

If top cannot downgrade in six months, then it cannot downgrade over full year.
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What do different methods tell us?

� Produce monthly conditional default probabilities.

� Under simplest model, this profile is flat, and there is no benefit to 

rebalancing.

� Examine conditional default probabilities, normalized by first month.

� Rebalancing for constant level of risk should help if curve is upward sloping.  

(Groundhog Day is better than real life.)
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Infer from empirical one-year matrix
Time homogeneous case
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Non-time homogeneous case … calibrated to match 
longer horizon transition matrices
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See Bluhm and Overbeck (2005).
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CDS-implied, selected names in CDX.IG
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Multi-step, multivariate default risk model

� With the right conditional default probabilities, it is obvious how to simulate a 

single issuer and recover the right one-year behavior.

� What to do with multiple obligors?

� Naïve approach is to “just” apply the standard asset correlation model for 

each period.

� But does this recover the right joint one-year default probabilities?
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Watering down effective correlation by adding steps 

For 27bp one-year default probability (BBB)



13www.riskmetrics.com 13Risk Management  

What happened?

� Asset value explanation

If two firms’ assets are highly correlated, then a default in one period by one firm 
will imply the second firm likely starts from a lower asset value for the second 
period.  So second period conditional default probability should be higher.

Independent steps wash out this temporal correlation.

Modeling ratings migrations should mitigate this effect.

And do we care if we are rebalancing?

� Copula explanation

Replaced a single normal copula with one-year PD by an independent set of normal 
copulas with smaller PDs.

No tail dependence in normal copula … correlation washes out.
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Resolve by specifying a true continuous time model.
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Estimating liquidity horizon

� Cynical question … can I claim all my positions have three-month liquidity?

� How to measure for CDS?

Now have net market exposure information from DTCC.  

GE Capital – 74B gross exposure, fell by 11B week of 27 April, 12B in new trades

Campbell's – 17B gross exposure, rose by 32M

Dillard’s – 5B gross exposure, rose by 106M

Typical position size … 10-100M notional

� How to measure for bonds?

TRACE data on transactions

Typical bond position … 1-100M (based on mutual fund holdings)
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Campbell’s Soup, matures Oct 2013, 300M issuance
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GE Capital MTN, matures Jun 2009, 100M issuance
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Dillard’s, matures Aug 2018, 200M issuance
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Portfolio examples

� If liquidity horizon is constant across the portfolio, we may use the 

convolution approach:

Simulate portfolio over the liquidity horizon.  Obtain a distribution of (for example) 
three-month losses.

Assume at the end of the period, the portfolio is rebalanced back to a (scaled) 
version of the original.

Assume (scaled) second period losses are drawn from the same three-month loss 
distribution, and independent of first period losses.

Repeat …

� This is not quite the same as “resetting” each position back to its initial state.
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Comparisons

� Portfolios:  constituents of most recent CDX investment grade and high yield 

indices

� Liquidity horizons: three, six, twelve months

� Methods

Default only, constant hazard scaling of default probabilities 

Default only, scaling of default probabilities from time homogeneous Markov 
assumptions on the transition matrix (data from before)

Migration, with Markov scaling of transition matrix

� What are the impacts of

Term structure of default probabilities?

Migrations? 

Rebalancing, liquidity horizon?

Correlation “washout”?
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CDX Investment Grade, Series 12 (issued Mar 2009)
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CDX High Yield, Series 12 (issued Mar 2009)
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CDX Investment Grade, Series 12 (issued Mar 2009)
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CDX High Yield, Series 12 (issued Mar 2009)
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Conclusions

� Short-horizon probabilities … we know what to expect qualitatively, but lots of 

wiggle room

� Even more wiggle room in how we create a multistep process … be careful 

about what correlation really means.

� Liquidity horizon … will be hard to argue that we can always liquidate in three 

months.

� Portfolio results

IG benefits from rebalancing (expected), HY does not

IG vol risks are comparable to default and migration

HY sees most risk from default, little impact of migration

IG has higher correlation sensitivity

Hard to disentangle correlation washing from other effects, but rebalancing seems 
to have a larger impact.


