Optimal Use of Drug Supply during Pandemic Influenza

Seyed M. Moghadas

NRC-Institute for Biodiagnostics and
The University of Winnipeg

MITACS-Fields Workshop August 2008

De la découverse à l'innaçasina... a l'œuvre pour le

Influenza: A Viral Disease

Influenza is a respiratory disease RNA viruses of the Orthomyxoviridae family influenza viruses (Hosts: humans, birds, (Host: humans) (Host: humans) non-primate mammals) (strains) Influenza A viruses responsible for the vast majority of epidemics and H1N1 H2N2 H3N2 H5N1 H7N7 H9N2 documented Pandemics

What is Pandemic?

- Global spread of disease with a new influenza viral strain
- What do we know?
 - pandemics will occur!
- What do we not know?
 - when it will occur; where it will originate; what virus will cause it
- 31 documented pandemics since 1580
- Pandemics of the last century:
 - 1918 (H1N1): Over 50 million deaths; Over 500 million infections
 - 1957 (H2N2): ~ 2 million deaths
 - 1968 (H3N2): ~ 1 million deaths
- Next pandemic: H5N1 (maybe ... who knows?)

Control Strategies: Prevention and Treatment

- Non-pharmaceutical:
 - Isolation/quarantine (infectious/infected)
 - social distancing (school/border closure; travel restriction ...)
 - personal protection (masks, gowns, gloves ...)
- Severe Acute Respiratory Syndrome (SARS):
 - a modern example of containing a global epidemic through nonpharmaceutical public health interventions.
- Pharmaceutical:
 - vaccine (may not be available for newly emergent viruses)
 - Limitation: low efficacy; insufficient quantities; inadequate immune response
 - Antiviral drugs (prevention and treatment):
 - Limitation: inadequate supply; emergence of drug-resistance

Antiviral Therapy

- Antiviral drug use:
 - pre-exposure prophylaxis of susceptibles (prevention)
 - post-exposure prophylaxis of close contacts (prevention/treatment)
 - treatment of clinical infections
- Major threat to drug-use and effectiveness:
 - emergence of drug-resistance
- Competing issues in antiviral strategies:
 - minimizing the overall incidence of infection
 - requires aggressive treatment
 - preventing the spread of drug-resistance
- avoid aggressive treatment
- Public Health Concern: strategic/optimal use of drugs
 - evaluating effectiveness of antiviral strategies: modelling approach

Disease Transmission in the Population

- Basic Reproduction Number (R_0) :
 - number of new infections produced by a single infected individual introduced into an entirely susceptible population

$$R_0 = \frac{\beta S_0}{\mu}$$

- $R_0 > 1$: disease spreads (epidemic)
- R_0 <1: disease dies out (no epidemic)

R_0 for Previous Pandemics

	1918	1957	1968	
Viboud et al. 2006, Vaccine	2.1	1.5	1.8	
Gani et al. 2005, Emerging Infectious Diseases	2	1.7	2.2	
Mills et al. 2004, Nature	2			
Longini et al. 1986, American Journal of Epidemiology	E l'oeux	rre pour le	1.9	

SIR Model for Drug-Resistance

Model Equations

$$\begin{split} \frac{dS}{dt} &= -\beta (I_U + \delta_T I_T + \delta_r I_r) S, \\ \frac{dI_U}{dt} &= (1 - p)\beta (I_U + \delta_T I_T) S - (d_U + \gamma_U) I_U, \\ \frac{dI_T}{dt} &= p\beta (I_U + \delta_T I_T) S - (d_T + \gamma_T) I_T - \alpha_T I_T, \\ \frac{dI_r}{dt} &= \delta_r \beta I_r S + \alpha_T I_T - (d_r + \gamma_r) I_r, \end{split}$$

Critical parameters:

p: treatment level

 δ_{T} : drug-efficacy

 α_T : rate of developing drug-resistance

 δ_r : relative transmissibility of resistance

Various Treatment Strategies

- Constant treatment level throughout the epidemic
 - resistance can widely spread for high treatment levels
 Lipsitch et al, PLoS Medicine (2007)
 Moghadas et al, PLoS ONE (2008)
- Variable treatment level:
 - High initial treatment levels followed by a reduction in antiviral use
 - poor strategy in control of resistance
 Ferguson et al, Nature (2005)
 - Adaptive treatment strategy:
 - low initial treatment levels followed by a timely intensive treatment
 - Prevent resistance spread and reduce the overall infections
 Moghadas et al, PLoS ONE (2008)
 Moghadas, Proc. R. Soc. B (2008)

Constant Treatment Strategy

minimum infections (in the presence of resistance)

spread of resistance for high treatment levels

reduction in total infections (in the absence of resistance)

Adaptive Treatment Strategy: Total Infection

Adaptive Treatment Strategy: Resistance

Limited Stockpile: Consequences of Run-Out

Problems

- Assumptions:
 - emergence of resistance
 - stockpile is limited and run-out is likely to occur
- Find the optimal treatment strategy to:
 - minimize disease burden
 - prevent the spread of resistance
 - adjust policy according to emerging information
- What is the best modelling approach?
 - determinism versus stochasticity
 - identify key parameters of the model
 - validating the model and its predictions

Acknowledgements

Collaboration with:

Alexander ME; Bowman CS (NRC-Institute for Biodiagnostics)

Arino J; Hua Y (University of Manitoba)

Brauer F (University of British Columbia)

Feng Z (Purdue University)

Gardam M (University Health Network)

Liang D; Wu J; Zeng Q; Zhu H (York University)

Röst G (University of Szeged)

van den Driessche P (University of Victoria)

Watmough J (University of New Brunswick)

Yan P (Public Health Agency of Canada)

Financial Support:

MITACS; MOHLTC; NSERC; CRCP; OTKA; PHAC