The Hospital for Sick Children

Synchronization in Brain Recordings

Busy People

Rajaa Altalli, Maurino Bautista, David De la Rosa, Irma Diaz Bobadilla, Pe Howell, Mark McGuinness, Mario Morfir amirez, Alexandra Ortan, Joel Phillips, D Ross, Vincent Quenneville-Belair, Luz Angelica Caudillo-Mata, Jonathan Wylie, Bob Anderssen

and our Industrial Reps uis Garcia Dominguez, Ramon Guevara E

he Problem

gnetoencephalogram (MEG) ordings are taken at over 100

ations around a head

 $time series data f_i(t) are analysed for$

chronicity

tudy functional connectivity in brain

vity

nt to distinguish between

ue synchronicity, and

ıme series

synchronization plot during a seizure

nchronization plot during normal brain act

alse) synchronization is seen it sensors ai close together, too

how close is too close

Physics

Biot-Savart law: tic field B due to magnetic dipole:

$$rac{\mu_0 q(t)}{4\pi r^3} \left[rac{3(\mathbf{m}\cdot\mathbf{r})\,\mathbf{r}}{r^2} - \mathbf{m}
ight]$$

e the dipole is q(t)m m is a unit vector

nchronicity

Principle, we could:

Assume n dipoles, each with position x_i , prientation θ_i , time series $F_i(t)$

Use the data at the surface to solve the inverse problem and estimate each of the time series $F_i(t)$

Then test each pair of time series for synchronicity

Problem.

Too many parameters and not enough data

Unknown number of dipoles

Inverse problem is infeasible

But can we devise a measure that will indicate synchronicity?

Synchronicity

have a time series $f_j(t)$ complexify f_j by using the Hilbert transform

$$\widehat{f}(t) = \frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{f(\tau)}{t - \tau} d\tau,$$

ten use
$$f_j + i\hat{f}_j = re^{i\phi_j}$$

be define the phase ϕ_j of the jth sensor hen form the average $\left|\left\langle e^{i(\phi_j - \phi_k)}\right\rangle\right|$

Effect of filtering?

- a filter is applied to data before calculating phase
- no filter means no synchronization S seen
- white noise gives S ~ 0.3 after filtering

 $F(t) = \sum_{c_n e} int$ the place of this is \$ where CITY OF

Principal Components Analysis:

Figure 1: Original Data

two-dimensional brain!

autosynchrc

Test Hypotheses

MODEL 1: The data is well described by the unsynchronized brain

MODEL 2: The map produced by a pair of perfectly synchronized dipoles PLUS the map for the unsynchronized brain describes the data

Simulations

ocal inverse problem

$$\mathbf{B} = \frac{\mu_0 q}{4\pi r^3} \left(\frac{3(\mathbf{m} \cdot \mathbf{r})\mathbf{r}}{r^2} - \mathbf{m} \right)$$

plicity, restrict to two dimensions, with $\mathbf{m} = (\cos \theta, \sin \theta)$. ion (x, -d) leads to a signal

$$s(x) = \frac{q}{(x^2 + d^2)^{3/2}} \left\{ \frac{3d(-x\cos\theta + d\sin\theta)}{x^2 + d^2} - \sin\theta \right\}$$

urface y = 0.

$$s(x) = \frac{q}{(x^2 + d^2)^{3/2}} \left\{ \frac{3d(-x\cos\theta + d\sin\theta)}{x^2 + d^2} - \sin\theta \right\}$$

pose we measure the signals at three sensors; say s(x) = 1 (with generality), $s(x-1) = s_1$, $s(x+1) = s_2$. We pose the question: easured values consistent with a single dipole? If not, we must ug at least two sources.

liminating q and θ , we get the equation

$$\frac{l^{2}+\left(x-1\right)^{2})^{5/2}\left(2d^{2}+x+x^{2}\right)}{2\left(d^{2}+x^{2}\right)^{5/2}\left(2d^{2}+x^{2}-1\right)}\right\} s_{1}+\left\{\frac{\left(d^{2}+\left(x+1\right)^{2}\right)^{5/2}\left(2d^{2}-x\right)}{2\left(d^{2}+x^{2}\right)^{5/2}\left(2d^{2}+x^{2}-1\right)}\right\} s_{2}+\left\{\frac{\left(d^{2}+\left(x+1\right)^{2}\right)^{5/2}\left(2d^{2}+x^{2}-1\right)}{2\left(d^{2}+x^{2}\right)^{5/2}\left(2d^{2}+x^{2}-1\right)}\right\} s_{3}+\left\{\frac{\left(d^{2}+\left(x+1\right)^{2}\right)^{5/2}\left(2d^{2}+x^{2}-1\right)}{2\left(d^{2}+x^{2}\right)^{5/2}\left(2d^{2}+x^{2}-1\right)}\right\} s_{4}+\left\{\frac{\left(d^{2}+\left(x+1\right)^{2}\right)^{5/2}\left(2d^{2}+x^{2}-1\right)}{2\left(d^{2}+x^{2}\right)^{5/2}\left(2d^{2}+x^{2}-1\right)}\right\} s_{4}+\left\{\frac{\left(d^{2}+\left(x+1\right)^{2}\right)^{5/2}\left(2d^{2}+x^{2}-1\right)}{2\left(d^{2}+x^{2}\right)^{5/2}\left(2d^{2}+x^{2}-1\right)}\right\} s_{4}+\left\{\frac{\left(d^{2}+\left(x+1\right)^{2}\right)^{5/2}\left(2d^{2}+x^{2}-1\right)}{2\left(d^{2}+x^{2}\right)^{5/2}\left(2d^{2}+x^{2}-1\right)}\right\} s_{4}+\left\{\frac{\left(d^{2}+\left(x+1\right)^{2}\right)^{5/2}\left(2d^{2}+x^{2}-1\right)}{2\left(d^{2}+x^{2}\right)^{5/2}\left(2d^{2}+x^{2}-1\right)}\right\} s_{4}+\left\{\frac{\left(d^{2}+\left(x+1\right)^{2}\right)^{5/2}\left(2d^{2}+x^{2}-1\right)}{2\left(d^{2}+x^{2}-1\right)}\right\} s_{4}+\left(\frac{\left(d^{2}+\left(x+1\right)^{2}\right)^{5/2}\left(2d^{2}+x^{2}-1\right)}{2\left(d^{2}+x^{2}-1\right)}\right\} s_{4}+\left(\frac{\left(d^{2}+\left(x+1\right)^{2}\right)^{5/2}\left(2d^{2}+x^{2}-1\right)}{2\left(d^{2}+x^{2}-1\right)}\right\} s_{4}+\left(\frac{\left(d^{2}+x^{2}-1\right)^{5/2}\left(2d^{2}+x^{2}-1\right)}{2\left(d^{2}+x^{2}-1\right)}\right\} s_{4}+\left(\frac{\left(d^{2}+x^{2}-1\right)^{5/2}\left(2d^{2}+x^{2}-1\right)}{2\left(d^{2}+x^{2}-1\right)}\right\} s_{4}+\left(\frac{\left(d^{2}+x^{2}-1\right)^{5/2}\left(2d^{2}+x^{2}-1\right)}{2\left(d^{2}+x^{2}-1\right)}\right\} s_{4}+\left(\frac{\left(d^{2}+x^{2}-1\right)^{5/2}\left(2d^{2}+x^{2}-1\right)}{2\left(d^{2}+x^{2}-1\right)}\right\} s_{4}$$

moment, suppose we know d = 1 (this is quite realistic in practic is equation can have two or no roots for x, depending on the val d s_2 .

d exceeds a critical value ≈ 0.345 .

Questions?