Uniformly hyperbolic $S L(2, \mathbf{R})$ cocycles

Jean-Christophe Yoccoz

Collège de France

Toronto, Fields Institute, May 25, 2009

Linear cocycles

Given

- A compact metric space X,

Linear cocycles

Given

- A compact metric space X,
- a homeomorphism $f: X \rightarrow X$,

Linear cocycles

Given

- A compact metric space X,
- a homeomorphism $f: X \rightarrow X$,
- a vector bundle $\pi: E \rightarrow X$,

Linear cocycles

Given

- A compact metric space X,
- a homeomorphism $f: X \rightarrow X$,
- a vector bundle $\pi: E \rightarrow X$,
a linear cocycle over f is a vector bundle map $F: E \rightarrow E$ over $f:$

Linear cocycles

Given

- A compact metric space X,
- a homeomorphism $f: X \rightarrow X$,
- a vector bundle $\pi: E \rightarrow X$,
a linear cocycle over f is a vector bundle map $F: E \rightarrow E$ over f : $F_{x}: E_{x} \rightarrow E_{f(x)}$ is linear and depends continuously on x.

Linear cocycles

Given

- A compact metric space X,
- a homeomorphism $f: X \rightarrow X$,
- a vector bundle $\pi: E \rightarrow X$,
a linear cocycle over f is a vector bundle map $F: E \rightarrow E$ over $f:$ $F_{x}: E_{x} \rightarrow E_{f(x)}$ is linear and depends continuously on x.

We will always assume that F is invertible.

The basic example

- X is a manifold,

The basic example

- X is a manifold,
- f is a C^{1} diffeomorphism of X,

The basic example

- X is a manifold,
- f is a C^{1} diffeomorphism of X,
- E is the tangent bundle of X,

The basic example

- X is a manifold,
- f is a C^{1} diffeomorphism of X,
- E is the tangent bundle of X,
- F is the tangent map of f.

Uniform hyperbolicity

Definition A linear cocycle $F: E \rightarrow E$ is uniformly hyperbolic if there is an F-invariant continuous splitting $E=E^{s} \oplus E^{u}$ and constants $C>0,0<\lambda<1$ such that, for all $n \geq 0$ and $x \in X$

$$
\begin{aligned}
& \left\|F_{\mid E_{x}^{s}}^{n}\right\| \leq C \lambda^{n} \\
& \left\|F_{\mid E_{x}^{u}}^{-n}\right\| \leq C \lambda^{n} .
\end{aligned}
$$

Uniform hyperbolicity

Definition A linear cocycle $F: E \rightarrow E$ is uniformly hyperbolic if there is an F-invariant continuous splitting $E=E^{s} \oplus E^{u}$ and constants $C>0,0<\lambda<1$ such that, for all $n \geq 0$ and $x \in X$

$$
\begin{aligned}
\left\|F_{\mid E_{x}^{s}}^{n}\right\| & \leq C \lambda^{n} \\
\left\|F_{\mid E_{x}^{u}}^{-n}\right\| & \leq C \lambda^{n} .
\end{aligned}
$$

In this case, one can always find an adapted norm on E such that $C=1$.

The conefield criterion

A linear cocycle $F: E \rightarrow E$ is uniformly hyperbolic iff there are constants $C>0, \lambda>1$ and, for each $x \in X$, a splitting $E_{x}=E_{x}^{1} \oplus E_{x}^{2}$ and norms $\left|.\left.\right|_{1},|\cdot|_{2}\right.$ on E_{x}^{1}, E_{x}^{2} respectively such that, writing $F_{x}\left(v_{1}+v_{2}\right)=w_{1}+w_{2}$ with $v_{i} \in E_{x}^{i}, w_{i} \in E_{f(x)}^{i}$

The conefield criterion

A linear cocycle $F: E \rightarrow E$ is uniformly hyperbolic iff there are constants $C>0, \lambda>1$ and, for each $x \in X$, a splitting $E_{x}=E_{x}^{1} \oplus E_{x}^{2}$ and norms $|\cdot|_{1},|\cdot|_{2}$ on E_{x}^{1}, E_{x}^{2} respectively such that, writing $F_{x}\left(v_{1}+v_{2}\right)=w_{1}+w_{2}$ with $v_{i} \in E_{x}^{i}, w_{i} \in E_{f(x)}^{i}$

- $C^{-1}\left\|v_{i}\right\| \leq\left|v_{i}\right|_{i} \leq C\left\|v_{i}\right\|$,

The conefield criterion

A linear cocycle $F: E \rightarrow E$ is uniformly hyperbolic iff there are constants $C>0, \lambda>1$ and, for each $x \in X$, a splitting $E_{x}=E_{x}^{1} \oplus E_{x}^{2}$ and norms $|\cdot|_{1},|\cdot|_{2}$ on E_{x}^{1}, E_{x}^{2} respectively such that, writing $F_{x}\left(v_{1}+v_{2}\right)=w_{1}+w_{2}$ with $v_{i} \in E_{x}^{i}, w_{i} \in E_{f(x)}^{i}$

- $C^{-1}\left\|v_{i}\right\| \leq\left|v_{i}\right|_{i} \leq C\left\|v_{i}\right\|$,
- if $\left|v_{2}\right|_{2} \geq\left|v_{1}\right|_{1}$, then $\left|w_{2}\right|_{2} \geq \lambda\left|w_{1}\right|_{1}$ and $\left|w_{2}\right|_{2} \geq \lambda\left|v_{2}\right|_{2}$;

The conefield criterion

A linear cocycle $F: E \rightarrow E$ is uniformly hyperbolic iff there are constants $C>0, \lambda>1$ and, for each $x \in X$, a splitting $E_{x}=E_{x}^{1} \oplus E_{x}^{2}$ and norms $|\cdot|_{1},|\cdot|_{2}$ on E_{x}^{1}, E_{x}^{2} respectively such that, writing $F_{x}\left(v_{1}+v_{2}\right)=w_{1}+w_{2}$ with $v_{i} \in E_{x}^{i}, w_{i} \in E_{f(x)}^{i}$

- $C^{-1}\left\|v_{i}\right\| \leq\left|v_{i}\right|_{i} \leq C\left\|v_{i}\right\|$,
- if $\left|v_{2}\right|_{2} \geq\left|v_{1}\right|_{1}$, then $\left|w_{2}\right|_{2} \geq \lambda\left|w_{1}\right|_{1}$ and $\left|w_{2}\right|_{2} \geq \lambda\left|v_{2}\right|_{2}$;
- if $\left|w_{1}\right|_{1} \geq\left|w_{2}\right|_{2}$, then $\left|v_{1}\right|_{1} \geq \lambda\left|v_{2}\right|_{2}$ and $\left|v_{1}\right|_{1} \geq \lambda\left|w_{1}\right|_{1}$.

The conefield criterion

A linear cocycle $F: E \rightarrow E$ is uniformly hyperbolic iff there are constants $C>0, \lambda>1$ and, for each $x \in X$, a splitting $E_{x}=E_{x}^{1} \oplus E_{x}^{2}$ and norms $\left|.\left.\right|_{1},|\cdot|_{2}\right.$ on E_{x}^{1}, E_{x}^{2} respectively such that, writing $F_{x}\left(v_{1}+v_{2}\right)=w_{1}+w_{2}$ with $v_{i} \in E_{x}^{i}, w_{i} \in E_{f(x)}^{i}$

- $C^{-1}\left\|v_{i}\right\| \leq\left|v_{i}\right|_{i} \leq C\left\|v_{i}\right\|$,
- if $\left|v_{2}\right|_{2} \geq\left|v_{1}\right|_{1}$, then $\left|w_{2}\right|_{2} \geq \lambda\left|w_{1}\right|_{1}$ and $\left|w_{2}\right|_{2} \geq \lambda\left|v_{2}\right|_{2}$;
- if $\left|w_{1}\right|_{1} \geq\left|w_{2}\right|_{2}$, then $\left|v_{1}\right|_{1} \geq \lambda\left|v_{2}\right|_{2}$ and $\left|v_{1}\right|_{1} \geq \lambda\left|w_{1}\right|_{1}$.

The splitting $E_{x}=E_{x}^{1} \oplus E_{x}^{2}$ is in general neither F-invariant nor continuous.

The conefield criterion

A linear cocycle $F: E \rightarrow E$ is uniformly hyperbolic iff there are constants $C>0, \lambda>1$ and, for each $x \in X$, a splitting $E_{x}=E_{x}^{1} \oplus E_{x}^{2}$ and norms $\left|.\left.\right|_{1},|\cdot|_{2}\right.$ on E_{x}^{1}, E_{x}^{2} respectively such that, writing $F_{x}\left(v_{1}+v_{2}\right)=w_{1}+w_{2}$ with $v_{i} \in E_{x}^{i}, w_{i} \in E_{f(x)}^{i}$

- $C^{-1}\left\|v_{i}\right\| \leq\left|v_{i}\right|_{i} \leq C\left\|v_{i}\right\|$,
- if $\left|v_{2}\right|_{2} \geq\left|v_{1}\right|_{1}$, then $\left|w_{2}\right|_{2} \geq \lambda\left|w_{1}\right|_{1}$ and $\left|w_{2}\right|_{2} \geq \lambda\left|v_{2}\right|_{2}$;
- if $\left|w_{1}\right|_{1} \geq\left|w_{2}\right|_{2}$, then $\left|v_{1}\right|_{1} \geq \lambda\left|v_{2}\right|_{2}$ and $\left|v_{1}\right|_{1} \geq \lambda\left|w_{1}\right|_{1}$.

The splitting $E_{x}=E_{x}^{1} \oplus E_{x}^{2}$ is in general neither F-invariant nor continuous.

It follows immediately from this criterion that uniform hyperbolicity is an open property.

$$
E_{x}^{s}=\lim _{n \rightarrow+\infty} F^{-n}\left(E_{f^{n}(x)}^{1}\right), E_{x}^{u}=\lim _{n \rightarrow+\infty} F^{n}\left(E_{f-n}^{2}(x)\right) .
$$

Lyapunov exponents

Let $F: E \rightarrow E$ be a linear cocycle and μ be an f-invariant ergodic probability measure.

Lyapunov exponents

Let $F: E \rightarrow E$ be a linear cocycle and μ be an f-invariant ergodic probability measure.

Theorem(Oseledets) There exist $r \geq 1, \lambda_{1}>\cdots>\lambda_{r}$ and, for μ-a.e $x \in X$, a splitting

$$
E_{x}=E_{x}^{1} \oplus \cdots \oplus E_{x}^{r}
$$

which is F-invariant and depends measurably on x, such that, for $1 \leq i \leq r, v \in E_{x}^{i}, v \neq 0$, one has

$$
\lim _{n \rightarrow \pm \infty} \frac{1}{n} \log \left\|F_{x}^{n}(v)\right\|=\lambda_{i}
$$

Lyapunov exponents and uniform hyperbolicity

Let $F: E \rightarrow E$ be a uniformly hyperbolic linear cocycle.

Lyapunov exponents and uniform hyperbolicity

Let $F: E \rightarrow E$ be a uniformly hyperbolic linear cocycle.
Then, the Lyapunov exponents relative to any f-invariant ergodic probability measure are uniformly bounded away from 0 .

Lyapunov exponents and uniform hyperbolicity

Let $F: E \rightarrow E$ be a uniformly hyperbolic linear cocycle.
Then, the Lyapunov exponents relative to any f-invariant ergodic probability measure are uniformly bounded away from 0 .

The converse is not true.

$S L(2, \mathbf{R})$ cocycles

From now on, we will have

$$
E=X \times \mathbf{R}^{2}, \quad F(x, v)=(f(x), A(x) v)
$$

with $A \in C^{0}(X, S L(2, \mathbf{R}))$.

$S L(2, \mathbf{R})$ cocycles

From now on, we will have

$$
E=X \times \mathbf{R}^{2}, \quad F(x, v)=(f(x), A(x) v),
$$

with $A \in C^{0}(X, S L(2, \mathbf{R}))$.
Then, we have $F^{n}(x, v)=\left(f^{n}(x), A^{(n)}(x)(v)\right)$, with

$$
\begin{aligned}
A^{(n)}(x) & =A\left(f^{n-1}(x)\right) \cdots A(x) \\
A^{(-n)}(x) & =A\left(f^{-n}(x)\right)^{-1} \cdots A\left(f^{-1}(x)\right)^{-1}
\end{aligned}
$$

for $n \geq 0$.

A criterion of uniform hyperbolicity for $S L(2, \mathbf{R})$ cocycles

Let $F(x, v)=(f(x), A(x) v)$ be a $S L(2, \mathbf{R})$ cocycle.

A criterion of uniform hyperbolicity for $S L(2, \mathbf{R})$ cocycles

Let $F(x, v)=(f(x), A(x) v)$ be a $S L(2, \mathbf{R})$ cocycle.

Proposition The cocycle F is uniformly hyperbolic iff there exist $C>0, \lambda>1$ such that

$$
\left\|A^{(n)}(x)\right\| \geq C \lambda^{n},
$$

for all $x \in X, n \geq 0$.

Quasiperiodic $S L(2, \mathbf{R})$ cocycles

The case where X is a torus \mathbf{T}^{d} and f is a translation $x \rightarrow x+\alpha$ has been much studied, in relation to 1-d discrete Schrdinger operators with quasiperiodic potentials.

Quasiperiodic $S L(2, \mathbf{R})$ cocycles

The case where X is a torus \mathbf{T}^{d} and f is a translation $x \rightarrow x+\alpha$ has been much studied, in relation to 1-d discrete Schrdinger operators with quasiperiodic potentials.
Let $V \in C\left(\mathbf{T}^{d}, \mathbf{R}\right), \alpha, \theta \in \mathbf{T}^{d}$. Define $H=H_{V, \alpha, \theta}: \ell^{2}(\mathbf{Z}) \rightarrow \ell^{2}(\mathbf{Z})$ by

$$
(H u)_{n}=u_{n+1}+u_{n-1}+V(\theta+n \alpha) u_{n}
$$

Quasiperiodic $S L(2, \mathbf{R})$ cocycles

The case where X is a torus \mathbf{T}^{d} and f is a translation $x \rightarrow x+\alpha$ has been much studied, in relation to 1-d discrete Schrdinger operators with quasiperiodic potentials.
Let $V \in C\left(\mathbf{T}^{d}, \mathbf{R}\right), \alpha, \theta \in \mathbf{T}^{d}$. Define $H=H_{V, \alpha, \theta}: \ell^{2}(\mathbf{Z}) \rightarrow \ell^{2}(\mathbf{Z})$ by

$$
(H u)_{n}=u_{n+1}+u_{n-1}+V(\theta+n \alpha) u_{n} .
$$

Observe that u is an eigenvector with eigenvalue λ iff, for all $n \in \mathbf{Z}$

$$
\binom{u_{n+1}}{u_{n}}=A_{\lambda, v}(\theta+n \alpha)\binom{u_{n}}{u_{n-1}}
$$

with $A_{\lambda, V}(\theta)=\left(\begin{array}{cc}\lambda-V(\theta) & -1 \\ 1 & 0\end{array}\right)$.

Spectral vs. dynamical properties

The spectral properties of the one-parameter family of operators $\left(H_{V, \alpha, \theta}\right)_{\theta \in \mathbf{T}}$ and the dynamical properties of the one-parameter families of cocycles over $\theta \rightarrow \theta+\alpha$ defined by $A_{\lambda, \nu}, \lambda \in \mathbf{R}$ are strongly correlated.

Spectral vs. dynamical properties

The spectral properties of the one-parameter family of operators $\left(H_{V, \alpha, \theta}\right)_{\theta \in \mathbf{T}}$ and the dynamical properties of the one-parameter families of cocycles over $\theta \rightarrow \theta+\alpha$ defined by $A_{\lambda, \nu}, \lambda \in \mathbf{R}$ are strongly correlated.

For instance, the spectrum of $H_{V, \alpha, \theta}$ is independent of θ. A real number λ belongs to the spectrum iff the cocycle over $\theta \rightarrow \theta+\alpha$ defined by $A_{\lambda, V}$ is uniformly hyperbolic.

Locally constant SL(2, R)-cocycles over subshifts of finite type

From now on we will consider linear cocycles over chaotic (rather than quasiperiodic) dynamics in the base.

Locally constant SL(2, R)-cocycles over subshifts of finite type

From now on we will consider linear cocycles over chaotic (rather than quasiperiodic) dynamics in the base.
Let \mathcal{A} be a finite alphabet with $N \geq 2$ letters. Let $\sigma: \mathcal{A}^{\mathbf{Z}} \rightarrow \mathcal{A}^{\mathbf{Z}}$ be the shift map defined by $(\sigma x)_{n}=x_{n+1}$.

Locally constant SL(2, R)-cocycles over subshifts of finite type

From now on we will consider linear cocycles over chaotic (rather than quasiperiodic) dynamics in the base.
Let \mathcal{A} be a finite alphabet with $N \geq 2$ letters. Let $\sigma: \mathcal{A}^{\mathbf{Z}} \rightarrow \mathcal{A}^{\mathbf{Z}}$ be the shift map defined by $(\sigma x)_{n}=x_{n+1}$.
We will take as base dynamics (X, f) the full shift on N symbols $\left(\mathcal{A}^{\mathbf{Z}}, \sigma\right)$ or more generally a subshift of finite type:

Locally constant SL(2, R)-cocycles over subshifts of finite type

From now on we will consider linear cocycles over chaotic (rather than quasiperiodic) dynamics in the base.
Let \mathcal{A} be a finite alphabet with $N \geq 2$ letters. Let $\sigma: \mathcal{A}^{\mathbf{Z}} \rightarrow \mathcal{A}^{\mathbf{Z}}$ be the shift map defined by $(\sigma x)_{n}=x_{n+1}$.
We will take as base dynamics (X, f) the full shift on N symbols $\left(\mathcal{A}^{\mathbf{Z}}, \sigma\right)$ or more generally a subshift of finite type: given an oriented strongly connected graph Γ having the elements of \mathcal{A} as vertices, let Σ be the σ-invariant set of sequences x in $\mathcal{A}^{\mathbf{Z}}$ such that, for all $n \in \mathbf{Z}$, there exists an edge of Γ from x_{n} to x_{n+1}. Then we take $X=\Sigma$ and $f=\sigma_{\mid \Sigma \text {. }}$.

Locally constant SL(2, R)-cocycles over subshifts of finite type

From now on we will consider linear cocycles over chaotic (rather than quasiperiodic) dynamics in the base.
Let \mathcal{A} be a finite alphabet with $N \geq 2$ letters. Let $\sigma: \mathcal{A}^{\mathbf{Z}} \rightarrow \mathcal{A}^{\mathbf{Z}}$ be the shift map defined by $(\sigma x)_{n}=x_{n+1}$.
We will take as base dynamics (X, f) the full shift on N symbols $\left(\mathcal{A}^{\mathbf{Z}}, \sigma\right)$ or more generally a subshift of finite type: given an oriented strongly connected graph Γ having the elements of \mathcal{A} as vertices, let Σ be the σ-invariant set of sequences x in $\mathcal{A}^{\mathbf{Z}}$ such that, for all $n \in \mathbf{Z}$, there exists an edge of Γ from x_{n} to x_{n+1}. Then we take $X=\Sigma$ and $f=\sigma_{\mid \Sigma \text {. }}$.
We will only consider $S L(2, \mathbf{R})$-cocycles defined by functions $A: \Sigma \rightarrow S L(2, \mathbf{R})$ depending only on the letter x_{0} in position 0 .

The hyperbolicity locus

The parameter space for the class of cocycles under consideration is therefore the finite dimensional manifold $S L(2, \mathbf{R})^{\mathcal{A}}=S L(2, \mathbf{R})^{N}$.

The hyperbolicity locus

The parameter space for the class of cocycles under consideration is therefore the finite dimensional manifold $S L(2, \mathbf{R})^{\mathcal{A}}=S L(2, \mathbf{R})^{N}$.

We want to describe the open set \mathcal{H} (depending on Σ) of parameters $\left(A_{\alpha}\right)_{\alpha \in \mathcal{A}}$ such that the corresponding cocycle is uniformly hyperbolic.

The hyperbolicity locus

The parameter space for the class of cocycles under consideration is therefore the finite dimensional manifold $S L(2, \mathbf{R})^{\mathcal{A}}=S L(2, \mathbf{R})^{N}$.

We want to describe the open set \mathcal{H} (depending on Σ) of parameters $\left(A_{\alpha}\right)_{\alpha \in \mathcal{A}}$ such that the corresponding cocycle is uniformly hyperbolic.

In particular, we would like to understand the (countably many) connected components of \mathcal{H} and describe their boundary.

The hyperbolicity locus

The parameter space for the class of cocycles under consideration is therefore the finite dimensional manifold $S L(2, \mathbf{R})^{\mathcal{A}}=S L(2, \mathbf{R})^{N}$.
We want to describe the open set \mathcal{H} (depending on Σ) of parameters $\left(A_{\alpha}\right)_{\alpha \in \mathcal{A}}$ such that the corresponding cocycle is uniformly hyperbolic.

In particular, we would like to understand the (countably many) connected components of \mathcal{H} and describe their boundary.
The results below were obtained in collaboration with Artur Avila (Clay Institute, CNRS Paris, IMPA Rio de Janeiro), and Jairo Bochi (PUC, Rio de Janeiro). They will appear soon in Commentarii Helvetici and are available on arXiv.

Induced projective action and multicones

A $S L(2, \mathbf{R})$-cocycle induces a fibered map on $\Sigma \times \mathbf{P}^{\mathbf{1}}(\mathbf{R})$.

Induced projective action and multicones

A $S L(2, \mathbf{R})$-cocycle induces a fibered map on $\Sigma \times \mathbf{P}^{1}(\mathbf{R})$.
The conefield criterion for uniform hyperbolicity can be stated as follows: There exists a family of intervals $I_{x} \subset \mathbf{P}^{1}(\mathbf{R})$ with $A_{x_{0}} I_{x} \subset \subset I_{\sigma x}$ and the distances between the endpoints of $A_{x_{0}} I_{x}$, $I_{\sigma x}$ uniformly bounded from below.

Induced projective action and multicones

A $S L(2, \mathbf{R})$-cocycle induces a fibered map on $\Sigma \times \mathbf{P}^{1}(\mathbf{R})$.
The conefield criterion for uniform hyperbolicity can be stated as follows: There exists a family of intervals $I_{x} \subset \mathbf{P}^{1}(\mathbf{R})$ with $A_{x_{0}} I_{x} \subset \subset I_{\sigma x}$ and the distances between the endpoints of $A_{x_{0}} I_{x}$, $I_{\sigma x}$ uniformly bounded from below.
Definition A multicone is a non empty open subset of $\mathbf{P}^{1}=\mathbf{P}^{1}(\mathbf{R})$ with finitely many connected components with disjoint closures.

Invariant multicones

- The case of full shifts.

Invariant multicones

- The case of full shifts.

Theorem [A-B-Y] The cocycle defined by $\left(A_{\alpha}\right)$ over the full shift $\left(\mathcal{A}^{\mathbf{Z}}, \sigma\right)$ is uniformly hyperbolic iff there exists a multicone M such that $A_{\alpha} M \subset \subset M$ for all $\alpha \in \mathcal{A}$.

Invariant multicones

- The case of full shifts.

Theorem [A-B-Y] The cocycle defined by $\left(A_{\alpha}\right)$ over the full shift $\left(\mathcal{A}^{\mathbf{Z}}, \sigma\right)$ is uniformly hyperbolic iff there exists a multicone M such that $A_{\alpha} M \subset \subset M$ for all $\alpha \in \mathcal{A}$.

- The general case of subshifts of finite type.

Invariant multicones

- The case of full shifts.

Theorem [A-B-Y] The cocycle defined by $\left(A_{\alpha}\right)$ over the full shift $\left(\mathcal{A}^{\mathbf{Z}}, \sigma\right)$ is uniformly hyperbolic iff there exists a multicone M such that $A_{\alpha} M \subset \subset M$ for all $\alpha \in \mathcal{A}$.

- The general case of subshifts of finite type.

Theorem [A-B-Y] The cocycle defined by $\left(A_{\alpha}\right)$ over a subshift of finite type (Σ, σ) is uniformly hyperbolic iff there exist multicones M_{α} such that $A_{\beta} M_{\alpha} \subset \subset M_{\beta}$ for all allowed transitions $\alpha \rightarrow \beta$.

Tightness

We consider here only the full shift case.

Tightness

We consider here only the full shift case.
If M is a multicone, $M^{\prime}:=\mathbf{P}^{1}-\bar{M}$ is also a multicone, dual of M.

Tightness

We consider here only the full shift case.
If M is a multicone, $M^{\prime}:=\mathbf{P}^{1}-\bar{M}$ is also a multicone, dual of M.
If $A_{\alpha}(M) \subset \subset M$ for all α, then $A_{\alpha}^{-1}\left(M^{\prime}\right) \subset \subset M^{\prime}$ for all α.

Tightness

We consider here only the full shift case.
If M is a multicone, $M^{\prime}:=\mathbf{P}^{1}-\bar{M}$ is also a multicone, dual of M.
If $A_{\alpha}(M) \subset \subset M$ for all α, then $A_{\alpha}^{-1}\left(M^{\prime}\right) \subset \subset M^{\prime}$ for all α.
Definition An invariant multicone M is tight if

- $\cup_{\alpha} A_{\alpha}(M)$ intersects each component of M;
- $\cup_{\alpha} A_{\alpha}^{-1}\left(M^{\prime}\right)$ intersects each component of M^{\prime}.

Tightness

We consider here only the full shift case.
If M is a multicone, $M^{\prime}:=\mathbf{P}^{1}-\bar{M}$ is also a multicone, dual of M.
If $A_{\alpha}(M) \subset \subset M$ for all α, then $A_{\alpha}^{-1}\left(M^{\prime}\right) \subset \subset M^{\prime}$ for all α.
Definition An invariant multicone M is tight if

- $\cup_{\alpha} A_{\alpha}(M)$ intersects each component of M;
- $\cup_{\alpha} A_{\alpha}^{-1}\left(M^{\prime}\right)$ intersects each component of M^{\prime}.

An invariant multicone M is tight iff its number of components is minimal (amongst invariant multicones).

Combinatorial invariants

The number of components of any tight invariant multicone M and the way that these components of M are sent by the A_{α} into each other is invariant under deformation in the hyperbolicity locus \mathcal{H} and are therefore combinatorial invariants of the components of \mathcal{H}.

Combinatorial invariants

The number of components of any tight invariant multicone M and the way that these components of M are sent by the A_{α} into each other is invariant under deformation in the hyperbolicity locus \mathcal{H} and are therefore combinatorial invariants of the components of \mathcal{H}.

Definition A matrix $A \in S L(2, \mathbf{R})$ is hyperbolic (resp. elliptic, resp. parabolic) if $|\operatorname{tr} A|>2($ resp. <2, resp. $=2$).

Combinatorial invariants

The number of components of any tight invariant multicone M and the way that these components of M are sent by the A_{α} into each other is invariant under deformation in the hyperbolicity locus \mathcal{H} and are therefore combinatorial invariants of the components of \mathcal{H}.

Definition A matrix $A \in S L(2, \mathbf{R})$ is hyperbolic (resp. elliptic, resp. parabolic) if $|\operatorname{tr} A|>2($ resp. <2, resp. $=2$).

Remarks

- Let $\epsilon_{\alpha} \in\{-1,+1\}, A_{\alpha} \in S L(2, \mathbf{R})$. Then the cocycle defined by $\left(A_{\alpha}\right)_{\alpha \in \mathcal{A}}$ is hyperbolic iff the cocycle defined by $\left(\epsilon_{\alpha} A_{\alpha}\right)$ is.
- If A is hyperbolic, $\left(\epsilon_{\alpha} A\right)_{\alpha \in \mathcal{A}} \in \mathcal{H}$ for all $\epsilon_{\alpha} \in\{-1,+1\}$. Over the full shift on N symbols, the 2^{N} components of \mathcal{H} containing such elements are called the principal components of \mathcal{H}.

Characterization of principal components

Let $\left(A_{\alpha}\right) \in S L(2, \mathbf{R})^{N}$ be a family defining an uniformly hyperbolic cocycle over the full shift on N symbols.

Characterization of principal components

Let $\left(A_{\alpha}\right) \in S L(2, \mathbf{R})^{N}$ be a family defining an uniformly hyperbolic cocycle over the full shift on N symbols.

Proposition[Y] The parameter $\left(A_{\alpha}\right)$ belongs to a principal component iff it has a connected invariant multicone.

Nonprincipal components over the full shift on 2 symbols

Let $(A, B) \in S L(2, \mathbf{R})^{2}$ define a uniformly hyperbolic cocycle over the full shift on 2 symbols.

Nonprincipal components over the full shift on 2 symbols

Let $(A, B) \in S L(2, \mathbf{R})^{2}$ define a uniformly hyperbolic cocycle over the full shift on 2 symbols.

Let M be a tight invariant multicone for (A, B).

Nonprincipal components over the full shift on 2 symbols

Let $(A, B) \in S L(2, \mathbf{R})^{2}$ define a uniformly hyperbolic cocycle over the full shift on 2 symbols.

Let M be a tight invariant multicone for (A, B). Let q be the number of components of M; let p be the number of components of M which intersect $B(M)$.

Nonprincipal components over the full shift on 2 symbols

Let $(A, B) \in S L(2, \mathbf{R})^{2}$ define a uniformly hyperbolic cocycle over the full shift on 2 symbols.

Let M be a tight invariant multicone for (A, B). Let q be the number of components of M; let p be the number of components of M which intersect $B(M)$. Assume that $q>1$, i.e (A, B) does not belong to a principal component of \mathcal{H}.

Nonprincipal components over the full shift on 2 symbols

Let $(A, B) \in S L(2, \mathbf{R})^{2}$ define a uniformly hyperbolic cocycle over the full shift on 2 symbols.

Let M be a tight invariant multicone for (A, B). Let q be the number of components of M; let p be the number of components of M which intersect $B(M)$. Assume that $q>1$, i.e (A, B) does not belong to a principal component of \mathcal{H}.

Theorem [A-B-Y] One has $0<p<q$ and $p \wedge q=1$. A component of M intersects $A(M)$ iff it does not intersect $B(M)$.

Nonprincipal components over the full shift on 2 symbols

Let $(A, B) \in S L(2, \mathbf{R})^{2}$ define a uniformly hyperbolic cocycle over the full shift on 2 symbols.

Let M be a tight invariant multicone for (A, B). Let q be the number of components of M; let p be the number of components of M which intersect $B(M)$. Assume that $q>1$, i.e (A, B) does not belong to a principal component of \mathcal{H}.

Theorem [A-B-Y] One has $0<p<q$ and $p \wedge q=1$. A component of M intersects $A(M)$ iff it does not intersect $B(M)$. Conversely, for every $0<p<q$ with $p \wedge q=1$, there are exactly 8 nonprincipal components of \mathcal{H} with these data.

Nonprincipal components over the full shift on 2 symbols

Let $(A, B) \in S L(2, \mathbf{R})^{2}$ define a uniformly hyperbolic cocycle over the full shift on 2 symbols.

Let M be a tight invariant multicone for (A, B). Let q be the number of components of M; let p be the number of components of M which intersect $B(M)$. Assume that $q>1$, i.e (A, B) does not belong to a principal component of \mathcal{H}.

Theorem [A-B-Y] One has $0<p<q$ and $p \wedge q=1$. A component of M intersects $A(M)$ iff it does not intersect $B(M)$. Conversely, for every $0<p<q$ with $p \wedge q=1$, there are exactly 8 nonprincipal components of \mathcal{H} with these data. They are deduced from each other by changes of sign of A and B and conjugacy by an element of $G L(2, \mathbf{R})$ of determinant -1 .

The case $p / q=2 / 5$

Heteroclinic connexions

Let $\left(A_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be a family defining a cocycle over a subshift of finite type (Σ, σ).

Heteroclinic connexions

Let $\left(A_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be a family defining a cocycle over a subshift of finite type (Σ, σ). If $\left(A_{\alpha}\right) \in \mathcal{H}$, then, for every periodic point $x \in \Sigma$ (of period k), the matrix $A^{(k)}(x)$ is hyperbolic.

Heteroclinic connexions

Let $\left(A_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be a family defining a cocycle over a subshift of finite type (Σ, σ). If $\left(A_{\alpha}\right) \in \mathcal{H}$, then, for every periodic point $x \in \Sigma$ (of period k), the matrix $A^{(k)}(x)$ is hyperbolic.

The converse is not true.

Heteroclinic connexions

Let $\left(A_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be a family defining a cocycle over a subshift of finite type (Σ, σ). If $\left(A_{\alpha}\right) \in \mathcal{H}$, then, for every periodic point $x \in \Sigma$ (of period k), the matrix $A^{(k)}(x)$ is hyperbolic.

The converse is not true.

Definitions

- For $A \in S L(2, \mathbf{R}), A$ hyperbolic, we denote by $s(A)$ (resp. $u(A)$) the stable (resp. unstable) direction of A in \mathbf{P}^{1}.

Heteroclinic connexions

Let $\left(A_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be a family defining a cocycle over a subshift of finite type (Σ, σ). If $\left(A_{\alpha}\right) \in \mathcal{H}$, then, for every periodic point $x \in \Sigma$ (of period k), the matrix $A^{(k)}(x)$ is hyperbolic.

The converse is not true.

Definitions

- For $A \in S L(2, \mathbf{R}), A$ hyperbolic, we denote by $s(A)$ (resp. $u(A))$ the stable (resp. unstable) direction of A in \mathbf{P}^{1}.
- For $x \in \Sigma$, we define $W_{\text {loc }}^{s}(x)=\left\{z \in \Sigma, z_{i}=x_{i}\right.$ for all $\left.i \geq 0\right\}$, $W_{\text {loc }}^{u}(x)=\left\{z \in \Sigma, z_{i}=x_{i}\right.$ for all $\left.i<0\right\}$.

Heteroclinic connexions

Let $\left(A_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be a family defining a cocycle over a subshift of finite type (Σ, σ). If $\left(A_{\alpha}\right) \in \mathcal{H}$, then, for every periodic point $x \in \Sigma$ (of period k), the matrix $A^{(k)}(x)$ is hyperbolic.

The converse is not true.

Definitions

- For $A \in S L(2, \mathbf{R}), A$ hyperbolic, we denote by $s(A)$ (resp. $u(A)$) the stable (resp. unstable) direction of A in \mathbf{P}^{1}.
- For $x \in \Sigma$, we define $W_{\text {loc }}^{s}(x)=\left\{z \in \Sigma, z_{i}=x_{i}\right.$ for all $\left.i \geq 0\right\}$, $W_{\text {loc }}^{u}(x)=\left\{z \in \Sigma, z_{i}=x_{i}\right.$ for all $\left.i<0\right\}$.
- Let x, y be periodic points in Σ, of periods k, l, such that $A^{(k)}(x), A^{(I)}(y)$ are hyperbolic. A point $z \in W_{\text {loc }}^{u}(x) \cap \sigma^{-n} W_{\text {loc }}^{s}(y)$ (for some $n \geq 0$) defines a heteroclinic connexion from x to y if

$$
A^{(n)}(z) u\left(A^{(k)}(x)\right)=s\left(A^{(l)}(y)\right)
$$

Boundary of components of \mathcal{H}

Let \mathcal{H} be the hyperbolicity locus over a subshift of finite type (Σ, σ).

Boundary of components of \mathcal{H}

Let \mathcal{H} be the hyperbolicity locus over a subshift of finite type (Σ, σ).
Theorem[A-B-Y] Let $\left(A_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be a parameter belonging to the boundary of some component H of \mathcal{H}. Then at least one of the following holds:

Boundary of components of \mathcal{H}

Let \mathcal{H} be the hyperbolicity locus over a subshift of finite type (Σ, σ).
Theorem[A-B-Y] Let $\left(A_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be a parameter belonging to the boundary of some component H of \mathcal{H}. Then at least one of the following holds:

- There exists a periodic point $t \in \Sigma$, of period m, such that $A^{(m)}(t)$ is parabolic;

Boundary of components of \mathcal{H}

Let \mathcal{H} be the hyperbolicity locus over a subshift of finite type (Σ, σ).
Theorem[A-B-Y] Let $\left(A_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be a parameter belonging to the boundary of some component H of \mathcal{H}. Then at least one of the following holds:

- There exists a periodic point $t \in \Sigma$, of period m, such that $A^{(m)}(t)$ is parabolic;
- There exist periodic points $x, y \in \Sigma$, of periods k, l, such that $A^{(k)}(x), A^{(/)}(y)$ are hyperbolic, and a point
$z \in W_{\text {loc }}^{u}(x) \cap \sigma^{-n} W_{\text {loc }}^{s}(y)$ (for some $n \geq 0$) which defines a heteroclinic connexion from x to y.

Boundary of components of \mathcal{H}

Let \mathcal{H} be the hyperbolicity locus over a subshift of finite type (Σ, σ).
Theorem[A-B-Y] Let $\left(A_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be a parameter belonging to the boundary of some component H of \mathcal{H}. Then at least one of the following holds:

- There exists a periodic point $t \in \Sigma$, of period m, such that $A^{(m)}(t)$ is parabolic;
- There exist periodic points $x, y \in \Sigma$, of periods k, l, such that $A^{(k)}(x), A^{(I)}(y)$ are hyperbolic, and a point
$z \in W_{\text {loc }}^{u}(x) \cap \sigma^{-n} W_{\text {loc }}^{s}(y)$ (for some $n \geq 0$) which defines a heteroclinic connexion from x to y.
Moreover, the integers k, I, m, n are bounded in terms of H only.

Boundary of components of \mathcal{H}

Let \mathcal{H} be the hyperbolicity locus over a subshift of finite type (Σ, σ).
Theorem[A-B-Y] Let $\left(A_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be a parameter belonging to the boundary of some component H of \mathcal{H}. Then at least one of the following holds:

- There exists a periodic point $t \in \Sigma$, of period m, such that $A^{(m)}(t)$ is parabolic;
- There exist periodic points $x, y \in \Sigma$, of periods k, l, such that $A^{(k)}(x), A^{(/)}(y)$ are hyperbolic, and a point $z \in W_{\text {loc }}^{u}(x) \cap \sigma^{-n} W_{\text {loc }}^{s}(y)$ (for some $n \geq 0$) which defines a heteroclinic connexion from x to y.
Moreover, the integers k, I, m, n are bounded in terms of H only.
Corollary Each component H of \mathcal{H}, and the boundary of H, is semialgebraic.

Open questions(I): Boundaries

- Are the boundaries of the connected components of \mathcal{H} disjoint?

Open questions(I): Boundaries

- Are the boundaries of the connected components of \mathcal{H} disjoint?
Yes for the full shift over 2 symbols.

Open questions(I): Boundaries

- Are the boundaries of the connected components of \mathcal{H} disjoint?
Yes for the full shift over 2 symbols.
- Is the boundary of \mathcal{H} equal to the union of the boundary of its components?

Open questions(I): Boundaries

- Are the boundaries of the connected components of \mathcal{H} disjoint?
Yes for the full shift over 2 symbols.
- Is the boundary of \mathcal{H} equal to the union of the boundary of its components?
Yes for the full shift over 2 symbols.

Open questions(II): Elliptic products

Let \mathcal{E} be the set of parameters $\left(A_{\alpha}\right)_{\alpha \in \mathcal{A}}$ such that there exists a periodic point $t \in \Sigma$, of period m, such that $A^{(m)}(t)$ is elliptic.

Open questions(II): Elliptic products

Let \mathcal{E} be the set of parameters $\left(A_{\alpha}\right)_{\alpha \in \mathcal{A}}$ such that there exists a periodic point $t \in \Sigma$, of period m, such that $A^{(m)}(t)$ is elliptic. The subset $\mathcal{E} \subset S L(2, \mathbf{R})^{N}$ is open, disjoint from \mathcal{H}.

Open questions(II): Elliptic products

Let \mathcal{E} be the set of parameters $\left(A_{\alpha}\right)_{\alpha \in \mathcal{A}}$ such that there exists a periodic point $t \in \Sigma$, of period m, such that $A^{(m)}(t)$ is elliptic. The subset $\mathcal{E} \subset S L(2, \mathbf{R})^{N}$ is open, disjoint from \mathcal{H}.
Theorem [Avila] $\overline{\mathcal{E}}=\mathcal{H}^{c}$.

Open questions(II): Elliptic products

Let \mathcal{E} be the set of parameters $\left(A_{\alpha}\right)_{\alpha \in \mathcal{A}}$ such that there exists a periodic point $t \in \Sigma$, of period m, such that $A^{(m)}(t)$ is elliptic. The subset $\mathcal{E} \subset S L(2, \mathbf{R})^{N}$ is open, disjoint from \mathcal{H}.

Theorem [Avila] $\overline{\mathcal{E}}=\mathcal{H}^{c}$.

- Does one have $\overline{\mathcal{H}}=\mathcal{E}^{c}$? Equivalently, does one have $\partial \mathcal{E}=\partial \mathcal{H}=(\mathcal{E} \cup \mathcal{H})^{c}$?

Open questions(II): Elliptic products

Let \mathcal{E} be the set of parameters $\left(A_{\alpha}\right)_{\alpha \in \mathcal{A}}$ such that there exists a periodic point $t \in \Sigma$, of period m, such that $A^{(m)}(t)$ is elliptic.
The subset $\mathcal{E} \subset S L(2, \mathbf{R})^{N}$ is open, disjoint from \mathcal{H}.
Theorem [Avila] $\overline{\mathcal{E}}=\mathcal{H}^{c}$.

- Does one have $\overline{\mathcal{H}}=\mathcal{E}^{c}$? Equivalently, does one have $\partial \mathcal{E}=\partial \mathcal{H}=(\mathcal{E} \cup \mathcal{H})^{c} ?$

Yes for the full shift over 2 symbols.

Open questions(III): Boundedness mod. conjugacy

Each component of the hyperbolicity locus \mathcal{H} is invariant under diagonal conjugacy by $S L(2, \mathbf{R})$, hence unbounded.

Open questions(III): Boundedness mod. conjugacy

Each component of the hyperbolicity locus \mathcal{H} is invariant under diagonal conjugacy by $S L(2, \mathbf{R})$, hence unbounded.
Definition A subset $H \subset S L(2, \mathbf{R})^{N}$ is bounded mod. conjugacy if there exists a compact subset $K \subset S L(2, \mathbf{R})^{N}$ such that

$$
H \subset \bigcup_{g \in S L(2, \mathbf{R})} g K g^{-1}
$$

Open questions(III): Boundedness mod. conjugacy

Each component of the hyperbolicity locus \mathcal{H} is invariant under diagonal conjugacy by $S L(2, \mathbf{R})$, hence unbounded.
Definition A subset $H \subset S L(2, \mathbf{R})^{N}$ is bounded mod. conjugacy if there exists a compact subset $K \subset S L(2, \mathbf{R})^{N}$ such that

$$
H \subset \bigcup_{g \in S L(2, \mathbf{R})} g K g^{-1}
$$

- Is any connected component of \mathcal{H} unbounded mod. conjugacy?

Open questions(III): Boundedness mod. conjugacy

Each component of the hyperbolicity locus \mathcal{H} is invariant under diagonal conjugacy by $S L(2, \mathbf{R})$, hence unbounded.
Definition A subset $H \subset S L(2, \mathbf{R})^{N}$ is bounded mod. conjugacy if there exists a compact subset $K \subset S L(2, \mathbf{R})^{N}$ such that

$$
H \subset \bigcup_{g \in S L(2, \mathbf{R})} g K g^{-1}
$$

- Is any connected component of \mathcal{H} unbounded mod. conjugacy?

Yes for the full shift over 2 symbols.

