Uniformly hyperbolic $SL(2, \mathbf{R})$ cocycles

Jean-Christophe Yoccoz

Collège de France

Toronto, Fields Institute, May 25, 2009

► A compact metric space X,

・日・ ・ ヨ・ ・ ヨ・

- ► A compact metric space X,
- ▶ a homeomorphism $f : X \to X$,

● ▶ 《 三 ▶

- ► A compact metric space X,
- a homeomorphism $f: X \to X$,
- a vector bundle $\pi: E \to X$,

- ★ 臣 ▶ - - 臣

- ► A compact metric space X,
- a homeomorphism $f: X \to X$,
- ▶ a vector bundle $\pi: E \to X$,
- a *linear cocycle* over f is a vector bundle map $F : E \to E$ over f:

- ► A compact metric space X,
- a homeomorphism $f: X \to X$,
- a vector bundle $\pi: E \to X$,

a *linear cocycle* over f is a vector bundle map $F : E \to E$ over f: $F_x : E_x \to E_{f(x)}$ is linear and depends continuously on x.

- ► A compact metric space X,
- a homeomorphism $f: X \to X$,
- a vector bundle $\pi: E \to X$,

a *linear cocycle* over f is a vector bundle map $F : E \to E$ over f: $F_x : E_x \to E_{f(x)}$ is linear and depends continuously on x.

We will always assume that F is invertible.

► X is a manifold,

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

- ► X is a manifold,
- f is a C^1 diffeomorphism of X,

・日・ ・ ヨ ・ ・ ヨ ・

- X is a manifold,
- f is a C^1 diffeomorphism of X,
- E is the tangent bundle of X,

→ ∃ →

A ■

< ≣⇒

- X is a manifold,
- f is a C^1 diffeomorphism of X,
- E is the tangent bundle of X,
- ► *F* is the tangent map of *f*.

-

< ∃ >

Definition A linear cocycle $F : E \to E$ is *uniformly hyperbolic* if there is an *F*-invariant continuous splitting $E = E^s \oplus E^u$ and constants C > 0, $0 < \lambda < 1$ such that, for all $n \ge 0$ and $x \in X$

$$\begin{aligned} ||F_{|E_x}^n|| &\leq C\lambda^n, \\ ||F_{|E_x}^{-n}|| &\leq C\lambda^n. \end{aligned}$$

向下 イヨト イヨト

Definition A linear cocycle $F : E \to E$ is *uniformly hyperbolic* if there is an *F*-invariant continuous splitting $E = E^s \oplus E^u$ and constants C > 0, $0 < \lambda < 1$ such that, for all $n \ge 0$ and $x \in X$

$$\begin{aligned} ||F_{|E_x}^n|| &\leq C\lambda^n, \\ ||F_{|E_x}^{-n}|| &\leq C\lambda^n. \end{aligned}$$

In this case, one can always find an *adapted norm* on E such that C = 1.

伺 と く き と く き と

The conefield criterion

A linear cocycle $F : E \to E$ is uniformly hyperbolic iff there are constants C > 0, $\lambda > 1$ and, for each $x \in X$, a splitting $E_x = E_x^1 \oplus E_x^2$ and norms $|.|_1$, $|.|_2$ on E_x^1 , E_x^2 respectively such that, writing $F_x(v_1 + v_2) = w_1 + w_2$ with $v_i \in E_x^i$, $w_i \in E_{f(x)}^i$

The conefield criterion

A linear cocycle $F : E \to E$ is uniformly hyperbolic iff there are constants C > 0, $\lambda > 1$ and, for each $x \in X$, a splitting $E_x = E_x^1 \oplus E_x^2$ and norms $|.|_1$, $|.|_2$ on E_x^1 , E_x^2 respectively such that, writing $F_x(v_1 + v_2) = w_1 + w_2$ with $v_i \in E_x^i$, $w_i \in E_{f(x)}^i$

•
$$C^{-1}||v_i|| \le |v_i|_i \le C||v_i||,$$

The conefield criterion

A linear cocycle $F : E \to E$ is uniformly hyperbolic iff there are constants C > 0, $\lambda > 1$ and, for each $x \in X$, a splitting $E_x = E_x^1 \oplus E_x^2$ and norms $|.|_1$, $|.|_2$ on E_x^1 , E_x^2 respectively such that, writing $F_x(v_1 + v_2) = w_1 + w_2$ with $v_i \in E_x^i$, $w_i \in E_{f(x)}^i$

•
$$C^{-1}||v_i|| \le |v_i|_i \le C||v_i||,$$

• if $|v_2|_2 \ge |v_1|_1$, then $|w_2|_2 \ge \lambda |w_1|_1$ and $|w_2|_2 \ge \lambda |v_2|_2$;

• • = • • = •

A linear cocycle $F : E \to E$ is uniformly hyperbolic iff there are constants C > 0, $\lambda > 1$ and, for each $x \in X$, a splitting $E_x = E_x^1 \oplus E_x^2$ and norms $|.|_1$, $|.|_2$ on E_x^1 , E_x^2 respectively such that, writing $F_x(v_1 + v_2) = w_1 + w_2$ with $v_i \in E_x^i$, $w_i \in E_{f(x)}^i$

•
$$C^{-1}||v_i|| \le |v_i|_i \le C||v_i||,$$

- if $|v_2|_2 \ge |v_1|_1$, then $|w_2|_2 \ge \lambda |w_1|_1$ and $|w_2|_2 \ge \lambda |v_2|_2$;
- if $|w_1|_1 \ge |w_2|_2$, then $|v_1|_1 \ge \lambda |v_2|_2$ and $|v_1|_1 \ge \lambda |w_1|_1$.

通 と く ヨ と く ヨ と

A linear cocycle $F : E \to E$ is uniformly hyperbolic iff there are constants C > 0, $\lambda > 1$ and, for each $x \in X$, a splitting $E_x = E_x^1 \oplus E_x^2$ and norms $|.|_1$, $|.|_2$ on E_x^1 , E_x^2 respectively such that, writing $F_x(v_1 + v_2) = w_1 + w_2$ with $v_i \in E_x^i$, $w_i \in E_{f(x)}^i$

•
$$C^{-1}||v_i|| \le |v_i|_i \le C||v_i||,$$

- if $|v_2|_2 \ge |v_1|_1$, then $|w_2|_2 \ge \lambda |w_1|_1$ and $|w_2|_2 \ge \lambda |v_2|_2$;
- if $|w_1|_1 \ge |w_2|_2$, then $|v_1|_1 \ge \lambda |v_2|_2$ and $|v_1|_1 \ge \lambda |w_1|_1$.

The splitting $E_x = E_x^1 \oplus E_x^2$ is in general neither *F*-invariant nor continuous.

伺下 イヨト イヨト

A linear cocycle $F : E \to E$ is uniformly hyperbolic iff there are constants C > 0, $\lambda > 1$ and, for each $x \in X$, a splitting $E_x = E_x^1 \oplus E_x^2$ and norms $|.|_1$, $|.|_2$ on E_x^1 , E_x^2 respectively such that, writing $F_x(v_1 + v_2) = w_1 + w_2$ with $v_i \in E_x^i$, $w_i \in E_{f(x)}^i$

•
$$C^{-1}||v_i|| \le |v_i|_i \le C||v_i||,$$

- if $|v_2|_2 \ge |v_1|_1$, then $|w_2|_2 \ge \lambda |w_1|_1$ and $|w_2|_2 \ge \lambda |v_2|_2$;
- if $|w_1|_1 \ge |w_2|_2$, then $|v_1|_1 \ge \lambda |v_2|_2$ and $|v_1|_1 \ge \lambda |w_1|_1$.

The splitting $E_x = E_x^1 \oplus E_x^2$ is in general neither *F*-invariant nor continuous.

It follows immediately from this criterion that uniform hyperbolicity is an open property.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$E_x^s = \lim_{n \to +\infty} F^{-n}(E_{f^n(x)}^1), \ E_x^u = \lim_{n \to +\infty} F^n(E_{f^{-n}(x)}^2).$$

◆□ > ◆□ > ◆ 目 > ◆目 > ● 目 ● の < ⊙

Let $F : E \to E$ be a linear cocycle and μ be an *f*-invariant ergodic probability measure.

(1日) (日) (日)

Let $F: E \to E$ be a linear cocycle and μ be an f-invariant ergodic probability measure.

Theorem(Oseledets) There exist $r \ge 1$, $\lambda_1 > \cdots > \lambda_r$ and, for μ -a.e $x \in X$, a splitting

$$E_x = E_x^1 \oplus \cdots \oplus E_x^r$$

which is *F*-invariant and depends measurably on *x*, such that, for $1 \le i \le r$, $v \in E_x^i$, $v \ne 0$, one has

$$\lim_{n\to\pm\infty}\frac{1}{n}\log||F_x^n(v)||=\lambda_i.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $F : E \to E$ be a uniformly hyperbolic linear cocycle.

□ ▶ ★ 臣 ▶ ★ 臣 ▶ ...

Let $F : E \to E$ be a uniformly hyperbolic linear cocycle.

Then, the Lyapunov exponents relative to any f-invariant ergodic probability measure are uniformly bounded away from 0.

伺 と く き と く き と

Let $F : E \to E$ be a uniformly hyperbolic linear cocycle.

Then, the Lyapunov exponents relative to any f-invariant ergodic probability measure are uniformly bounded away from 0.

The converse is not true.

(4) (5) (4) (5) (4)

From now on, we will have

$$E = X \times \mathbf{R}^2$$
, $F(x, v) = (f(x), A(x)v)$,

with $A \in C^0(X, SL(2, \mathbf{R}))$.

・回 ・ ・ ヨ ・ ・ ヨ ・

From now on, we will have

$$E = X \times \mathbf{R}^2$$
, $F(x, v) = (f(x), A(x)v)$,

with $A \in C^{0}(X, SL(2, \mathbf{R}))$. Then, we have $F^{n}(x, v) = (f^{n}(x), A^{(n)}(x)(v))$, with

$$A^{(n)}(x) = A(f^{n-1}(x)) \cdots A(x),$$

$$A^{(-n)}(x) = A(f^{-n}(x))^{-1} \cdots A(f^{-1}(x))^{-1},$$

for $n \ge 0$.

御 と く き と く き と

A criterion of uniform hyperbolicity for $SL(2, \mathbf{R})$ cocycles

Let F(x, v) = (f(x), A(x)v) be a $SL(2, \mathbf{R})$ cocycle.

Jean-Christophe Yoccoz Uniformly hyperbolic *SL*(2, R) cocycles

向下 イヨト イヨト

Let
$$F(x, v) = (f(x), A(x)v)$$
 be a $SL(2, \mathbf{R})$ cocycle.

Proposition The cocycle *F* is uniformly hyperbolic iff there exist C > 0, $\lambda > 1$ such that

 $||A^{(n)}(x)|| \geq C \lambda^n,$

for all $x \in X$, $n \ge 0$.

伺 ト イヨ ト イヨ ト

The case where X is a torus \mathbf{T}^d and f is a translation $x \to x + \alpha$ has been much studied, in relation to 1-d discrete Schrdinger operators with quasiperiodic potentials.

伺 と く き と く き と

The case where X is a torus \mathbf{T}^d and f is a translation $x \to x + \alpha$ has been much studied, in relation to 1-d discrete Schrdinger operators with quasiperiodic potentials. Let $V \in C(\mathbf{T}^d, \mathbf{R})$, $\alpha, \theta \in \mathbf{T}^d$. Define $H = H_{V,\alpha,\theta} : \ell^2(\mathbf{Z}) \to \ell^2(\mathbf{Z})$ by

$$(Hu)_n = u_{n+1} + u_{n-1} + V(\theta + n\alpha)u_n.$$

물 제 문 제 문 제

The case where X is a torus \mathbf{T}^d and f is a translation $x \to x + \alpha$ has been much studied, in relation to 1-d discrete Schrdinger operators with quasiperiodic potentials. Let $V \in C(\mathbf{T}^d, \mathbf{R})$, $\alpha, \theta \in \mathbf{T}^d$. Define $H = H_{V,\alpha,\theta} : \ell^2(\mathbf{Z}) \to \ell^2(\mathbf{Z})$ by

$$(Hu)_n = u_{n+1} + u_{n-1} + V(\theta + n\alpha)u_n.$$

Observe that u is an eigenvector with eigenvalue λ iff, for all $n \in \mathbf{Z}$

$$\begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix} = A_{\lambda,V}(\theta + n\alpha) \begin{pmatrix} u_n \\ u_{n-1} \end{pmatrix},$$

with $A_{\lambda,V}(\theta) = \begin{pmatrix} \lambda - V(\theta) & -1 \\ 1 & 0 \end{pmatrix}.$

The spectral properties of the one-parameter family of operators $(H_{V,\alpha,\theta})_{\theta\in\mathbf{T}}$ and the dynamical properties of the one-parameter families of cocycles over $\theta \to \theta + \alpha$ defined by $A_{\lambda,V}$, $\lambda \in \mathbf{R}$ are strongly correlated.

向下 イヨト イヨト

The spectral properties of the one-parameter family of operators $(H_{V,\alpha,\theta})_{\theta\in\mathbf{T}}$ and the dynamical properties of the one-parameter families of cocycles over $\theta \to \theta + \alpha$ defined by $A_{\lambda,V}$, $\lambda \in \mathbf{R}$ are strongly correlated.

For instance, the spectrum of $H_{V,\alpha,\theta}$ is independent of θ . A real number λ belongs to the spectrum iff the cocycle over $\theta \to \theta + \alpha$ defined by $A_{\lambda,V}$ is uniformly hyperbolic.

伺下 イヨト イヨト

Locally constant $SL(2, \mathbf{R})$ -cocycles over subshifts of finite type

From now on we will consider linear cocycles over chaotic (rather than quasiperiodic) dynamics in the base.

(4) (3) (4) (3) (4)

Locally constant $SL(2, \mathbf{R})$ -cocycles over subshifts of finite type

From now on we will consider linear cocycles over chaotic (rather than quasiperiodic) dynamics in the base.

Let \mathcal{A} be a finite alphabet with $N \geq 2$ letters. Let $\sigma : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ be the *shift map* defined by $(\sigma x)_n = x_{n+1}$.

向下 イヨト イヨト

Locally constant $SL(2, \mathbf{R})$ -cocycles over subshifts of finite type

From now on we will consider linear cocycles over chaotic (rather than quasiperiodic) dynamics in the base.

Let \mathcal{A} be a finite alphabet with $N \geq 2$ letters. Let $\sigma : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ be the *shift map* defined by $(\sigma x)_n = x_{n+1}$.

We will take as base dynamics (X, f) the full shift on N symbols $(\mathcal{A}^{\mathbf{Z}}, \sigma)$ or more generally a subshift of finite type:

・ 同 ト ・ ヨ ト ・ ヨ ト

Locally constant $SL(2, \mathbf{R})$ -cocycles over subshifts of finite type

From now on we will consider linear cocycles over chaotic (rather than quasiperiodic) dynamics in the base.

Let \mathcal{A} be a finite alphabet with $N \geq 2$ letters. Let $\sigma : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ be the *shift map* defined by $(\sigma x)_n = x_{n+1}$.

We will take as base dynamics (X, f) the *full shift on N symbols* $(\mathcal{A}^{\mathbf{Z}}, \sigma)$ or more generally a *subshift of finite type*: given an oriented strongly connected graph Γ having the elements of \mathcal{A} as vertices, let Σ be the σ -invariant set of sequences x in $\mathcal{A}^{\mathbf{Z}}$ such that, for all $n \in \mathbf{Z}$, there exists an edge of Γ from x_n to x_{n+1} . Then we take $X = \Sigma$ and $f = \sigma_{|\Sigma}$.

(日本)(日本)(日本)

Locally constant $SL(2, \mathbf{R})$ -cocycles over subshifts of finite type

From now on we will consider linear cocycles over chaotic (rather than quasiperiodic) dynamics in the base.

Let \mathcal{A} be a finite alphabet with $N \geq 2$ letters. Let $\sigma : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ be the *shift map* defined by $(\sigma x)_n = x_{n+1}$.

We will take as base dynamics (X, f) the *full shift on N symbols* $(\mathcal{A}^{\mathbf{Z}}, \sigma)$ or more generally a *subshift of finite type*: given an oriented strongly connected graph Γ having the elements of \mathcal{A} as vertices, let Σ be the σ -invariant set of sequences x in $\mathcal{A}^{\mathbf{Z}}$ such that, for all $n \in \mathbf{Z}$, there exists an edge of Γ from x_n to x_{n+1} . Then we take $X = \Sigma$ and $f = \sigma_{|\Sigma}$.

We will only consider $SL(2, \mathbf{R})$ -cocycles defined by functions $A : \Sigma \to SL(2, \mathbf{R})$ depending only on the letter x_0 in position 0.

소리가 소문가 소문가 소문가

・ 同 ト ・ ヨ ト ・ ヨ ト

We want to describe the **open** set \mathcal{H} (depending on Σ) of parameters $(A_{\alpha})_{\alpha \in \mathcal{A}}$ such that the corresponding cocycle is uniformly hyperbolic.

向下 イヨト イヨト

We want to describe the **open** set \mathcal{H} (depending on Σ) of parameters $(A_{\alpha})_{\alpha \in \mathcal{A}}$ such that the corresponding cocycle is uniformly hyperbolic.

In particular, we would like to understand the (countably many) connected components of ${\cal H}$ and describe their boundary.

・ 同 ト ・ ヨ ト ・ ヨ ト

We want to describe the **open** set \mathcal{H} (depending on Σ) of parameters $(A_{\alpha})_{\alpha \in \mathcal{A}}$ such that the corresponding cocycle is uniformly hyperbolic.

In particular, we would like to understand the (countably many) connected components of \mathcal{H} and describe their boundary.

The results below were obtained in collaboration with **Artur Avila** (Clay Institute, CNRS Paris, IMPA Rio de Janeiro), and **Jairo Bochi** (PUC, Rio de Janeiro). They will appear soon in Commentarii Helvetici and are available on arXiv.

A $SL(2, \mathbf{R})$ -cocycle induces a fibered map on $\Sigma \times \mathbf{P}^1(\mathbf{R})$.

伺 とう ヨン うちょう

A $SL(2, \mathbf{R})$ -cocycle induces a fibered map on $\Sigma \times \mathbf{P}^1(\mathbf{R})$.

The conefield criterion for uniform hyperbolicity can be stated as follows: There exists a family of intervals $I_x \subset \mathbf{P}^1(\mathbf{R})$ with $A_{x_0}I_x \subset \subset I_{\sigma_x}$ and the distances between the endpoints of $A_{x_0}I_x$, I_{σ_x} uniformly bounded from below.

向下 イヨト イヨト

A $SL(2, \mathbf{R})$ -cocycle induces a fibered map on $\Sigma \times \mathbf{P}^1(\mathbf{R})$.

The conefield criterion for uniform hyperbolicity can be stated as follows: There exists a family of intervals $I_x \subset \mathbf{P}^1(\mathbf{R})$ with $A_{x_0}I_x \subset \subset I_{\sigma_x}$ and the distances between the endpoints of $A_{x_0}I_x$, I_{σ_x} uniformly bounded from below.

Definition A *multicone* is a non empty open subset of $P^1 = P^1(R)$ with finitely many connected components with disjoint closures.

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

・ロ・・ 日本・ ・ 日本・ ・ 日本・

æ

Theorem [A-B-Y] The cocycle defined by (A_{α}) over the full shift $(\mathcal{A}^{\mathbf{Z}}, \sigma)$ is uniformly hyperbolic iff there exists a multicone M such that $A_{\alpha}M \subset M$ for all $\alpha \in \mathcal{A}$.

伺下 イヨト イヨト

Theorem [A-B-Y] The cocycle defined by (A_{α}) over the full shift $(\mathcal{A}^{\mathbf{Z}}, \sigma)$ is uniformly hyperbolic iff there exists a multicone M such that $A_{\alpha}M \subset M$ for all $\alpha \in \mathcal{A}$.

The general case of subshifts of finite type.

同 ト く ヨ ト く ヨ ト

Theorem [A-B-Y] The cocycle defined by (A_{α}) over the full shift $(\mathcal{A}^{\mathbf{Z}}, \sigma)$ is uniformly hyperbolic iff there exists a multicone M such that $A_{\alpha}M \subset CM$ for all $\alpha \in \mathcal{A}$.

The general case of subshifts of finite type.

Theorem [A-B-Y] The cocycle defined by (A_{α}) over a subshift of finite type (Σ, σ) is uniformly hyperbolic iff there exist multicones M_{α} such that $A_{\beta}M_{\alpha} \subset M_{\beta}$ for all allowed transitions $\alpha \to \beta$.

・ 同 ト ・ ヨ ト ・ ヨ ト

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

æ

If M is a multicone, $M' := \mathbf{P}^1 - \overline{M}$ is also a multicone, *dual* of M.

個 と く ヨ と く ヨ と …

æ

If M is a multicone, $M' := \mathbf{P}^1 - \overline{M}$ is also a multicone, *dual* of M.

If $A_{\alpha}(M) \subset M$ for all α , then $A_{\alpha}^{-1}(M') \subset M'$ for all α .

通 と く ヨ と く ヨ と

3

If M is a multicone, $M' := \mathbf{P}^1 - \overline{M}$ is also a multicone, *dual* of M.

If $A_{\alpha}(M) \subset M$ for all α , then $A_{\alpha}^{-1}(M') \subset M'$ for all α .

Definition An invariant multicone M is tight if

- $\cup_{\alpha} A_{\alpha}(M)$ intersects each component of M;
- $\cup_{\alpha} A_{\alpha}^{-1}(M')$ intersects each component of M'.

伺下 イヨト イヨト

If M is a multicone, $M' := \mathbf{P}^1 - \overline{M}$ is also a multicone, *dual* of M.

If $A_{\alpha}(M) \subset M$ for all α , then $A_{\alpha}^{-1}(M') \subset M'$ for all α .

Definition An invariant multicone M is tight if

- $\cup_{\alpha} A_{\alpha}(M)$ intersects each component of M;
- ▶ $\cup_{\alpha} A_{\alpha}^{-1}(M')$ intersects each component of M'.

An invariant multicone M is *tight* iff its number of components is minimal (amongst invariant multicones).

マロト イヨト イヨト ニヨ

The number of components of any tight invariant multicone M and the way that these components of M are sent by the A_{α} into each other is invariant under deformation in the hyperbolicity locus \mathcal{H} and are therefore combinatorial invariants of the components of \mathcal{H} . The number of components of any tight invariant multicone M and the way that these components of M are sent by the A_{α} into each other is invariant under deformation in the hyperbolicity locus \mathcal{H} and are therefore combinatorial invariants of the components of \mathcal{H} .

Definition A matrix $A \in SL(2, \mathbb{R})$ is hyperbolic (resp. elliptic, resp. parabolic) if |tr A| > 2 (resp. < 2, resp. = 2).

(4) (3) (4) (3) (4)

The number of components of any tight invariant multicone M and the way that these components of M are sent by the A_{α} into each other is invariant under deformation in the hyperbolicity locus \mathcal{H} and are therefore combinatorial invariants of the components of \mathcal{H} .

Definition A matrix $A \in SL(2, \mathbb{R})$ is hyperbolic (resp. elliptic, resp. parabolic) if |tr A| > 2 (resp. < 2, resp. = 2).

Remarks

- Let ε_α ∈ {−1, +1}, A_α ∈ SL(2, R). Then the cocycle defined by (A_α)_{α∈A} is hyperbolic iff the cocycle defined by (ε_αA_α) is.
- If A is hyperbolic, (ε_αA)_{α∈A} ∈ H for all ε_α ∈ {−1, +1}. Over the full shift on N symbols, the 2^N components of H containing such elements are called the *principal* components of H.

(四) (日) (日)

Let $(A_{\alpha}) \in SL(2, \mathbf{R})^N$ be a family defining an uniformly hyperbolic cocycle over the full shift on N symbols.

Let $(A_{\alpha}) \in SL(2, \mathbb{R})^N$ be a family defining an uniformly hyperbolic cocycle over the full shift on N symbols.

Proposition[Y] The parameter (A_{α}) belongs to a principal component iff it has a connected invariant multicone.

通 とう ほう うちょう

Let M be a tight invariant multicone for (A, B).

(4) (5) (4) (5) (4)

Let M be a tight invariant multicone for (A, B). Let q be the number of components of M; let p be the number of components of M which intersect B(M).

向下 イヨト イヨト

Let M be a tight invariant multicone for (A, B). Let q be the number of components of M; let p be the number of components of M which intersect B(M). Assume that q > 1, i.e (A, B) does not belong to a principal component of \mathcal{H} .

向下 イヨト イヨト

Let M be a tight invariant multicone for (A, B). Let q be the number of components of M; let p be the number of components of M which intersect B(M). Assume that q > 1, i.e (A, B) does not belong to a principal component of \mathcal{H} .

Theorem [A-B-Y] One has $0 and <math>p \land q = 1$. A component of *M* intersects A(M) iff it does not intersect B(M).

・ 同 ト ・ ヨ ト ・ ヨ ト

Let *M* be a tight invariant multicone for (A, B). Let *q* be the number of components of *M*; let *p* be the number of components of *M* which intersect B(M). Assume that q > 1, i.e (A, B) does not belong to a principal component of \mathcal{H} .

Theorem [A-B-Y] One has $0 and <math>p \land q = 1$. A component of M intersects A(M) iff it does not intersect B(M). Conversely, for every $0 with <math>p \land q = 1$, there are exactly 8 nonprincipal components of \mathcal{H} with these data.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let *M* be a tight invariant multicone for (A, B). Let *q* be the number of components of *M*; let *p* be the number of components of *M* which intersect B(M). Assume that q > 1, i.e (A, B) does not belong to a principal component of \mathcal{H} .

Theorem [A-B-Y] One has $0 and <math>p \land q = 1$. A component of M intersects A(M) iff it does not intersect B(M). Conversely, for every $0 with <math>p \land q = 1$, there are exactly 8 nonprincipal components of \mathcal{H} with these data. They are deduced from each other by changes of sign of A and B and conjugacy by an element of $GL(2, \mathbf{R})$ of determinant -1.

・ロン ・回 と ・ ヨ と ・ ヨ と

The case p/q = 2/5

Let $(A_{\alpha})_{\alpha \in \mathcal{A}}$ be a family defining a cocycle over a subshift of finite type (Σ, σ) .

白 と く ヨ と く ヨ と …

æ

Let $(A_{\alpha})_{\alpha \in \mathcal{A}}$ be a family defining a cocycle over a subshift of finite type (Σ, σ) . If $(A_{\alpha}) \in \mathcal{H}$, then, for every periodic point $x \in \Sigma$ (of period k), the matrix $A^{(k)}(x)$ is hyperbolic.

Let $(A_{\alpha})_{\alpha \in \mathcal{A}}$ be a family defining a cocycle over a subshift of finite type (Σ, σ) . If $(A_{\alpha}) \in \mathcal{H}$, then, for every periodic point $x \in \Sigma$ (of period k), the matrix $A^{(k)}(x)$ is hyperbolic.

The converse is not true.

Let $(A_{\alpha})_{\alpha \in \mathcal{A}}$ be a family defining a cocycle over a subshift of finite type (Σ, σ) . If $(A_{\alpha}) \in \mathcal{H}$, then, for every periodic point $x \in \Sigma$ (of period k), the matrix $A^{(k)}(x)$ is hyperbolic.

The converse is not true.

Definitions

For A ∈ SL(2, R), A hyperbolic, we denote by s(A) (resp. u(A)) the stable (resp. unstable) direction of A in P¹.

伺 とう ヨン うちょう

Heteroclinic connexions

Let $(A_{\alpha})_{\alpha \in \mathcal{A}}$ be a family defining a cocycle over a subshift of finite type (Σ, σ) . If $(A_{\alpha}) \in \mathcal{H}$, then, for every periodic point $x \in \Sigma$ (of period k), the matrix $A^{(k)}(x)$ is hyperbolic.

The converse is not true.

Definitions

- For $A \in SL(2, \mathbb{R})$, A hyperbolic, we denote by s(A) (resp. u(A)) the stable (resp. unstable) direction of A in \mathbb{P}^1 .
- ► For $x \in \Sigma$, we define $W_{loc}^s(x) = \{z \in \Sigma, z_i = x_i \text{ for all } i \ge 0\}$, $W_{loc}^u(x) = \{z \in \Sigma, z_i = x_i \text{ for all } i < 0\}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Heteroclinic connexions

Let $(A_{\alpha})_{\alpha \in \mathcal{A}}$ be a family defining a cocycle over a subshift of finite type (Σ, σ) . If $(A_{\alpha}) \in \mathcal{H}$, then, for every periodic point $x \in \Sigma$ (of period k), the matrix $A^{(k)}(x)$ is hyperbolic.

The converse is not true.

Definitions

- ▶ For $A \in SL(2, \mathbb{R})$, A hyperbolic, we denote by s(A) (resp. u(A)) the stable (resp. unstable) direction of A in \mathbb{P}^1 .
- ► For $x \in \Sigma$, we define $W_{loc}^s(x) = \{z \in \Sigma, z_i = x_i \text{ for all } i \ge 0\}$, $W_{loc}^u(x) = \{z \in \Sigma, z_i = x_i \text{ for all } i < 0\}$.
- Let x, y be periodic points in Σ, of periods k, l, such that A^(k)(x), A^(l)(y) are hyperbolic. A point z ∈ W^u_{loc}(x) ∩ σ⁻ⁿW^s_{loc}(y) (for some n ≥ 0) defines a heteroclinic connexion from x to y if

$$A^{(n)}(z)u(A^{(k)}(x)) = s(A^{(l)}(y)).$$

· < @ > < 문 > < 문 > _ 문

Boundary of components of ${\mathcal H}$

Let \mathcal{H} be the hyperbolicity locus over a subshift of finite type (Σ, σ) .

• 3 >

A ■

• 3 > 1

Theorem[A-B-Y] Let $(A_{\alpha})_{\alpha \in \mathcal{A}}$ be a parameter belonging to the boundary of some component H of \mathcal{H} . Then at least one of the following holds:

伺 とう ヨン うちょう

Theorem[A-B-Y] Let $(A_{\alpha})_{\alpha \in \mathcal{A}}$ be a parameter belonging to the boundary of some component H of \mathcal{H} . Then at least one of the following holds:

• There exists a periodic point $t \in \Sigma$, of period *m*, such that $A^{(m)}(t)$ is parabolic;

向下 イヨト イヨト

Theorem[A-B-Y] Let $(A_{\alpha})_{\alpha \in \mathcal{A}}$ be a parameter belonging to the boundary of some component H of \mathcal{H} . Then at least one of the following holds:

- There exists a periodic point $t \in \Sigma$, of period *m*, such that $A^{(m)}(t)$ is parabolic;
- ► There exist periodic points $x, y \in \Sigma$, of periods k, l, such that $A^{(k)}(x), A^{(l)}(y)$ are hyperbolic, and a point $z \in W^u_{loc}(x) \cap \sigma^{-n} W^s_{loc}(y)$ (for some $n \ge 0$) which defines a heteroclinic connexion from x to y.

・日・ ・ ヨ・ ・ ヨ・

Theorem[A-B-Y] Let $(A_{\alpha})_{\alpha \in \mathcal{A}}$ be a parameter belonging to the boundary of some component H of \mathcal{H} . Then at least one of the following holds:

- There exists a periodic point $t \in \Sigma$, of period *m*, such that $A^{(m)}(t)$ is parabolic;
- ► There exist periodic points $x, y \in \Sigma$, of periods k, l, such that $A^{(k)}(x), A^{(l)}(y)$ are hyperbolic, and a point $z \in W^u_{loc}(x) \cap \sigma^{-n} W^s_{loc}(y)$ (for some $n \ge 0$) which defines a heteroclinic connexion from x to y.

Moreover, the integers k, l, m, n are bounded in terms of H only.

▲圖▶ ▲屋▶ ▲屋▶

Theorem[A-B-Y] Let $(A_{\alpha})_{\alpha \in \mathcal{A}}$ be a parameter belonging to the boundary of some component H of \mathcal{H} . Then at least one of the following holds:

- There exists a periodic point $t \in \Sigma$, of period *m*, such that $A^{(m)}(t)$ is parabolic;
- There exist periodic points x, y ∈ Σ, of periods k, l, such that A^(k)(x), A^(l)(y) are hyperbolic, and a point z ∈ W^u_{loc}(x) ∩ σ⁻ⁿW^s_{loc}(y) (for some n ≥ 0) which defines a heteroclinic connexion from x to y.

Moreover, the integers k, l, m, n are bounded in terms of H only.

Corollary Each component H of H, and the boundary of H, is semialgebraic.

(日) (日) (日)

回 と くほ と くほ とう

æ

Yes for the full shift over 2 symbols.

個 と く ヨ と く ヨ と …

Yes for the full shift over 2 symbols.

Is the boundary of H equal to the union of the boundary of its components?

伺 とう きょう とう とう

Yes for the full shift over 2 symbols.

Is the boundary of H equal to the union of the boundary of its components?

Yes for the full shift over 2 symbols.

Let \mathcal{E} be the set of parameters $(A_{\alpha})_{\alpha \in \mathcal{A}}$ such that there exists a periodic point $t \in \Sigma$, of period *m*, such that $A^{(m)}(t)$ is elliptic.

ヨット イヨット イヨッ

Theorem [Avila] $\overline{\mathcal{E}} = \mathcal{H}^c$.

伺 と く き と く き と

Theorem [Avila] $\overline{\mathcal{E}} = \mathcal{H}^c$.

Does one have H
= E^c? Equivalently, does one have ∂E = ∂H = (E ∪ H)^c?

伺 とう ヨン うちょう

Theorem [Avila] $\overline{\mathcal{E}} = \mathcal{H}^c$.

▶ Does one have $\overline{\mathcal{H}} = \mathcal{E}^c$? Equivalently, does one have $\partial \mathcal{E} = \partial \mathcal{H} = (\mathcal{E} \cup \mathcal{H})^c$?

Yes for the full shift over 2 symbols.

伺 と く き と く き と

(4) (3) (4) (3) (4)

Definition A subset $H \subset SL(2, \mathbb{R})^N$ is bounded mod. conjugacy if there exists a compact subset $K \subset SL(2, \mathbb{R})^N$ such that

$$H \subset \bigcup_{g \in SL(2,\mathbf{R})} g \ K \ g^{-1}$$

Definition A subset $H \subset SL(2, \mathbb{R})^N$ is bounded mod. conjugacy if there exists a compact subset $K \subset SL(2, \mathbb{R})^N$ such that

$$H \subset \bigcup_{g \in SL(2,\mathbf{R})} g \ K \ g^{-1}$$

Is any connected component of H unbounded mod. conjugacy?

向下 イヨト イヨト

Definition A subset $H \subset SL(2, \mathbb{R})^N$ is bounded mod. conjugacy if there exists a compact subset $K \subset SL(2, \mathbb{R})^N$ such that

$$H \subset \bigcup_{g \in SL(2,\mathbf{R})} g \ K \ g^{-1}$$

Is any connected component of H unbounded mod. conjugacy?

Yes for the full shift over 2 symbols.

(4) (3) (4) (3) (4)