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Linear cocycles

Given

I A compact metric space X ,

I a homeomorphism f : X → X ,

I a vector bundle π : E → X ,

a linear cocycle over f is a vector bundle map F : E → E over f:
Fx : Ex → Ef (x) is linear and depends continuously on x .

We will always assume that F is invertible.
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The basic example

I X is a manifold,

I f is a C 1 diffeomorphism of X ,

I E is the tangent bundle of X ,

I F is the tangent map of f .
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Uniform hyperbolicity

Definition A linear cocycle F : E → E is uniformly hyperbolic if
there is an F -invariant continuous splitting E = E s ⊕ Eu and
constants C > 0, 0 < λ < 1 such that, for all n ≥ 0 and x ∈ X

||F n
|E s

x
|| ≤ Cλn,

||F−n
|Eu

x
|| ≤ Cλn.

In this case, one can always find an adapted norm on E such that
C = 1.
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The conefield criterion

A linear cocycle F : E → E is uniformly hyperbolic iff there are
constants C > 0, λ > 1 and, for each x ∈ X , a splitting
Ex = E 1

x ⊕ E 2
x and norms |.|1, |.|2 on E 1

x , E 2
x respectively such

that, writing Fx(v1 + v2) = w1 + w2 with vi ∈ E i
x , wi ∈ E i

f (x)

I C−1||vi || ≤ |vi |i ≤ C ||vi ||,
I if |v2|2 ≥ |v1|1, then |w2|2 ≥ λ|w1|1 and |w2|2 ≥ λ|v2|2;

I if |w1|1 ≥ |w2|2, then |v1|1 ≥ λ|v2|2 and |v1|1 ≥ λ|w1|1.

The splitting Ex = E 1
x ⊕ E 2

x is in general neither F -invariant nor
continuous.

It follows immediately from this criterion that uniform
hyperbolicity is an open property.
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E s
x = lim

n→+∞
F−n(E 1

f n(x)), Eu
x = lim

n→+∞
F n(E 2

f −n(x)).
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Lyapunov exponents

Let F : E → E be a linear cocycle and µ be an f -invariant ergodic
probability measure.

Theorem(Oseledets) There exist r ≥ 1, λ1 > · · · > λr and, for
µ-a.e x ∈ X , a splitting

Ex = E 1
x ⊕ · · · ⊕ E r

x

which is F -invariant and depends measurably on x , such that, for
1 ≤ i ≤ r , v ∈ E i

x , v 6= 0, one has

lim
n→±∞

1

n
log ||F n

x (v)|| = λi .
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Lyapunov exponents and uniform hyperbolicity

Let F : E → E be a uniformly hyperbolic linear cocycle.

Then, the Lyapunov exponents relative to any f -invariant ergodic
probability measure are uniformly bounded away from 0.

The converse is not true.

Jean-Christophe Yoccoz Uniformly hyperbolic SL(2, R) cocycles



Lyapunov exponents and uniform hyperbolicity

Let F : E → E be a uniformly hyperbolic linear cocycle.

Then, the Lyapunov exponents relative to any f -invariant ergodic
probability measure are uniformly bounded away from 0.

The converse is not true.

Jean-Christophe Yoccoz Uniformly hyperbolic SL(2, R) cocycles



Lyapunov exponents and uniform hyperbolicity

Let F : E → E be a uniformly hyperbolic linear cocycle.

Then, the Lyapunov exponents relative to any f -invariant ergodic
probability measure are uniformly bounded away from 0.

The converse is not true.

Jean-Christophe Yoccoz Uniformly hyperbolic SL(2, R) cocycles



SL(2, R) cocycles

From now on, we will have

E = X × R2, F (x , v) = (f (x),A(x)v),

with A ∈ C 0(X , SL(2,R)).

Then, we have F n(x , v) = (f n(x),A(n)(x)(v)), with

A(n)(x) = A(f n−1(x)) · · ·A(x),

A(−n)(x) = A(f −n(x))−1 · · ·A(f −1(x))−1,

for n ≥ 0.
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A criterion of uniform hyperbolicity for SL(2, R) cocycles

Let F (x , v) = (f (x),A(x)v) be a SL(2,R) cocycle.

Proposition The cocycle F is uniformly hyperbolic iff there exist
C > 0, λ > 1 such that

||A(n)(x)|| ≥ C λn,

for all x ∈ X , n ≥ 0.
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Quasiperiodic SL(2, R) cocycles

The case where X is a torus Td and f is a translation x → x + α
has been much studied, in relation to 1-d discrete Schrdinger
operators with quasiperiodic potentials.

Let V ∈ C (Td ,R), α, θ ∈ Td . Define H = HV ,α,θ : `2(Z)→ `2(Z)
by

(Hu)n = un+1 + un−1 + V (θ + nα)un.

Observe that u is an eigenvector with eigenvalue λ iff, for all n ∈ Z(
un+1

un

)
= Aλ,V (θ + nα)

(
un

un−1

)
,

with Aλ,V (θ) =

(
λ− V (θ) −1

1 0

)
.
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Spectral vs. dynamical properties

The spectral properties of the one-parameter family of operators
(HV ,α,θ)θ∈T and the dynamical properties of the one-parameter
families of cocycles over θ → θ + α defined by Aλ,V , λ ∈ R are
strongly correlated.

For instance, the spectrum of HV ,α,θ is independent of θ. A real
number λ belongs to the spectrum iff the cocycle over θ → θ + α
defined by Aλ,V is uniformly hyperbolic.
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Locally constant SL(2, R)-cocycles over subshifts of finite
type

From now on we will consider linear cocycles over chaotic (rather
than quasiperiodic) dynamics in the base.

Let A be a finite alphabet with N ≥ 2 letters. Let σ : AZ → AZ

be the shift map defined by (σx)n = xn+1.

We will take as base dynamics (X , f ) the full shift on N symbols
(AZ, σ) or more generally a subshift of finite type: given an
oriented strongly connected graph Γ having the elements of A as
vertices, let Σ be the σ-invariant set of sequences x in AZ such
that, for all n ∈ Z, there exists an edge of Γ from xn to xn+1. Then
we take X = Σ and f = σ|Σ.

We will only consider SL(2,R)-cocycles defined by functions
A : Σ→ SL(2,R) depending only on the letter x0 in position 0.
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The hyperbolicity locus

The parameter space for the class of cocycles under consideration
is therefore the finite dimensional manifold SL(2,R)A = SL(2,R)N .

We want to describe the open set H (depending on Σ) of
parameters (Aα)α∈A such that the corresponding cocycle is
uniformly hyperbolic.

In particular, we would like to understand the (countably many)
connected components of H and describe their boundary.

The results below were obtained in collaboration with Artur Avila
(Clay Institute, CNRS Paris, IMPA Rio de Janeiro), and Jairo
Bochi (PUC, Rio de Janeiro). They will appear soon in
Commentarii Helvetici and are available on arXiv.
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Induced projective action and multicones

A SL(2,R)-cocycle induces a fibered map on Σ× P1(R).

The conefield criterion for uniform hyperbolicity can be stated as
follows: There exists a family of intervals Ix ⊂ P1(R) with
Ax0 Ix ⊂⊂ Iσx and the distances between the endpoints of Ax0 Ix ,
Iσx uniformly bounded from below.

Definition A multicone is a non empty open subset of P1 = P1(R)
with finitely many connected components with disjoint closures.

Jean-Christophe Yoccoz Uniformly hyperbolic SL(2, R) cocycles



Induced projective action and multicones

A SL(2,R)-cocycle induces a fibered map on Σ× P1(R).

The conefield criterion for uniform hyperbolicity can be stated as
follows: There exists a family of intervals Ix ⊂ P1(R) with
Ax0 Ix ⊂⊂ Iσx and the distances between the endpoints of Ax0 Ix ,
Iσx uniformly bounded from below.

Definition A multicone is a non empty open subset of P1 = P1(R)
with finitely many connected components with disjoint closures.

Jean-Christophe Yoccoz Uniformly hyperbolic SL(2, R) cocycles



Induced projective action and multicones

A SL(2,R)-cocycle induces a fibered map on Σ× P1(R).

The conefield criterion for uniform hyperbolicity can be stated as
follows: There exists a family of intervals Ix ⊂ P1(R) with
Ax0 Ix ⊂⊂ Iσx and the distances between the endpoints of Ax0 Ix ,
Iσx uniformly bounded from below.

Definition A multicone is a non empty open subset of P1 = P1(R)
with finitely many connected components with disjoint closures.

Jean-Christophe Yoccoz Uniformly hyperbolic SL(2, R) cocycles



Invariant multicones

I The case of full shifts.

Theorem [A-B-Y] The cocycle defined by (Aα) over the full
shift (AZ, σ) is uniformly hyperbolic iff there exists a
multicone M such that AαM ⊂⊂ M for all α ∈ A.

I The general case of subshifts of finite type.

Theorem [A-B-Y] The cocycle defined by (Aα) over a
subshift of finite type (Σ, σ) is uniformly hyperbolic iff there
exist multicones Mα such that AβMα ⊂⊂ Mβ for all allowed
transitions α→ β.
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Tightness

We consider here only the full shift case.

If M is a multicone, M ′ := P1 −M is also a multicone, dual of M.

If Aα(M) ⊂⊂ M for all α, then A−1
α (M ′) ⊂⊂ M ′ for all α.

Definition An invariant multicone M is tight if

I ∪αAα(M) intersects each component of M;

I ∪αA−1
α (M ′) intersects each component of M ′.

An invariant multicone M is tight iff its number of components is
minimal (amongst invariant multicones).
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Combinatorial invariants

The number of components of any tight invariant multicone M and
the way that these components of M are sent by the Aα into each
other is invariant under deformation in the hyperbolicity locus H
and are therefore combinatorial invariants of the components of H.

Definition A matrix A ∈ SL(2,R) is hyperbolic (resp. elliptic,
resp. parabolic) if | tr A | > 2 (resp.< 2, resp.= 2).

Remarks

I Let εα ∈ {−1,+1},Aα ∈ SL(2,R). Then the cocycle defined
by (Aα)α∈A is hyperbolic iff the cocycle defined by (εαAα) is.

I If A is hyperbolic, (εαA)α∈A ∈ H for all εα ∈ {−1,+1}. Over
the full shift on N symbols, the 2N components of H
containing such elements are called the principal components
of H.
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Characterization of principal components

Let (Aα) ∈ SL(2,R)N be a family defining an uniformly hyperbolic
cocycle over the full shift on N symbols.

Proposition[Y] The parameter (Aα) belongs to a principal
component iff it has a connected invariant multicone.
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Nonprincipal components over the full shift on 2 symbols

Let (A,B) ∈ SL(2,R)2 define a uniformly hyperbolic cocycle over
the full shift on 2 symbols.

Let M be a tight invariant multicone for (A,B). Let q be the
number of components of M; let p be the number of components
of M which intersect B(M). Assume that q > 1, i.e (A,B) does
not belong to a principal component of H.

Theorem [A-B-Y] One has 0 < p < q and p ∧ q = 1. A
component of M intersects A(M) iff it does not intersect B(M).
Conversely, for every 0 < p < q with p ∧ q = 1, there are exactly 8
nonprincipal components of H with these data. They are deduced
from each other by changes of sign of A and B and conjugacy by
an element of GL(2,R) of determinant −1.
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The case p/q = 2/5
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Heteroclinic connexions

Let (Aα)α∈A be a family defining a cocycle over a subshift of finite
type (Σ, σ).

If (Aα) ∈ H, then, for every periodic point x ∈ Σ (of
period k), the matrix A(k)(x) is hyperbolic.

The converse is not true.

Definitions

I For A ∈ SL(2,R), A hyperbolic, we denote by s(A) (resp.
u(A)) the stable (resp. unstable) direction of A in P1.

I For x ∈ Σ, we define W s
loc(x) = {z ∈ Σ, zi = xi for all i ≥ 0},

W u
loc(x) = {z ∈ Σ, zi = xi for all i < 0}.

I Let x , y be periodic points in Σ, of periods k , l , such that
A(k)(x),A(l)(y) are hyperbolic. A point
z ∈W u

loc(x) ∩ σ−nW s
loc(y) (for some n ≥ 0) defines a

heteroclinic connexion from x to y if

A(n)(z)u(A(k)(x)) = s(A(l)(y)).
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Boundary of components of H

Let H be the hyperbolicity locus over a subshift of finite type
(Σ, σ).

Theorem[A-B-Y] Let (Aα)α∈A be a parameter belonging to the
boundary of some component H of H. Then at least one of the
following holds:

I There exists a periodic point t ∈ Σ, of period m, such that
A(m)(t) is parabolic;

I There exist periodic points x , y ∈ Σ, of periods k , l , such that
A(k)(x),A(l)(y) are hyperbolic, and a point
z ∈W u

loc(x) ∩ σ−nW s
loc(y) (for some n ≥ 0) which defines a

heteroclinic connexion from x to y .

Moreover, the integers k , l ,m, n are bounded in terms of H only.

Corollary Each component H of H, and the boundary of H, is
semialgebraic.
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Open questions(I): Boundaries

I Are the boundaries of the connected components of H
disjoint?

Yes for the full shift over 2 symbols.

I Is the boundary of H equal to the union of the boundary of its
components?

Yes for the full shift over 2 symbols.
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Open questions(II): Elliptic products

Let E be the set of parameters (Aα)α∈A such that there exists a
periodic point t ∈ Σ, of period m, such that A(m)(t) is elliptic.

The subset E ⊂ SL(2,R)N is open, disjoint from H.

Theorem [Avila] E = Hc .

I Does one have H = Ec? Equivalently, does one have
∂E = ∂H = (E ∪ H)c?

Yes for the full shift over 2 symbols.
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Open questions(III): Boundedness mod. conjugacy

Each component of the hyperbolicity locus H is invariant under
diagonal conjugacy by SL(2,R), hence unbounded.

Definition A subset H ⊂ SL(2,R)N is bounded mod. conjugacy if
there exists a compact subset K ⊂ SL(2,R)N such that

H ⊂
⋃

g∈SL(2,R)

g K g−1

I Is any connected component of H unbounded mod.
conjugacy?

Yes for the full shift over 2 symbols.
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