Modelling of Cancer Treatment

Graeme Wake

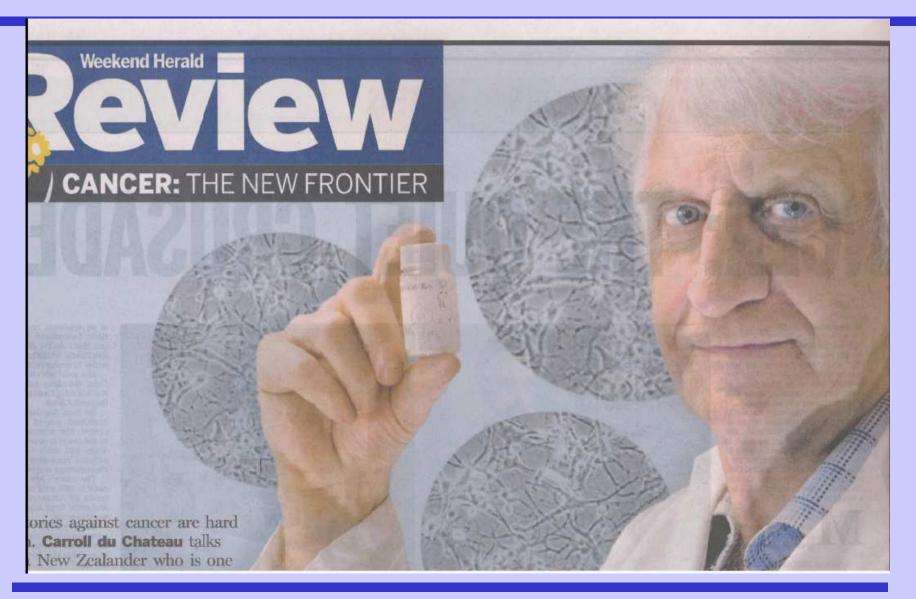
in collaboration with

Britta Basse, Auckland Medical School Ronald Begg, University of Canterbury

Bruce van-Brunt. Massey University
David Wall, University of Canterbury
Bruce Baguley, Auckland Medical School
Elaine Marshall, Auckland Medical School

Seminar June-July 2008

Bruce Baguley; Auckland Cancer Society Professor



Graeme Wake, Centre for Mathematics in Industry, Massey University at Auckland, New Zealand

- What is non-local Calculus?
 - Occurs when cause and effect are separated.
 - * Earlier times affect the present.
 - * Action at a distance.
- Test problems:

$$y'(t) = y(t-1), y((-1,0]) = given.$$

 $y'(x) = \alpha y(\alpha x) - y(x), y(0) = 0, y = 0.$

What is the solution?

Outline

- 1. History of the cell-growth model
- 2. The new mathematics!!!
- 3. Tumour cell growth
- 4. Further new maths
- 5. Modelling cancer treatment **** (main section)
- 6. Link to other approaches
- 7. Current work

1. History of the cell-growth model – personal.

1988+: Horticulturists ask me to "provide an understanding of time-series data" which showed that cell populations, structured by size, evolved by simultaneously growing, dividing and dying, evolved to a

"STEADY SIZE DISTRIBUTION"

SSD - first take-out.

This data was for plant-root cells, maize etc.

This result was robust, independent of the initial condition, and in dynamical systems terms, was attracting.

SSDs

• What is a SSD? Introduce n(x,t), the number density of a cell population cohort structured by attributes (x) like:

```
* size (say = DNA content) – this is us

* age

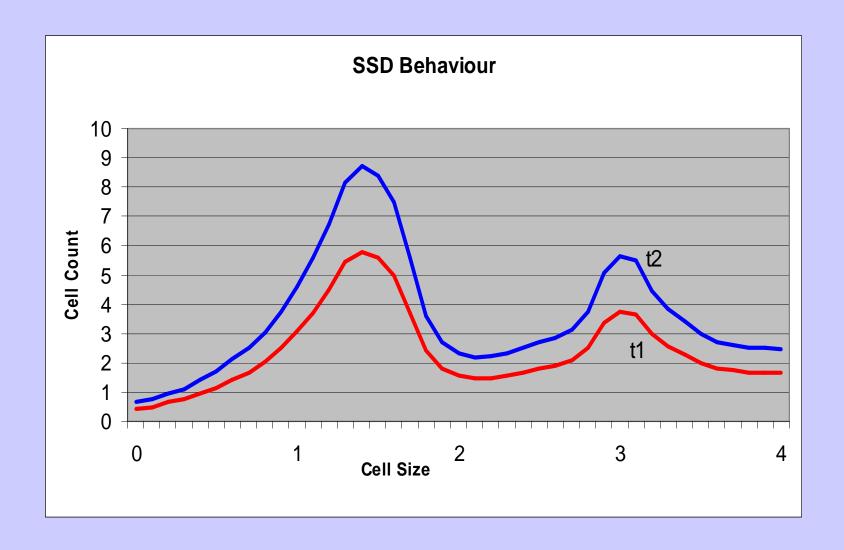
* time in a given phase....

etc

Then

\int_{a}^{b} n(x,t) dx = \# \text{ of cells (biomass) in size interval} \\
[a,b], \text{ evolving in time.}
```

SSD behaviour: $n(\cdot,t)$ evolves like:



Core model

• This led to the first cell-growth model:

$$n_t = -(gn)_x + b\alpha^2 n(\alpha x, t) - bn - \mu n(x, t), \quad x, t > 0,$$

$$\uparrow \quad \uparrow \quad \alpha > 1. Why?$$

growth

division

addition through loss through death division

$$n(0,t) = 0$$
, $n(\infty, t) = 0$, $n(x,0)$ given, $n(x,t) = 0$.

The terms are all local except " $n(\alpha x,t)$ ".

$$x = 0$$
 x/α x αx

Key questions and answers

• The question then is:

Are there solutions of the form

$$n(x,t) = N(t) y(x) = e^{-\lambda t} y(x) ?$$

Q. sign of λ ????

Yes there is:

- 1."A functional differential equation arising in modelling of cell growth". J Australian Math. Soc. Series B, Vol 30.424-435,1989 (A J Hall and G C Wake).
- 2. "Functional differential equations determining steady size distributions for populations of cells growing exponentially", J.Austr.Math.Ser; B, Vol 31,434-453,1990 (A J Hall and G C Wake).
- 3. "Steady size distributions for cells in one-dimensional plant tissues" Journal of Mathematical Biology. Vol 30. No 2. pp101-123. 1991 (A J Hall, G C Wake and P W Gandar).

We then added dispersion, see later...

4. "Functional differential equations for cell-growth models with dispersion" Comm. Appl. Anal. 4, 2000, pp 561-574. (G C Wake, S Cooper, HK Kim, & B van-Brunt).

2. New Mathematics

• The SSD is y(x), which in the no-dispersive case satisfies the interesting non-local equation:

$$y'(x) = a\alpha \ y(\alpha x) - a \ y(x), \ x > 0,$$
 $a = b\alpha/g,$
 $y(0) = 0, \ y(x) = 0, \int_0^\infty y(x) \ dx = 1.$

We prove in Reference 1 that this is well-posed and find y(x) Explicitly. How??

And the
$$\lambda = \mu - b(\alpha-1) < 0$$
, in $n(x,t) = e^{-\lambda t} y(x)$.

- < Therefore this is a healthy growing cohort.
- > Therefore this is a decaying cohort

Generic equation

- This is akin to the "pantograph equation"
- Raised in the first MISG in Oxford in 1970
- Is generally ill-posed as an IVP:

"the future is dictating the past"

$$y'(x) = a\alpha y(\alpha x) - a y(x), x > 0, \alpha > 1,$$

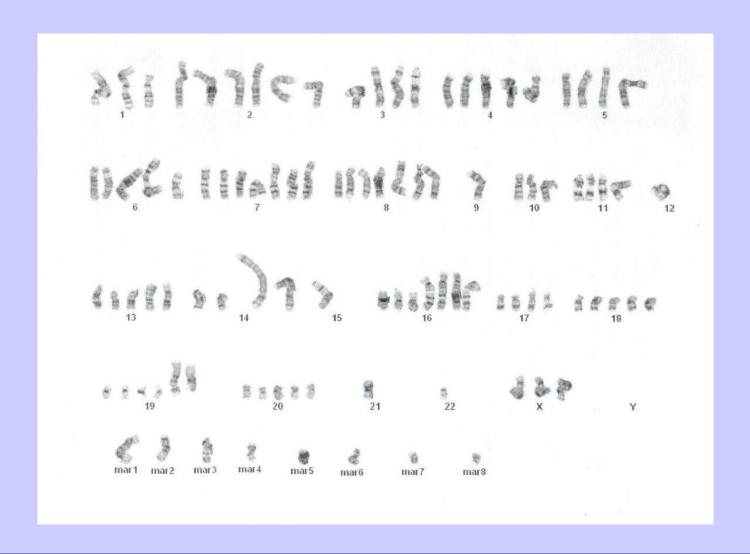
 $y(0) = 0, y(\infty) = 0.$

• For us it is an "eigenvalue problem", and we are at the principal eigenvalue.

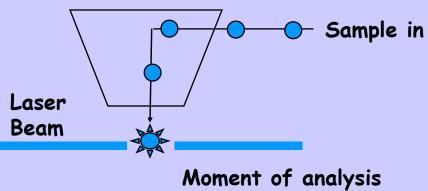
Normal Cells



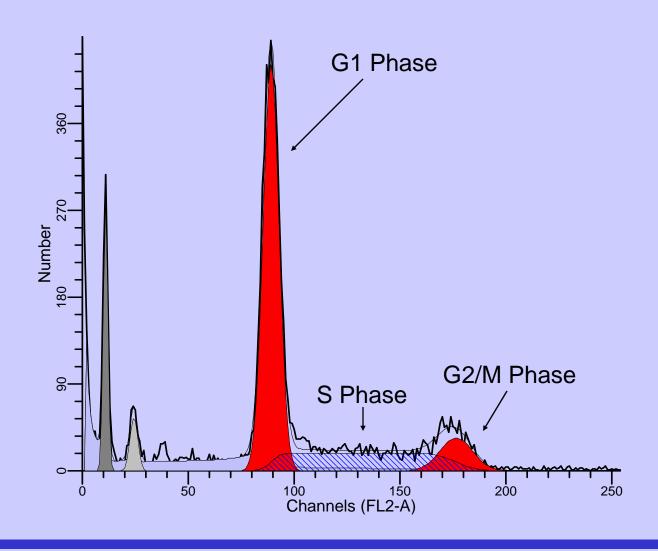
3. Tumour cell growth



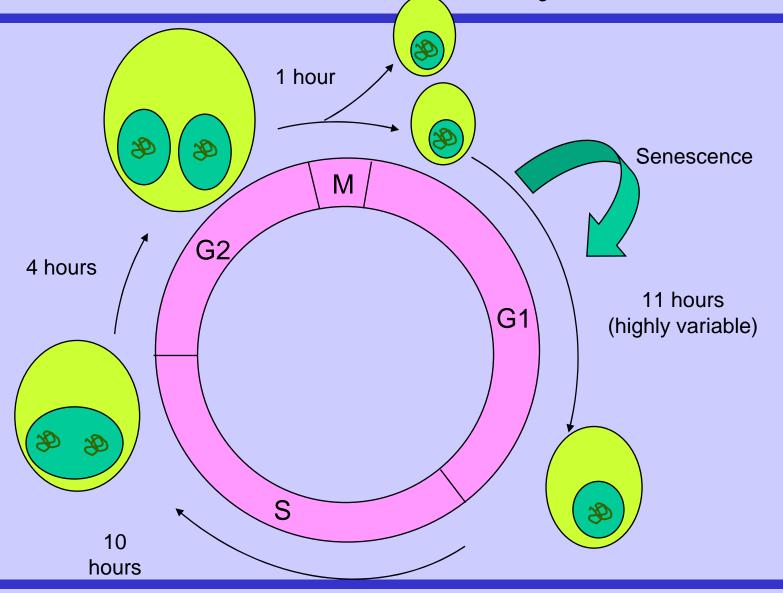
Flow Cytometry



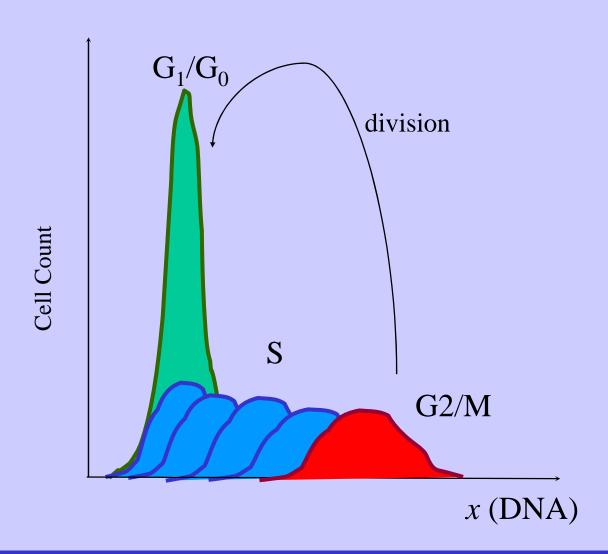
Steady DNA Distribution (SDD)



The Human Cell Cycle



Idea



Model of a cell line unperturbed by cancer therapy G1-phase

$$\frac{\partial G_1(x,t)}{\partial t} = 4bM(2x,t) - k_1 G_1(x,t), \quad t > 0, \ 0 < x < L,$$

$$G_1(x,t=0) = G_{10}, \quad 0 < x < L,$$

Dispersion

- There is white noise particularly in the S-phase
- Growth $dx = g dt + \sigma dX$

Deterministic White
Growth Noise

Gives Fokker-Planck Equation

$$S_t = (D S)_{xx} - (g S)_x + \dots \text{ etc.,}$$

 $D = \sigma^2/2.$

Model of a cell line unperturbed by cancer therapy S-phase

$$\frac{\partial \overline{S}(x,t;\tau_{S})}{\partial \tau_{S}} = D \frac{\partial^{2} \overline{S}(x,t;\tau_{S})}{\partial x^{2}} - g \frac{\partial \overline{S}(x,t;\tau_{S})}{\partial x}, \quad t,\tau_{S} > 0, \ 0 < x < L,$$

$$\overline{S}(x,t;\tau_{S} = 0) = k_{1}G_{1}(x,t), \quad t > 0, \ 0 < x < L,$$

$$\overline{S}(x,t = 0;\tau_{S}) = \overline{S}_{0\tau_{S}}, \qquad \tau_{S} > 0, \ 0 < x < L,$$

$$D \frac{\partial \overline{S}}{\partial x}(x = 0,t;\tau_{S}) - g \overline{S}(x = 0,t;\tau_{S}) = 0, \quad t,\tau_{S} > 0,$$

$$D \frac{\partial \overline{S}}{\partial x}(x = L,t;\tau_{S}) - g \overline{S}(x = L,t;\tau_{S}) = 0, \quad t,\tau_{S} > 0,$$

$$S(x,t) = \int_{0}^{\tau_{S}} \overline{S}(x,t;\tau_{S}) d\tau_{S}$$

Model of a cell line unperturbed by cancer therapy G2 & M-phase

$$\begin{split} \frac{\partial G_2(x,t)}{\partial t} &= \overline{S}(x,t;T_S) - (k_2 + \mu_{G2})G_2(x,t), \quad t > 0, \ 0 < x < L, \\ G_2(x,t=0) &= G_{20}, \quad 0 < x < L, \end{split}$$

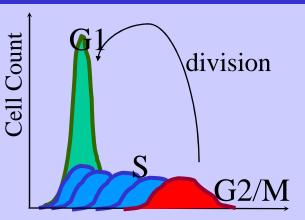
$$\frac{\partial M(x,t)}{\partial t} = k_2 G_2(x,t) - bM(x,t), \quad t > 0, \ 0 < x < L,$$

$$M(x,t=0) = M_0, \quad 0 < x < L,$$

$\frac{\partial \overline{S}(x,t;\tau)}{\partial \tau} = D \frac{\partial^2 \overline{S}(x,t;\tau)}{\partial x^2} - g \frac{\partial \overline{S}(x,t;\tau)}{\partial x}, \overline{S}(x,t;\tau=0) = \overline{S}_0(x,t)$	
A < x < B	$\overline{S}(x,t;\tau) = \int_{A}^{B} \overline{S}_{0}(x,t) \gamma(\tau,x,z) dz$
$-\infty < x < \infty$	$\gamma(\tau, x, z) = \frac{1}{2\sqrt{\pi D\tau}} e^{-(x-g\tau-z)^2/4D\tau}$
$0 < x < \infty$ $\overline{S}(x = 0, t; \tau) = 0,$	$\gamma(\tau, x, z) = \frac{1}{2\sqrt{\pi D\tau}} e^{g(x-z-g\tau/2)/2D} \left(e^{-(x-z)^2/4D\tau} - e^{-(x+z)^2/4D\tau} \right)$
$0 < x < L$ $\overline{S}(x = 0, t; \tau_S) = 0$ $\overline{S}(x = L, t; \tau_S) = 0$	$\gamma(\tau, x, z) = \frac{e^{g(x-z-g\tau/2)/(2D)}}{2\sqrt{\pi D\tau}} \sum_{n=-\infty}^{n=\infty} \left(e^{-(x-z+ n 2L)^2/4D\tau} - e^{-(x+z- n 2L)^2/4D\tau} \right)$
0 < x < L	$D\frac{\partial \overline{S}}{\partial x}(0,t;\tau_S) - g\overline{S}(0,t;\tau_S) = 0,$ $D\frac{\partial \overline{S}}{\partial x}(L,t;\tau_S) - g\overline{S}(L,t;\tau_S) = 0,$ $\gamma(\tau,x,z) \cong \frac{1}{2\sqrt{\pi D\tau}}e^{-(x-g\tau-z)^2/4D\tau}$

S-phase equations

$$\overline{S}(x,t;\tau_{S}) = \begin{cases} k_{1}G_{1}(x - g\tau_{S}, t - \tau_{S}), & D = 0, \\ \int_{0}^{L} k_{1}G_{1}(x, t - \tau_{S})\gamma(\tau_{S}, x, z)dz, & D \neq 0, \end{cases}$$



$$\frac{\partial S(x,t)}{\partial t} = D \frac{\partial^2 S(x,t)}{\partial x^2} - g \frac{\partial S(x,t)}{\partial x} + k_1 G_1(x,t) - \overline{S}(x,t;\tau_S = T_S), \quad t > 0, \ 0 < x < L,$$

$$S(x, t = 0) = S_0,$$
 $0 < x < L,$

$$D\frac{\partial \overline{S}}{\partial x}(x=0,t) - g\overline{S}(x=0,t) = 0, \quad t > 0,$$

$$S(x,t) = k_1 G_1(x,t) + \int_0^{T_S} \int_0^L k_1 G_1(x,t-\tau_S) \gamma(\tau_S,x,z) dz d\tau_S,$$

4. Further new maths

- Finite Differences+convolution: Do get SSD's but slow.
- •Look for separable solutions.....

$$G_1(x,t) = N(t)y_1(x)$$

$$S(x,t) = N(t)y_S(x)$$

$$G_2(x,t) = N(t)y_2(x)$$

$$M(x,t) = N(t)y_M(x)$$

If solutions are attracting then the y's are the SSDs in each phase.

Equations for y₁ the SSD: G1-phase

Delay equation equation:

$$y_1(x-1) = \Lambda y_1\left(\frac{x}{2}\right), \quad x > 0, \quad D = 0,$$

Solution: $y_1(x) = \delta(x-1)$, $\Lambda = \frac{1}{2}$. Check.

Exam Question on generalised functions?

Fredholm integral equation (non-symmetric):

$$\int_{0}^{L} \gamma(T_{S}, 2x, z) y_{1}(z) dz = \Lambda y_{1}(x), \quad x > 0, \quad D \neq 0$$

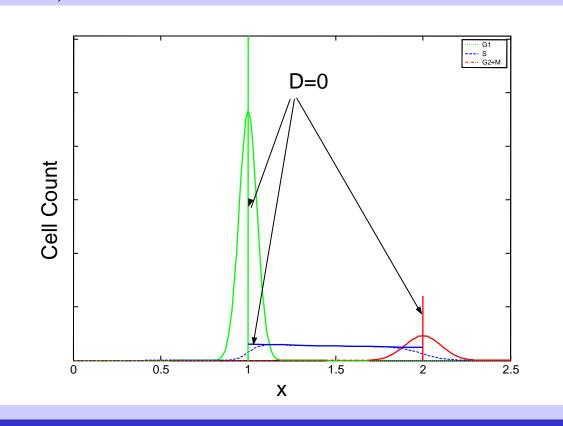
$$\Lambda = F(\lambda) = \frac{(\lambda + k_{1})(\lambda + k_{2})(\lambda + b)e^{\lambda T_{S}}}{4bk_{1}k_{2}}$$

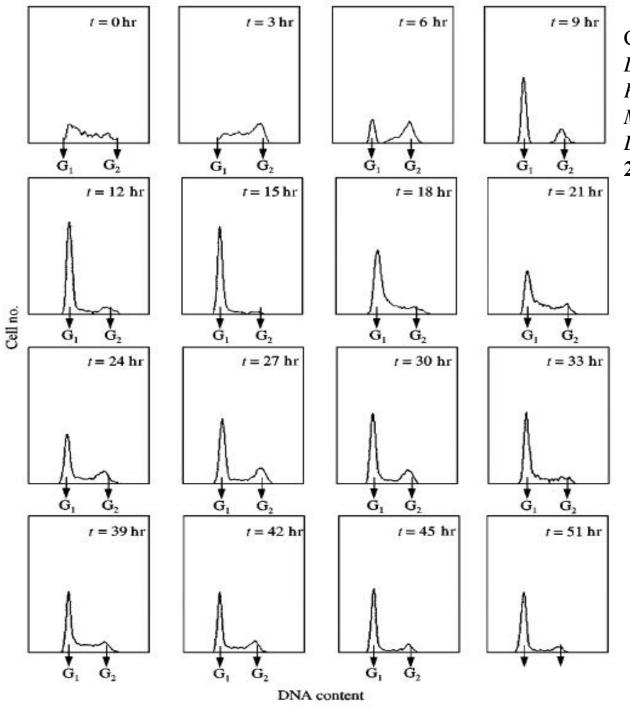
SDD Solutions

• Delay equation (D=0): (unique) Point distributions. $y_1(x) \sim \delta(x-1)$, $y_2(x)$, $y_M(x) \sim \delta(x-2)$, $y_S(x) \sim H(x-2) - H(x-1)$

• Fredholm Integral Equation $(D \neq 0)$:

Numerical methods. Get 1 eigenfunction (there could be others)





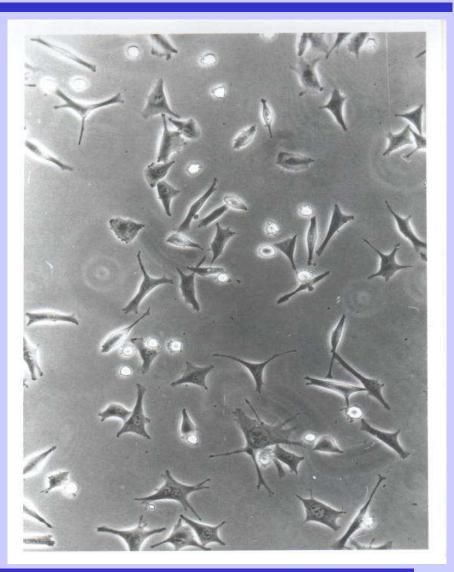
Chiorino et al.

Desyncronization Rate in Cell Populations: Mathematical Modeling and Experimental Data, J. theor. Biol. (2001) **208**, 185-199

References: Cancer treatment

- Basse B, Baguley BC, Marshall WR, Joseph B, van-Brunt B, Wake GC, & Wall DJN "Modelling cell death in human tumour cell lines exposed to the anticancer drug paclitaxel", Journal Mathematical Biology, 49, 2004, 329-357.
- Basse B, Baguley BC, Marshall E, Wake GC & Wall DJN) "Modelling cell population growth with applications to cancer therapy in human cell lines", Prog Biophysics Mol Biol, **85**, 2004, pp 353-368.

5. Modelling Cancer Treatment: Cell Lines



Medical options

Cure by

```
* poison = chemotherapy
* burn = radiotherapy
* cut = surgery
```

Taxol effect: 6 weeks "in vivo"

Model of a cell line perturbed by paclitaxel

- Halts cell division
- Can induce cell death in G2/M

$$\frac{\partial G_1(x,t)}{\partial t} = -k_1 G_1(x,t), \quad t > 0, \ 0 < x < L,$$

$$G_1(x,t=0) = G_{10}, \quad 0 < x < L,$$

$$\begin{split} \frac{\partial M(x,t;\tau_{_{M}})}{\partial t} &= -\mu_{_{M}} M(x,t;\tau_{_{M}}), \quad t > 0, \ 0 < x < L, \\ M(x,t;\tau_{_{M}} = 0) &= k_{_{2}} G_{_{2}}(x,t), \quad t > 0, \quad 0 < x < L, \\ M(x,t=0;\tau_{_{M}}) &= M_{_{0}}, \quad \tau_{_{M}} > 0, \quad 0 < x < L, \end{split}$$

Model of a cell line perturbed by paclitaxel cont...

$$\frac{\partial A(x,t)}{\partial t} = \frac{g_A \partial A(x,t)}{\partial x} + \int_0^\infty \mu_M M(x,t;\tau_M) d\tau_M, \quad t > 0, \ 0 < x < L,$$

$$A(x-0,t) = A(x-1,t) = 0, \quad t > 0$$

$$A(x = 0, t) = A(x = L, t) = 0, \quad t > 0,$$

$$A(x, t = 0) = A_0, \quad 0 < x < L,$$

Parameter Fitting

Minimise

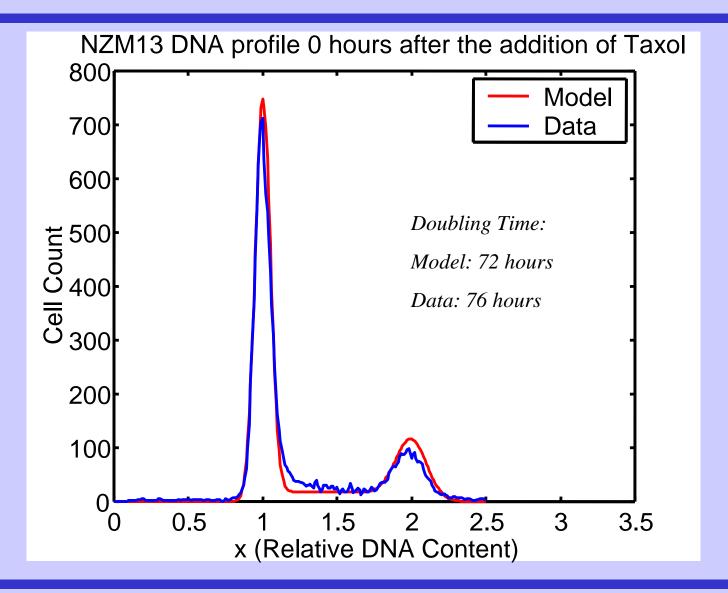
$$\sum_{j=1}^{J} \left(T(\mathbf{x}, t_j) - D(\mathbf{x}, t_j) \right)^2$$

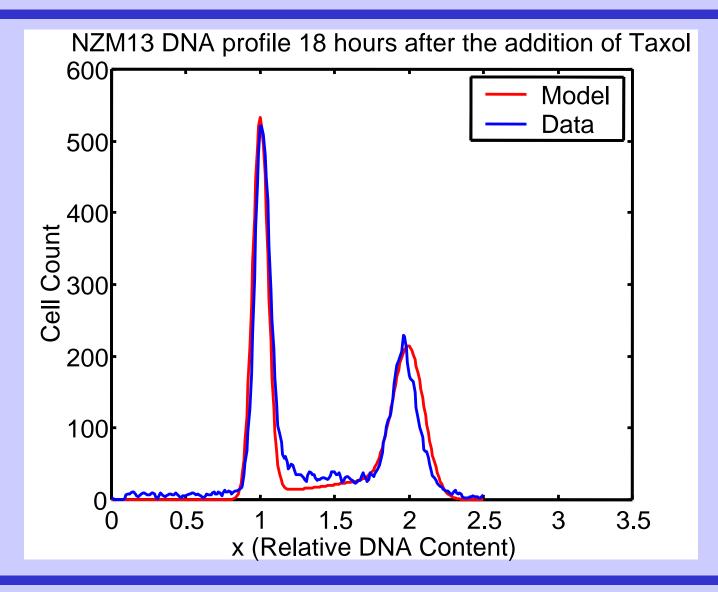
$$\beta = (k_1, k_2, T_M, \mu_M, g_A)$$

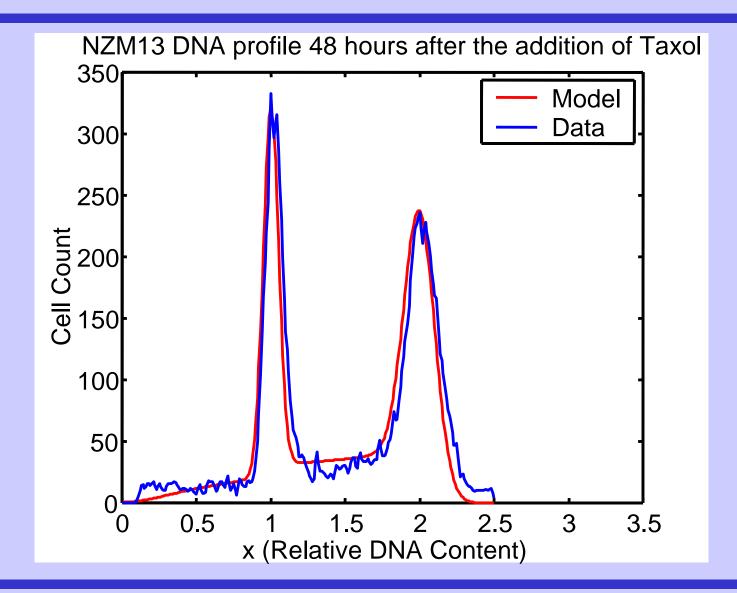
- Choose a parameter set
- Find the model of an unperturbed cell line SDD
- •Use finite differences and convolution to solve the model of a cell line perturbed by taxol
- •Calulate the objective function value

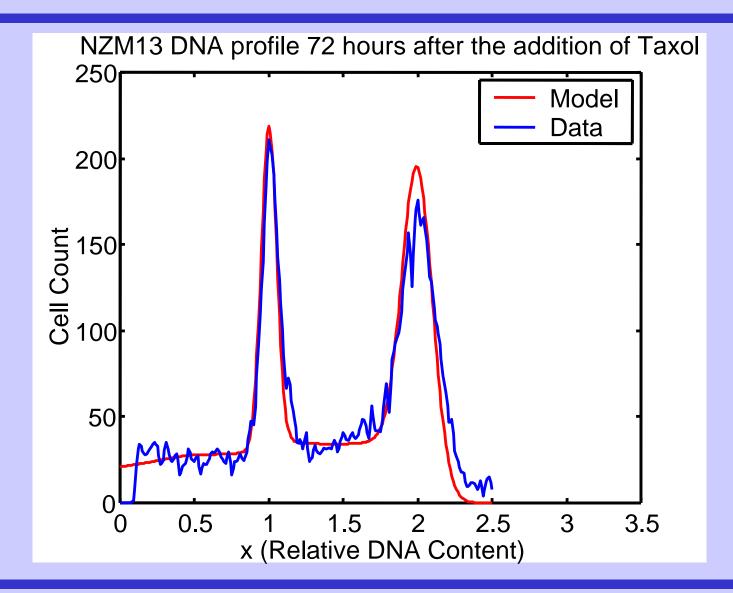
References: Cell-growth; Compartments

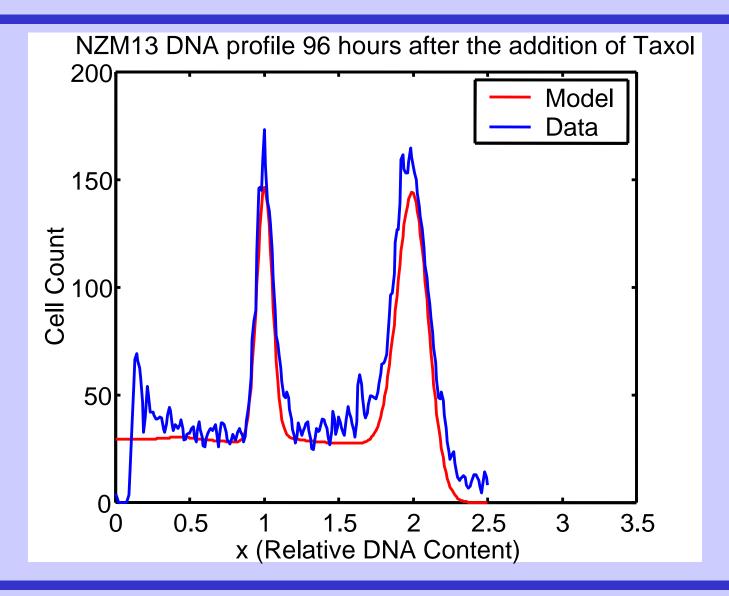
- Basse B, Baguley BC, Marshall ES, Joseph WR, van Brunt B Wake GC & Wall DJN. "A mathematical model for analysis of the cell cycle in cell lines derived from human tumours", J Math Biol 2003, 47, pp 295-312.
- Basse B, Wake GC, Wall DJN, & van-Brunt B. "On a cell-growth model for plankton" Mathematical Medicine and Biology: A Journal of the IMA; 21, 2004, pp 49-61.







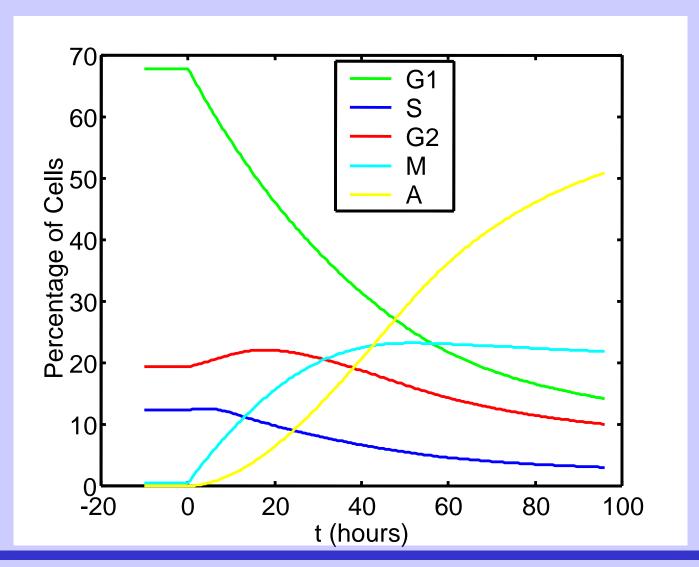




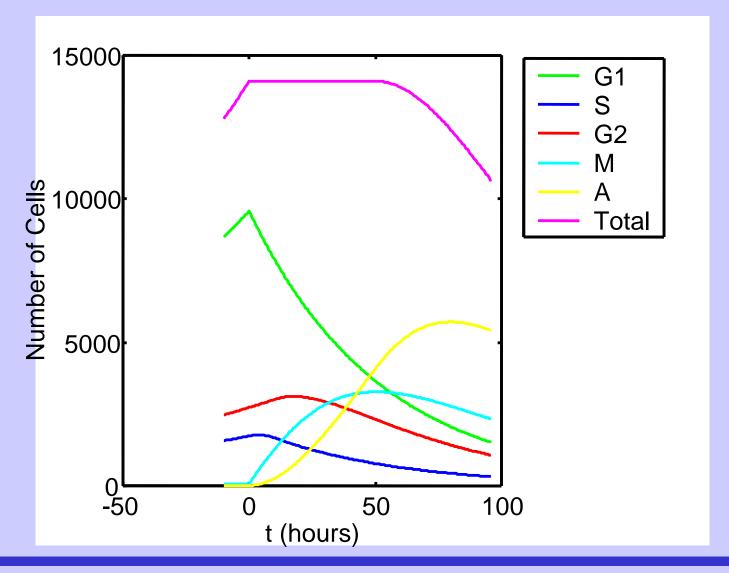
Model Outputs

- DNA profiles
- Percentages in each phase over time
- Absolute numbers in each phase over time
- T_M , the time in M-phase before the onset of apoptosis
- • μ_M , the eventual transition rate from M-phase to A-phase
- g_A , the degradation rate in A-phase
- the time it takes for a cell to degrade
- the rate of eventual cell loss from A-phase

Percentages in each phase

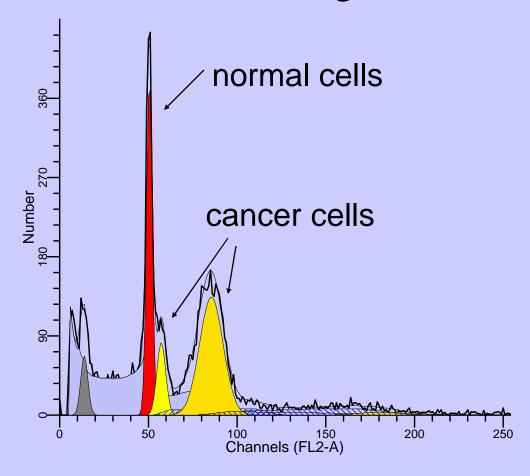


Absolute Cell Number

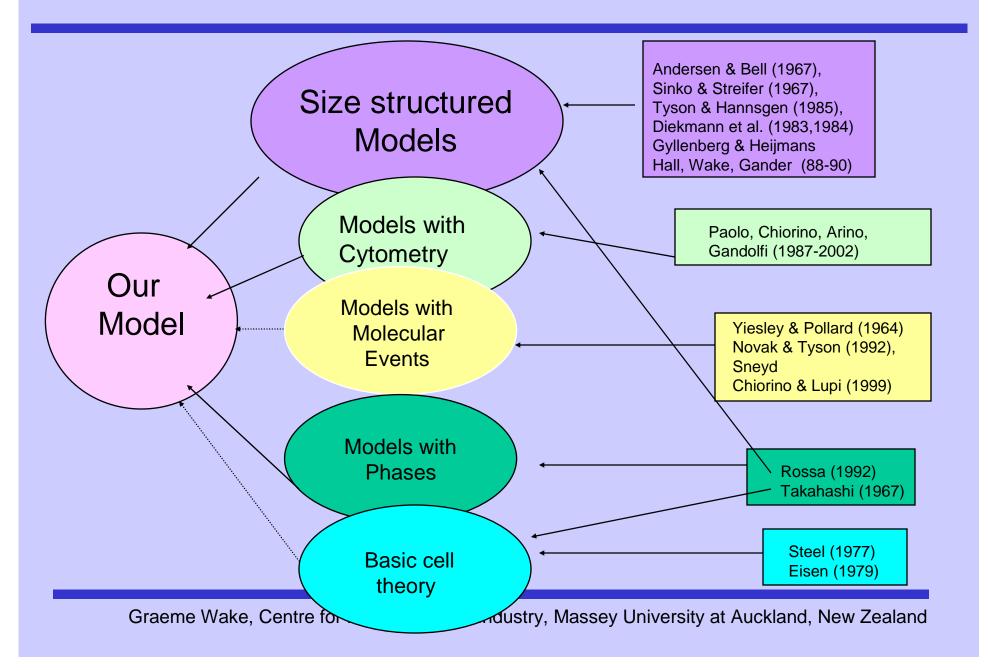


Typical Clinical Sample

Patient with metastatic malignant melanoma



6. Other Models



7(a) Current work -Basse

- Uniqueness of parameter fitting
- •Fit other data, compare results
- •Non-constant degradation rate
- •Change the concentration of paclitaxel in cell lines
- •Effects of paclitaxel in vitro (mice) (doesn't stay in the system)
- •Look at patient tumours
- •See: Basse B, Baguley BC, Marshall ES, Wake GC & Wall DJN "Modelling the flow of cytometric data obtained from unperturbed human tumour cell lines: Parameter fitting and comparison", Bulletin of Math Biology, **67**, **No 4**, 2005, 815 830.

7(b) Current work: Transient Models

• Does the transient problem have a solution that (globally) is attracted to SSD behaviour?

• Yes!!!!!

The model; Single compartment only

$$n_{t} = (Dn)_{xx} - (gn)_{x} - \mu n + \alpha^{2}B(\alpha x)n(\alpha x, t) - B(x)n(x, t)$$

$$(D(0)n(0, t))_{x} - g(0)n(0, t) = 0, \quad t > 0$$

$$n(x, t) \to 0, \quad x \to \infty \qquad n_{x}(x, t) \to 0, \quad x \to \infty$$

- \cdot n(x,t) = density of cells of 'size' x at time t.
- •Size is measured by DNA content
- •B(x) is the rate of cell division at size x. $B(x) = b\delta(x-l)$
- •A cell of size x divides into α daughter cells of size $\frac{x}{\alpha}$
- •Of primary interest in this presentation is fixed-size division:

SSD behaviour

- •SSD = Steady Size-Distribution
- •A model displays SSD behaviour when the shape of the cell-size distribution remains constant while the overall population grows or decays
- •This corresponds to a separable solution of the model
- •Growth rate is usually exponential
- •SSDs are observed to occur in physical cell-cohorts

The D=0 case: no dispersion

Problem:
$$n_t = -gn_x - \mu n + \alpha b \delta(x - l/\alpha) n(l^-, t) - b \delta(x - l) n(l^-, t),$$

 $n(x,0) = n_0(x), \quad x > 0,$
 $n(0,t) = 0, \quad t > 0.$

•The limiting shape of the SSDs for the dispersive case as with the requirement of continuity from the left, is a global attractor in this model (in a sense): basically it is the hull that exhibits SSD behaviour

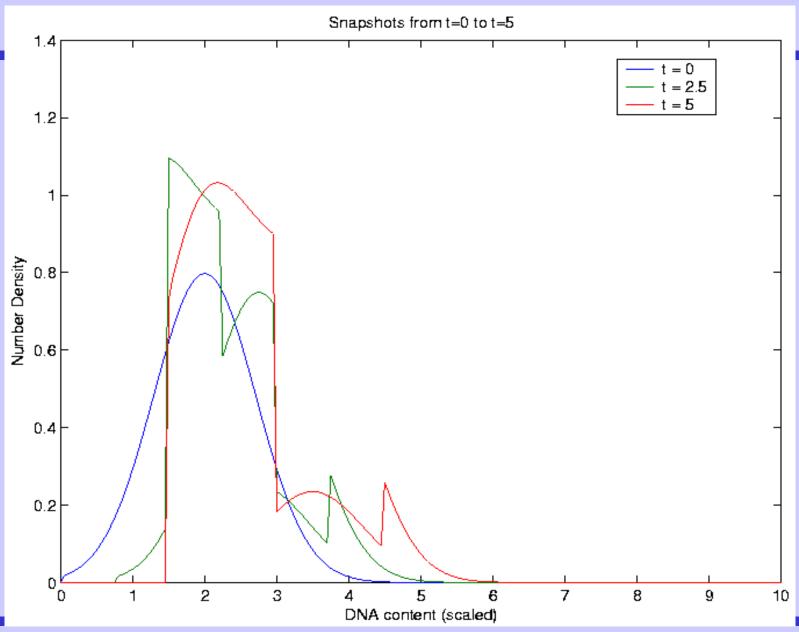
$$n(x,t) e^{\lambda t} \sim \max_{t = 0} n(x,t) = y(x) \text{ as } D \to 0$$

The solution to the D=0 case: follow characteristics

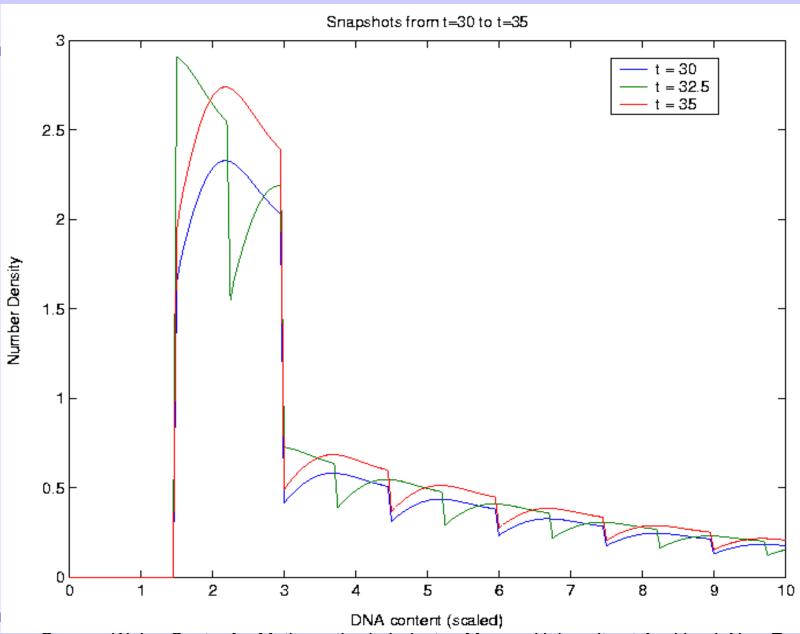
$$n_1(x,t) = n_0(x - gt)e^{-\mu t}H(x - gt), \quad t > 0.$$
 (\$\alpha = 2\$)

$$n_{2}(x,t) = \begin{cases} n_{0}(x-gt)e^{-\mu t}, & \frac{l}{2} < x - gt < l, \\ e^{-\mu t} \left[\lambda^{m} n_{0} \left(x - gt + \frac{ml}{2} \right) + \lambda^{m+1} n_{0} \left(x - gt + \frac{(m+1)l}{2} \right) \right], & \frac{-ml}{2} < x - gt < \frac{-(m-1)l}{2} \end{cases}$$

$$n_3(x,t) = \begin{cases} n_0(x-gt)e^{-\mu t}, & l < x-gt, \\ \left(1-\frac{b}{g}\right)n_2(x,t), & x-gt < l. \end{cases} \qquad \left(\lambda = \frac{\alpha b}{g}\right)$$

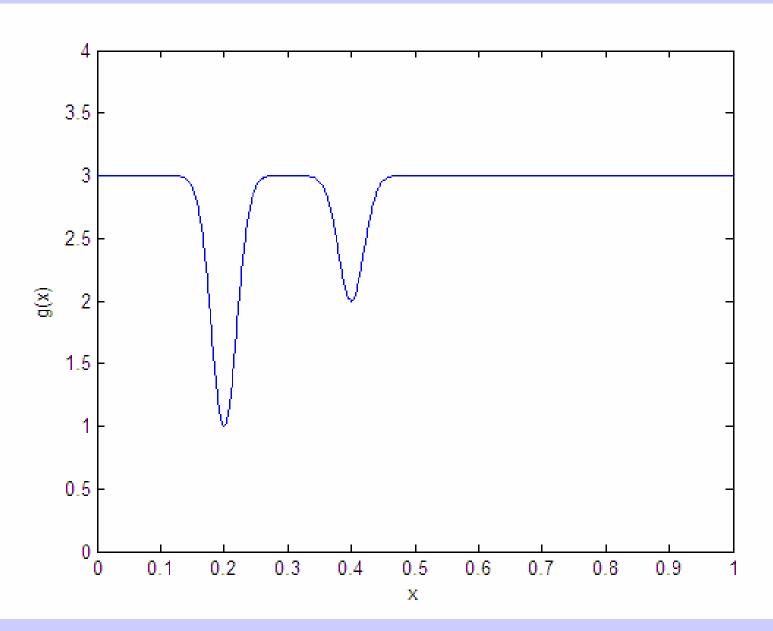


Graeme Wake, Centre for Mathematics in Industry, Massey University at Auckland, New Zealand

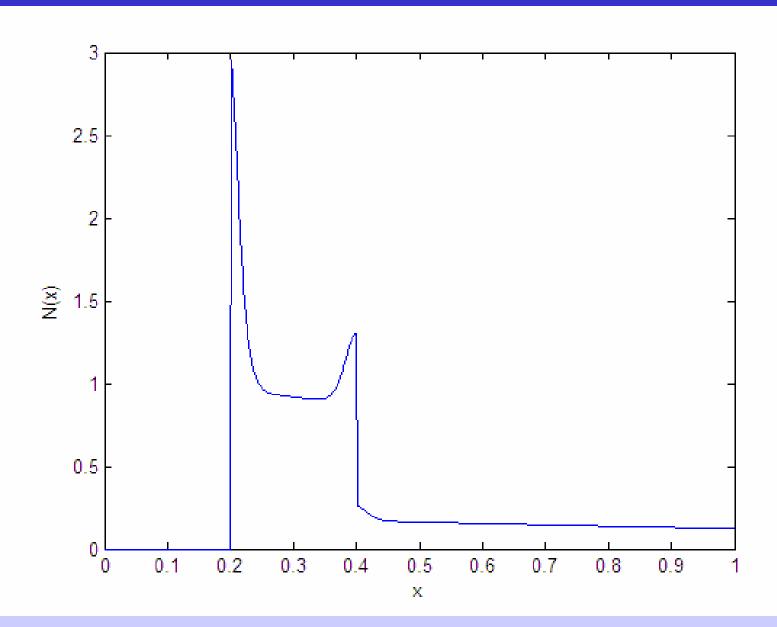


Graeme Wake, Centre for Mathematics in Industry, Massey University at Auckland, New Zealand

A variable growth function



The corresponding hull



Summary

- •With D=0, fixed size division the solution exhibited periodic exponential growth
- •The hull is a global attractor with the same shape as the limiting SSD as D tends to zero
- •A variable growth rate allows the shape of the hull to match observations
- •Upper/lower solutions were used to prove a convergence result in a special case (possibly useful in other cases?)

References

R. Begg, G. C. Wake, D. J. N. Wall, *On a functional equation model of transient cell growth*, Math. Med. Biol. **22** (4) (2005) 371-390 (D=0).

R. Begg, G. C. Wake, D. J. N. Wall, *On the stability of steady size-distributions for a stochastic cell-growth process*, J. Differential and Integral Equations: Vol **21**, Nos. **1-2**, 2008, pp 1-24.(D >0)

The transient problem D > 0, fixed size division

• The problem is:

$$\frac{\partial}{\partial t}n(x,t) = D\frac{\partial^2}{\partial x^2}n(x,t) - g\frac{\partial}{\partial x}n(x,t) + \alpha^2b\delta(\alpha x - l)n(\alpha x,t) - b\delta(x - l)n(x,t) - \mu n(x,t),$$

$$n(x,0) = n_0(x), \qquad n_0 \in (C \cap L^1 \cap L^\infty)[0,\infty)$$

$$Dn_x(x,t) - gn(x,t)|_{x=0} = 0,$$

$$n(x,t) \to 0, \qquad x \to \infty, \ t > 0$$

$$n_x(x,t) \to 0, \qquad x \to \infty, \ t > 0.$$

SSD equation

This is found to be

equation,

$$\begin{cases} y''(x) - \gamma y'(x) + \alpha^2 \beta \delta(\alpha x - l)y(\alpha x) - (\beta \delta(x - l) + \lambda)y(x) &= 0, \\ y \in (C \cap W^{2,1} \cap L^{\infty})[0, \infty), \\ y'(0) - \gamma y(0) &= 0, \\ y'(x), y(x) \to 0, \qquad x \to \infty. \end{cases}$$

$$(3.1.7)$$

where $W^{2,1}[0,\infty)$ is the Sobolev space of functions in $L^1[0,\infty)$ who have weak derivatives up to order 2 also in $L^1[0,\infty)$ (where we consider the δ -distribution to be in $L^1[0,\infty)$ for now); $\gamma = g/D$, $\beta = b/D$ and λ is an eigenvalue of the operator

$$y(\cdot) \to y''(\cdot) - \gamma y'(\cdot) + \alpha^2 \beta \delta(\alpha \cdot -l) y(\alpha \cdot) - \beta \delta(\cdot -l) y(\cdot).$$

If such an eigenvalue exists then there is a separable solution, N(t)y(x)

• Trick is to use the dual problem (Ronald Begg found this), where $m(x,t) = n(x,t)e^{\lambda t}$

$$\begin{cases} \psi''(x) + \gamma \psi'(x) + \alpha \beta \delta(x - l) \psi\left(\frac{x}{\alpha}\right) - (\beta \delta(x - l) + \lambda) \psi(x) = 0 \\ \psi'(0) = 0, \qquad 0 < \psi(x) \in (C \cap W^{2,1} \cap L^{\infty})[0, \infty), \qquad \int_0^{\infty} \psi(x) y(x) \ dx = 1, \end{cases}$$

has two very useful properties which help in proving the stability of the SSD y.

The following convergence result holds:

$$\int_0^\infty \psi(x)|m(x,t) - ky(x)| \ dx \to 0, \qquad t \to \infty.$$

Wish list....

- Extend to splitting at any size.....
 - although the Basse et.al multi-compartment model collapsed to a single compartment seems to be best match by this:

"splitting at any size".

Some preliminary results are in:

Begg R, Wake GC & Wall DJN "The steady-states of a multi-compartment, age-size distribution model of cell-growth"; *Euro J of Appl Maths*, Accepted February 2008.

Summary...

- We have a generic set of simple (?) models for cellgrowth/division
- It can be, and is being used to underpin decision support
- There is plenty of "new mathematics" here

Questions/Comments

• Thank you for your attention!!!!

