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e What is non-local Calculus?
Occurs when cause and effect are separated.
* Earlier times affect the present.
* Action at a distance.
e Test problems:
y () =y(t-1), y((-1,0]) = given.
y (X)=ay(ax)- y(x), ¥0)=0,y=#0.
What Is the solution?
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1. History of the cell-growth model — personal

1988+: Horticulturists ask me to “provide an understanding
of time-series data” which showed that cell
populations, structured by size, evolved by
simultaneously growing, dividing and dying, evolved
to a
“STEADY SIZE DISTRIBUTION”
SSD - first take-out.
This data was for plant-root cells, maize etc.

This result was robust, independent of the initial
condition, and in dynamical systems terms, was attracting.
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SSDs

« Whatis a SSD? Introducgx,t), the number density of a cell
population cohort structured by attribut&kl(ke:

* size (say = DNA content) —this Is us
*age
* time in a given phase....
etc
Then
Ia n(x,t) dx = #of cells (biomass) in size interval
[a,0], evolving In time.

I
Graeme Wake, Centre for Mathematics in Industry, Massey University at Auckland, New Zealand



SSD behavioum( - ,t) evolves like:

SSD Behaviour
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Core model

 This led to the first cell-growth model:
n, = -(gn) + ba*n(ex,t) — bn-un(x;t), xt>0
a >1.Why?

growth addition through loss through death
division division
n(0,t) = 0, neo, t) = 0, n(x,0) given, n(x®O0.
The terms are all local excéini( ax,t)”.
Xx=0 Xo - X axX,

X
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Key questions and answers

 The question then is:
Are there solutions of the form
n(x,t) = N(t) y(x) = et y(x)? Q. sign of???7?

Yesthereis:

1."A functional differential equation arising in whelling of cell growth". J Australian Math. Soc.
Series B, Vol 30.424-435,1989 ( A J Hall &adC Waka.

2. "Functional differential equations determininigagly size distributions for populations of cells
growing exponentially”,J.Austr.Math.Ser;B, Vol 3144353,1990 ( A J Hall an@ C Waks.

3. "Steady size distributions for cells in one-dirsienal plant tissues" Journal of Mathematical
Biology. Vol 30. No 2. pp101-123. 1991 (A J Hall,C Wakeand P W Gandar).

We then added dispersion, see later

4. “Functional differential equations for cell-grdbwmodels with dispersion” Comm. Appl. Anal.
4, 2000, pp 561-574F C Wake S Cooper, HK Kim, & B van-Brunt).
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2. New Mathematics

 The SSD ig/(x), which in the no-dispersive case satisfies the
Interesting non-local equation:

y (X) = an y(ax) —a y(x), X >0,
a = ba/qg,

YO) =0, yx)20, loy() de=1
We prove in Reference 1 that this is well-posed and¥i()
Explicitly. How??
And thehl =p - b(a-1) <. 0, in n(x,t)=e*y(x).
< Therefore this is a healthy growing cohort
> Therefore this i1s a decaying cohort
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Generic equation

* This Is akin to the “pantograph equation”
e Raised in the first MISG in Oxford in 1970
* |s generally ill-posed as an IVP:

“the future Is dictating the past”

V (X) = aa y(axX) —a y(x), x >0,a >1,
y(©) =0, y(o)=0.

 For us itis an “eigenvalue problem”, and we are at
the principal eigenvalue
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Normal Cells
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3. Tumour cell growth
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Flow Cytometry

O—fO—0 Sample in

Moment of analysis
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Steady DNA Distribution (SDD)
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The Human Cell Cycle
1hou/

—
Senescence
4 hours
11 hours
(highly variable)
10

hours
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Model of a cell line
unperturbed by cancer therapy G1-phase
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Dispersion

* There Is white noise particularly in the S-phase
e Growth dx = gdt + odX

Deterministic White
Growth Noise

 Gives Fokker-Planck Equation

S=(DS), -(gS) +... etc.,
D =o7%2.

Graeme Wake, Centre for Mathematics in Industry, Massey University at Auckland, New Zealand



Model of a cell line

unEerturbed bx cancer theragx S-Ehase

OS(X.t;7s) _ 5 0°S(x,t;7g) ] 0S(X,t;7s)

t,7,>0, 0<x<L,

07T, 0X* )4
§(x,t;rS:O):lel(x,t), t>0 0<x<L,
§(x,t:0;rs):§oTs, I >0, 0<x<L,

D?(x: 0t,75)— gS(x = Ot;7)=0, t,r;>0,
X

D?(x: L,t;7)— gS(x = L,t;7)=0, t,7c>0,
X

S(x,t) = f S(x, t; 7. )dr,
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Model of a cell line
unperturbed by cancer therapy G2 & M-phase

G, (x,t)
ot
G,(x,t=0)=G,,, 0<x<L,

:§(X,t;Ts) —(K; + ls,)G, (X, 1), t>0,0<x<L,

oM (X, 1)
ot
M(xt=0)=M, O0<x<L,

=k,G,(x1)-bM(xt), t>0, 0<x<lL,
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0S(xt:7) _ 5 9*S(x.;7) _ ; OS(x.t7) S(x,t;7 =0) = S(x1)

or ox* 0X
—_ B_
A<x<B S(x,t;7) :IASo(x,t)y(r,x, Z)dz
1 2
—00 < X<00 y(T, X, Z) — e—(x—gr—z) /14DT1
2NTODT
0<Xx<o y(T X Z) — eg(x—z—gr/2)/2D (e—(x—z)2/4Dr _ e—(x+z)2/4Dr)
S(x=0,t;7) =0, 2NTDT
_O<X<L (x-z-g7/2)/(2D) n=
S(X =0t; Ts) =0 y(r X Z) — e’ | nio (e—(x—z+h|2L)2/4Dr _ e—(x+z—h|2L)2/4Dr)
S(x=L,t;75) =0 NTDT =
O< A= L D%(O,t;TS)—gg(O,t;TS)ZO, ( ) (x—gr 2)2/4DT
2 w(r,x,z) U e v
DaS(L,t;rS)—gg(L,t;rS):O, 2NTDT

ax
—
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S-phase equations

ﬁ‘ division

Bapamcon

2 3 X (DNA)
asgt(,t) -D 0 §(>2<,t) c GS(gX,t) +kG, (%) =S(x,t;7s =Ts), t>0,0<x<L,
X X

S(x,t=0) =S, O<x<L,

kG, (x-grs,t-7.), D=0,
[ kG (xt-T)y(75, % 2)dz, D0,

Cell Count

S(x,t;7s) :{

Dg—s(x:o,t)—gé(x:o,t) =0, t>0,
X

Ts L

S(x,t) =K G, (x,1) + [ [ KG,(x,t = 75)y(Ts, X, 2)dzdr,
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4. Further new maths

 Finite Differences+convolution: Do get SSD’s but slow.
Look for separable solutions.....

G, (%,1) = N(0) y2(x)
S(x,t) = N(t) ys(X)
G, (%,1) = N() y,(X)
M (1) = N(t) yy (x)

If solutions are attracting then
the y’s are the SSDs in each phase.
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Equations for ythe SSD: G1-phase

Delay equation equation:

yl(x_]) :/\yl(iz(} x>0, D=0

Solution:y,(X) = 6(x-1), A = ¥%. Check
Exam Question on generalised functions?

Fredholm integral equation (non-symmetric):

_[OL y(Ts,2X,2)y,(z)dz=Ay,(x), x>0, D#0
A=) =ATRATK)A+DE™
dokk,
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SDD Solutions

* Delay equation (D=0): (unigue) Point distributions.
yl(x) - 5()(_1)1 yz(X)’ Ym (X) - 5()(_ 2)1
Ys(X) ~H(x-2)—H(x-1)

D=0

e Fredholm Integral
Equaton D #z0 ): £ _

S

8
Numerical methods.
Get 1 eigenfunction
(there could be o " ——a |
others) X
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Cell no.
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References: Cancer treatment

 Basse B, Baguley BC, Marshall WR, Joseph
B, van-Brunt B, Wake GG & Wall DJN
"Modelling cell death in human tumour cell
lines exposed to the anticancer drug
paclitaxel, Journal Mathematical Biology9,
2004, 329-357

 Basse B, Baguley BC, Marshall Bjake GC
& Wall DJN) “Modelling cell population
growth with applications to cancer therapy In
human cell lines”, Prog Biophysics Mol Biol,
85, 2004, pp 353-368
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Cell Li

5. Modelling Cancer Treatment
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Medical options

e Cure by
* poison= chemotherapy
*pburn = radiotherapy
*cut =surgery
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Taxol effect: 6 weeks “In vivo”
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Model of a cell line
perturbed by paclitaxe

eHalts cell division
e Can induce
cell death in G2/M

oM ()(;’tt;TM) Z—/,IMM(X;t;Tm)’ t>0 0<x<L,

M(xt;7,, =0)=k,G,(xt), t>0, O0<x<L,
M(x,t=07r,)=M,, 1, >0 0<x<L,
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Model of a cell line
perturbed by paclitaxel cont...

0A(X,1) _ g,0A(X 1) N
ot 0X

Ax=0,t)=A(x=L,t)=0, t>0,

Ax,t=0)=A,, O0<x<L,

juMM(x,t;rM)drM, t>0 0<x<L,
0

I
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Parameter Fitting

: 2
« Minimise Z (T (X,t;) - D(X,t,-))
B = (K, Ky, Ty sy 1 94) =1

e Choose a parameter set
 Find the model of an unperturbed cdll line DD

eUse finite differences and convol ution to solve the model of
a cell line perturbed by taxol

«Calulate the objective function value
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References: Cell-growth; Compartments

 Basse B, Baguley BC, Marshall ES, Joseph
WR, van Brunt BWake GC& Wall DJN. “A
mathematical model for analysis of the cell
cycle in cell lines derived from human
tumours”, J Math Biol 200347, pp 295-312.

 Basse B,Wake GG Wall DJN, & van-Brunt
B. "On a cell-growth model for planktbon
Mathematical Medicine and Biology: A
Journal of the IMA21, 2004, pp 49-61.
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NZM13 DNA profile O hours after the addition of Taxol

800 . . .
— Model
700f — Data |
600}
= 500} Doubling Time:
3 Model: 72 hours
g 400f Data: 76 hours
)
© 300¢}
200¢
> M
O __——J A L

0 0.5 1 1.5 2 2.5 3 3.5
X (Relative DNA Content)

Graeme Wake, Centre for Mathematics in Industry, Massey University at Auckland, New Zealand



NZM13 DNA profile 18 hours after the addition of Taxol
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|
NZM13 DNA proflle 48 hours after the addition of Taxol
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|
NZM13 DNA proflle 72 hours after the addition of Taxol

250

— I\/Iodel
—— Data

200f

=
o1
o

Cell Count

=
o
o

Ul
o

0 0.5 1 1.5 2 2.5 3 3.5
X (Relative DNA Content)

Graeme Wake, Centre for Mathematics in Industry, Massey University at Auckland, New Zealand



NZM13 DNA profile 96 hours after the addition of Taxol
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Model Outputs

* DNA profiles

* Percentages in each phase over time

» Absolute numbers in each phase over time

 T,;, the time in M-phase before the onset of apoptosis
u,,, the eventual transition rate from M-phase to A-phase
* d,, the degradation rate in A-phase

o the time it takes for a cell to degrade

o the rate of eventual cell loss from A-phase
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Percentages in each phase
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Absolute Cell Number
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Typical Clinical Sample

N metastatic malignant melanoma
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6. Other Models

Andersen & Bell (1967),
Sinko & Streifer (1967),
«— | Tyson & Hannsgen (1985),
Diekmann et al. (1983,1984)
Gyllenberg & Heijmans

Hall, Wake, Gander (88-90)

Size structured
Models

Models with Paolo, Chiorino, Arino,
Cytometry Gandolfi (1987-2002)
Our |
Models with
M Odel """""""" Molecular Yiesley & Pollard (1964)
< Novak & Tyson (1992),
Events Sneyd
Chiorino & Lupi (1999)

Models with
Phases

\ Rossa (1992)

Steel (1977)
Eisen (1979)

Basic cell
theory
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/(a) Current work -Basse

« Unigueness of parameter fitting

*Fit other data, compare results

*Non-constant degradation rate

*Change the concentration of paclitaxel in cell lines

Effects of paclitaxel invitro (mice) (doesn’t stay in the system)
Look at patient tumours

*Sce. Basse B, Baguley BC, Marshall ES, Wake GC &Wall
DJN “Modelling the flow of cytometric data obtained from
unperturbed human tumour cell lines: Parameter fitting and
comparison”, Bulletin of Math Biologyg7, No 4, 2005, 815 -
830.
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/(b) Current work:Transient Models

* Does the transient problem have a solution that
(globally) Is attracted to SSD behaviour?

I
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The model; Single compartment only

ne = (Dn)x— (gn)x— tn + a*B(ax)n(ax,t) — B(x)n(x,t)

(DO)n(O,t))x-g(O)n(0,t) =0, t>0

n(xt) - 0, X o x(Xt) - 0, X o o
.n(x,t) = density of cells of 'size' x at time t.

.Size Is measured by DNA content

.B(X) Is the rate of cell division at size B(x) =bd(x—I)
X

A cell of size X divides int§  daughter saif size’,

.Of primary interest in this presentation is fixedesdivision:
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SSD behaviour

.SSD = Steady Size-Distribution

A model displays SSD behaviour when the shapeeof th
cell-size distribution remains constant while tvermall
population grows or decays

.This corresponds to a separable solution of theeinod

.Growth rate is usually exponential

.SSDs are observed to occur in physical cell-cohorts
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The D=0 case: no dispersion

Problem: nt = —gnx— un+abo(x—1/a)n(l ,t) —bo(x-1)n(l,1),

n(x,0) =no(x), x>0,
n0,t)=0, t>0.

*The limiting shape of the SSDs for the dispersiasecas
with the requirement of continuity from the laf,a
global attractor in this model (in a sense): bdliahis the
hull that exhibits SSD behaviour
nxt) et ~ maxnixt)=yx)as D -0
t=0
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The solution to the D=0 case: follow characteristics

ni(Xx,t) =no(x—gt)e®H(x—gt), t>0. (0’ = 2)

No(X— gt)e ™ | |§< X—gt<lI,

N2(X,t) =1 ) o
e )Imno(x—gt+ﬂj+/]m+1no(x_gt+(m"'l)l)’ m _ gt < (m-1l
2 2 2 2
(no(x—gt)e™ , |<x-gt,
na(x,t) = O(bg) ° y=ap
3( X, —<(1——jnz(x,t), X—gt<l. - g
N9

I
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Mumber Density

Snapshots from t=301o t=35
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a(x)

A variable growth function

ind



i)

The corresponding hull




¢

*With D=0, fixed size division the solution exhibat
periodic exponential growth

*The hull is a global attractor with the same shape
the limiting SSD as D tends to zero

A variable growth rate allows the shape of the taul
match observations

*Upper/lower solutions were used to prove a
convergence result in a special case (possiblyulisef
In other cases?)
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The transient problem D > 0, fixed size division

 The problem is:

J i J %
Ttra( t) = D;—ra(,r t) —qui(r t+a b«ﬁ{m Dn(az,t)—bd(x—[n(z,t) - pn(z,t),
L (M
n(x,0) = nglx). no € (CNLin L™ 1[0, o)
Dng(z.t) — gnlx,t)|z=0 = 0,

nlxe.t) — 0, r—oo, t>=0

nelx.t) — (0, r—o0, T30,
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SSD eguation

e This Is found to be

equation,

'
(z) — v/ (2) + 286 (ax — Dylaz) — (Bé(z = 1) + Ny(z) =0,
y € (CNWALN L0, 00).

K ( )0, 00, (3.17)

y' (0) — ~y(0) = 0,

L ."-'l"’(i"-‘-'L !a‘ffﬂ] — 0, T — 0.
where W10, 00} is the Sobolev space of functions in L]0, ) who have weak derivatives up to
order 2 also in L1[0, 00} (where we consider the d-distribution to be in L0, 00) for now); o = g/ D,

A =06/D and A is an eigenvalue of the operator
yl(-) — o' (-) = /() + a? 30 (a - =ljyla-) — 36(- — Ty(-).
[f such an eigenvalue exists then there is a separable solution, N (t)y{x)

I
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e Trick Is to use the dual problem (Ronald Begg
found this), wheren(x,t) = n(x,t)e#

b () + 4 () + aBd(z — )b (£) — (B0(x — 1) + Apb(z) =0
W0) =0, 0<d(z) e (CnWHnL )0, 00), fD’“ (z)y(z) dr =1,
has two very useful properties which help in proving the stability of the S5D .

The following convergence result holds:
L
[ Ole)|miz, t) = kylz)| de =0,  t— .
J0

I
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Wish list....

* Extend to splitting at any size.....

- although the Basse et.al multi-compartment
model collapsed to a single compartment
seems to be best match by this:

“splitting at any size”.
Some preliminary results are iIn:

Begg R, Wake GC & Wall DJN “The steady-
states of a multi-compartment, age-size
distribution model of cell-growth™uro J of
Appl Maths, Accepted February 2008.
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* \We have a generic set of simple (?)models for
cellgrowth/division

It can be, and Is being used to underpin
decision support

 There Is plenty of “new mathematics” here

I
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Questions/Comments

 Thank you for your attention!!!!
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