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Mobile Wireless Networks (MWN)

e Nodes in wireless networks for civilian and military applica-
tions highly mobile

— Connections between nodes established and broken inter-

mittently
— Network topologies frequently-changing

e (Delay-tolerant) information dissemination

— Single delay-tolerant source initiates message for broad-
casting to whole network.

— Mobility can be exploited to assist in spreading information

— Especially when network not well connected at any time



Connectivity in Static Wireless Networks

e Full connectivity required to guarantee every node receives
message
— May be overly restrictive and impossible to achieve.

— Large-scale wireless networks exposed to severe natural conditions,
vulnerable to enemy attacks, natural hazards, or resource depletion

e Percolation-based connectivity

— Phase transition in macroscopic behavior of wireless networks

— Network percolated (supercritical)—exists a large component of nodes
spanning entire network; large number of nodes receive message

— Network not percolated (subcritical)—network consists only of small
isolated components of nodes; few nodes receive message



Connectivity in Maobile Wireless Networks

e In moving environments, connectivity should not be assessed
at fixed time instant

e Two nodes can exchange information (share a link) if they
can decode each other’s signals at some point in time

e Different pairs of nodes share links at different points in time

e Connectivity must be analyzed over time



Information Dissemination in MWN

e t = (: network not percolated, source node u broadcasts message

e Ignoring propagation delays, all nodes in component of u receive message
instantaneously—small fraction



Information Dissemination in MWN

O

e As t increases, nodes move, message passed from message-carrying nodes
to new nodes whenever they are within communication range

e Information is disseminated throughout network



Information Dissemination in MWN

e When network is well connected in “mobility” sense, as information dis-
semination process continues, eventually, a large fraction of the network,
or even the whole network is informed of the message



Main Questions for Information Dissemination

e \We seek answers to following questions:

— What fraction of network eventually receives message?

— How long does it take for this to be accomplished?



Main Results

e Answer to 1st question:

— Under constrained i.i.d. mobility model, when network den-
sity satisfies a certain condition, constant fraction of nodes
can receive source message eventually w.h.p.

— Under some other mobility models, e.g., Brownian motion,
all nodes can receive the message eventually w.h.p.

e Answer to 2nd question:

— Network is subcritical (non-percolated): latency for infor-
mation dissemination scales linearly with initial Euclidean
distance between sender and receiver

— Network is supercritical (percolated): latency for informa-
tion dissemination scales sublinearly



Previous Work

e Throughput-delay trade-off: Grossglauser and Tse 02, Neely
and Modiano 05, El Gammal et al 06, Lin et al 06, Sharma
et al 06.

e Information dissemination in mobile networks: Groenevelt 05,
Gunnarsson et al 06.



Stationary Random Geometric Graphs (RGG)

o G(?@@) in R?: n nodes Xg()), .. ,Xg)) uniformly distributed
2
at random in B = [— Y g/)\, Y g/)\] .

e Undirected link between u and v iff HX&O> — XS,O)H <1

e As n and |B| — oo but density \ = ’—g‘ is kept constant,

cx™ B qa,

a homogeneous Poisson point process.



Continuum Percolation and Critical Density

o For G(x0) U {o}),

— Percolation probability poo(A) = Pr(component containing
the origin has an infinite number of nodes)

— Critical density A = inf{\ > 0: poo(A) > 0}

o If A < )\, largest component of G(X,, 1) contains O(Inn)
nodes a.a.s. (asymptotic almost surely) — subcritical phase

o If A > )., there exists unique connected component contain-

ing ©(n) nodes of G(X7§0>) a.a.s. — supercritical phase

— This largest component called giant component — C(G(XS)))).



RGG with Node Mobility

e Random geometric graph with mobile nodes G(X<t>):

— Each node u moves according to mobility model M(t),t =0,1,2, ...

—u and v can communicate with each other (share a link) at time ¢ iff
difn,v) £ 1% = X)) <

o When M (t) results in Poisson spatial distribution of { Xt}
for all time, critical density of G(X(t)) is same as one for
static model

— If network at time 0 is (not) percolated, then network is (not) perco-
lated at any time.

—If A > A, then for each t > 0, G(XWY) is percolated, i.e. exists a
giant component in G(X®)) with probability 1.



Modelling Mobile Wireless Networks

e Map mobile wireless networks to stationary wireless networks
with dynamic links

— Nodes positions in stationary network are same as initial
positions of mobile network

—Link is on (active) in stationary network whenever end
nodes of link are within communication range in mobile
network

e Dynamic behavior viewed as “mobility-induced-fading pro-
cess”



Wireless Networks with Unreliable Links

e Model for wireless networks with unreliable links: G/(H \, 1, pe(+)):

— Given G(H ), 1), each link (¢, 7) is active with probability
pe(dij)-
—G(Hy, 1, pe(+)) consists of active links and their end nodes.

e Link quality varies with time—shadowing and fading

e Dynamic unreliable links: Markov On-off process {1V ;(d;;,1)}:

—Wij(di;,t) = 0/1if link (2, 7) is inactive/active at time .
—{Wi;(d;;,t)} probabilistically identical for same d;; — {W(d,)}.

e Percolation-based connectivity and latency results (INFO-

COM'08)



Constrained 1.1.D. Mobility Model

e Given initial positions {X<O)}

e At each time t = 0,1, 2, ..., X&Hl) is uniformly distributed

(0)

: 0 : :
at random in A(X&),a)—cwcular region centered at X,
with radius a > 0

o XS” are mutually independent among all nodes and indepen-

/
dent of all previous locations ng ),t’ =1,...,t— 1.

e As a — 00, constrained i.i.d. mobility model becomes an
unconstrained i.i.d. model



First Meeting and Exiting Times

o Given {XV)} and mobility model M (t)

e First meeting time of nodes ¢ and j:

Tn(i,7) = inf{t > 0: de(i, 5) < 1}

e First exiting time of nodes ¢ and j:

Tu(i,j) 2 inf{t > 0 di(i, j) > 1}

e By definition
—Tmn(i,7) =0 and Te(2,5) > 0 when dp(i,5) <1

—Tyn(i,§) > 0 and Tu(, 7) = 0 when dy(i, j) > 1



Dynamic and Long-Term Connectivity Graphs

o Given {XV)} and mobility model M (t)
e Dynamic connectivity graph G'(t)

— Nodes are located at {X<O>}
— Link exists between ¢ and j iff d¢(i,5) <1

e Long-term connectivity graph G’

— Nodes are located at {X<O>}
— Link exists between ¢ and j iff E[T},(7,7)] < oo



Relationships

Same
G(X") « » G'(0)
A A
Nodes Same node
move positions GQ,j) €G>
M Vo OE[T, (ijl<co
G(X,") +———> G(t) > G
. (1,j)€G'(t)

< I1X0-X O <

e In both G'(t) and G’, nodes fixed to initial random positions
rather than being mobile



Information Dissemination in G’

e When u and v are connected in G/, at least one path from
u to v consisting of links in G’

e If u broadcasts a message, v can receive it within finite ex-
pected time

— End nodes of each link along the path have finite expected
first meeting time

e When u and v are not connected in G/, v cannot receive
message (in finite expected time)

e Assume (' is percolated



Information Dissemination in G'(t)

o Supercritical phase: G(X(1)) is percolated for all ¢
— One node inside C(G(X"))) broadcasts message at time 0

— Ignoring propagation delay, all nodes in C(G(X(?)) receive message
instantaneously.

— Nodes in C(G") but not in C(G(X?)) can receive message later



Information Dissemination in G'(t)

e 1000 nodes on [—12, 12]%, constraint radius = 5
e Source (black nodes) broadcasts message M at t = 0.

e Blue links—exist, red nodes—received, white nodes—not received



Information Dissemination in G'(t)

e 1000 nodes on [—12, 12]%, constraint radius = 5
e By ¢t =2, all nodes in C(G’) have received M.

e Links: blue—on, green—off; Nodes: red—received, white—not received



Information Dissemination in G'(t)

o Supercritical phase: G(X(1)) is percolated for all ¢
— One node inside C(G(X"))) broadcasts message at time 0

— Ignoring propagation delay, all nodes in C(G(X(?)) receive message
instantaneously.

— Nodes in C(G") but not in C(G(X?)) can receive message later

e Subcritical phase: G(X<t>) is not percolated at any ¢.

— If two nodes u and v are in C(G'), information can be eventually
transmitted from wu to v

— Large delay



Information Dissemination in G'(t)

e 1000 nodes on [—30, 30]%, constraint radius = 5

e Source (black nodes) broadcasts message M at t = 0.

e Blue links—exist, red nodes—received, white nodes—not received



Information Dissemination in G'(t)
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e 1000 nodes on [—30, 30]%, constraint radius = 5.
e By ¢t = 25, only 200 nodes have received message M.

e Blue links—exist, red nodes—received, white nodes—not received



Latency of Information Dissemination

t :
o £0>(t): set of nodes that have received source message
broadcast at time ¢ by v up to time ¢

° T<t0)(u, v): first time node v receives message, i.e.,

T(tO)(u, v) = inf{t v € Il(bt())(t)}

° T<t0>(u, v) is latency of information dissemination from u to
v

e Assume source node w initiates broadcast at time 0, write
Tt0)(u, v) as T'(u,v)



Condition for Finite First Meeting Time

Lemma 1: Given {X")} and constrained i.i.d. mobility model
with constraint radius a > 0, for any two nodes ¢ and 7,

0 < E[Th(i,j)] < ocoiff 1 <dy(i,7) < 2a+1




Condition for Finite First Exit Time

Lemma 2: Given {X")} and constrained i.i.d. mobility model

with constraint radius a > % for any two nodes 7 and j

0 < E[Te(i. )] < 0o if do(i, j) < 1

e Proof is similar to previous one



Percolation in Constrained 1.1.D. Model

Proposition 1: Given G(X'?)) and constrained i.i.d. mobility
model with constraint radius a > 0, critical density for G’ is

Ac
(2a + 1)?

where A is critical density for G(X<O>).

Aela) =

e Proof:

— By Lemma 1, there exists a link between i and j in G iff
do(i,j) < 2a+1

— Use scaling property of random geometric graphs



Latency in Constrained 1.1.D. Model

Theorem 3: Given G(X?)) under constrained i.i.d. mobility
model with a > 1/2 and A\ > A\.(a), for u,v € C(G"), ignoring
propagation delay, d constant 0 < v < o0

(i) if A < A, ice., G(XD) is not percolated at any time,

| T(u,v)
P | — — 1
I’ <do<u,2%o do(u, ) 7)

(i) if A > A, i.e., G(X) is percolated at any time,

| T(u,v)
P | =0] =1
)

e Latency of information dissemination scales

— Linearly with initial Euclidean distance between sender and receiver if
G(XW) is in subcritical phase
— Sub-linearly with distance if G(X") is in supercritical phase



Mobility-Induced Fading Process

e Associate “mobility-induced fading process” W; ;(t) with each
link (7,4) € G’
S Wi (1) = 0 dy(i,5) > 1 (ie., (i,5) ¢ G'(1))
W0 = 1 i i) <1 (i (0,) € G'(1)

o W; i(t) has i.i.d. inactive periods Y}.(7,7) and i.i.d. active

)

periods Z1.(1, 7).

—EYy(,5)] = E[Tm(i, 7))
_E[Zk(zaj)] — E[Te(l,])]



First Passage Percolation

e Similar to first passage percolation problems
o T(; j): delay with link (g, j)
— Random variable depends on W ;(t).

e Define
.

Vs

T(u,v) = int T
() [(u,v)eL(u,v) (i.j) %:u (.0) ( "7>

—I(u,v): path from u to v in G’
— L(u,v): set of all such paths

—T'(u,v): message delay on path having smallest delay



Lemma on Convergence

o et

. . 0
X; £ argmin {]/(6,0)—X"||}.
X§O>EC(G’)

~

17 m = T(Xl,Xm),O§l<m

Lemma 3: Let

A . E[TO,m]
v = lim
m—0o0 m
Then,
BT, T
v = inf [ 0>m], and lim —" =~ with probability 1
m>1 m m—0o0 m

e Proof based on Subadditive Ergodic Theorem



Subadditive Ergodic Theorem

Theorem 2 (Liggett'85): Let {S;,.} be a collection of random variables
indexed by integers 0 < I < m. Suppose {5;,,} has the following properties:

(i) Som < So1+ Sim, 0 <1 <m;
(ii) {S(m=1)jmj» m = 1} is a stationary process for each j;
(iii) {S11+4,7 = 0} = {Sit1.141+4,7 > 0} in distribution for each ;
(iv) E[|So.m|] < oo for each m.
Then
E[S0,m]

(a) @ £ limy, oo =™ = inf,,>

probability 1, and E[S] = a.

Furthermore, if

E[SO,m]

S()m

.S £ lim,,, o = exists with

(v) the stationary process in (ii) is ergodic,
then
(b) S = « with probability 1.



Lemma on Positiveness and Finiteness

Lemma 4: Let v be defined as in Lemma 1, if A < A, then
0 <y <o

e Proof based on following Exponential Decay Proposition

Proposition 2: Given G(X)) with Ae(a) < A < A let
B(h) = [=h,h]?, h € RT. Then there exist ci,co > 0 such

that for any t > 0, Pr(f(éo) e~ B(R)) < cre” 2", where

{5((()0) «~~ B(h)¢} denotes event that the node closest to the
origin at time 0 and some nodes in B(h)¢ are connected.



Proof of Theorem 1-(i)

e Consider any two nodes u,v € C(G).

e Suppose G(X9)) is subcritical. Then, as dy(u,v) — 00, u and v cannot
lie within the same component of G’(0), so that T'(u,v) > 0.

e Assume quo) = 0, and take line XS))XS)) as x-axis.

e Let m be closest integer to x(v)—z-axis coordinate of node X",

—~

o Now Tp,, = T(X, X.0).

o If X” = X,,, then T(u,v) = Tpm, and since m—1 < dp(u,v) < m+1,

Tom _ T(u,v) To.m
3 < < , .
m+1 " do(u,v) — m—1

o lf X,SO) = Xm then Xm must be adjacent to Xz(}o).

e Because ||(m,0) — XY < 2 (m is closest integer to x(v)), ||(m,0) —
X,|| < 4 (X, is closest node to (m, 0)).



Proof of Theorem 1-(i) (con’d)

e Consequently, Tp),,, — (X, Xq(jo)) < T(u,v) < Ty +T (X, Xq(}())), SO
that
Ty = TXo X)) _ Tlw,v) _ Ty + T (X, XL
m + 1 ~ dy(u,v) ~ m — 1 '

e Since X,, is adjacent to Xq(}O), T(f(m, XQ(JO)) < 00 by Lemma 1.
e Therefore in both cases, by Lemma 3,
TO,m

lim T(u,v) = lim —— =7
do(u,v)—00 do(U,U) m—oo 17

with probability 1.

e By Lemma 4, 0 < v < 0.



Proof of Theorem 1-(ii)

e Now, suppose G(X')) is supercritical, then for u,v € C(G"), as do(u,v) —
00, it is possible that they are within C(G'(0)).

e In this situation, T'(u,v) =0
e Now assume neither node u nor v is in C(G'(0))

e Let ¢’ be first time that some node (and therefore all nodes) in C(G'(t))
receives u's message

o Let w = argmin, cc(cr(py) de (2, u), and ws = argmin, cecr(py) de (1, v).

e That is, wy and wy are nodes in C(G'(t")) with smallest Euclidean dis-
tances to nodes u and v, respectively.

e Since both w; and w;y belong to C(G'(t)), T (wy, ws,) = 0.



Proof of Theorem 1-(ii) (con’d)

e Can show T (u, w;) < 0o and T")(w,, v) < 0o with probability 1.

e Moreover,
0 < T'(u,v) < T (u,wy) + T (wy, wy) + T (wy, v)
- dO(ua U) B dO(u7 U)
T() ()
_ (ua wl) + T (w27 U) < 00,
dO(ua U)

e [herefore
T(u,v)

Pr lim =0) =1
<d0(u,v)—>oo do (u, ?J) )

e Applying same technique for case where only one of v and v is in C(G'(0)),
obtain the same result.




Latency with Propagation Delay

Corollary 1: Given G(X")) under constrained i.i.d. mobility
model with @ > 1/2, A > A.(a) and propagation delay 7, for
u,v € C(G"), 3 constants 7 < 9 < y1 < 00

(i) if A < A, i.e., G(XW) is subcritical for all time,
Pr lim T(u,v) =~ | =1
do(u,v)—00 do(u, V)

(i) if A > A, i.e., G(X1)) is supercritical for all time,

T
Pr lim (, v) =y | =1
do(u,v)—o0 do(u, V)

Moreover, as 7 — 0, y; — v and o — 0.




Extensions: Other Mobility Models

e Discrete-time Brownian motion mobility model

— At each time t, each node u follows two-dimensional Brownian motion
41 t1 t1
_X(+)_ (X(+) X752+>)

u,l

— x D X(t) + oW and X(Hl) = Xff% + oWy

u,l

— g—variance of Brownian motion

— W7, Wo—two independent standard Normal random variables

e Random walk (Euclidean space) mobility model

— At each time ¢, each node u uniformly chooses a random direction

0

€ |0,27) and a random speed o) e (0, Vmaz)

_X(t+1) o (X(tzrl) X(t2+1))
— Xl(fil) X( ) + vé) cos(9<t))

- X@(f;l) — x! % + vqg) sm(ﬁ(t))

u,



Latency
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e Constrained radius a = 5, propagation delay 7 = 0, density
A = 0.1 (subcritical) and A = 1.73 (supercritical)



Latency: with Propagation Delay
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e Constrained radius a = 6, propagation delay 7 = 1, density
A = 0.1 (subcritical) and A = 2.0 (supercritical)



Latency: Discrete-Time Brownian Motion
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e Brownian motion variance o = 1, propagation delay 7 = 0,

density A = 0.07 (subcritical) and A = 1.73 (supercritical)



Latency: Random Walk (Euclidean Space)
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Conclusion

e Studied information dissemination in large-scale mobile wire-
less networks

e Introduced “mobility-induced fading process” to map mobile
networks to stationary networks with dynamic links

e Obtained scaling behavior results on the latency

— Linear when subcritical

— Sublinear when supercritical

Thank you!



