Information Dissemination in Mobile Wireless Networks

Edmund M. Yeh

with **Zhenning Kong**

Department of Electrical Engineering
Yale University

Workshop on Mathematical Modelling and Analysis of Wireless Networks, Toronto, Canada May 8, 2008

Mobile Wireless Networks (MWN)

- Nodes in wireless networks for civilian and military applications highly mobile
 - Connections between nodes established and broken intermittently
 - Network topologies frequently-changing
- (Delay-tolerant) information dissemination
 - Single delay-tolerant source initiates message for broadcasting to whole network.
 - Mobility can be exploited to assist in spreading information
 - Especially when network not well connected at any time

Connectivity in Static Wireless Networks

- Full connectivity required to guarantee every node receives message
 - May be overly restrictive and impossible to achieve.
 - Large-scale wireless networks exposed to severe natural conditions,
 vulnerable to enemy attacks, natural hazards, or resource depletion
- Percolation-based connectivity
 - Phase transition in macroscopic behavior of wireless networks
 - Network percolated (supercritical)—exists a large component of nodes spanning entire network; large number of nodes receive message
 - Network not percolated (subcritical)—network consists only of small isolated components of nodes; few nodes receive message

Connectivity in Mobile Wireless Networks

- In moving environments, connectivity should not be assessed at fixed time instant
- Two nodes can exchange information (share a link) if they can decode each other's signals at some point in time
- Different pairs of nodes share links at different points in time
- Connectivity must be analyzed over time

Information Dissemination in MWN

- $\bullet t = 0$: network not percolated, source node u broadcasts message
- ullet Ignoring propagation delays, all nodes in component of u receive message instantaneously—small fraction

Information Dissemination in MWN

- ullet As t increases, nodes move, message passed from message-carrying nodes to new nodes whenever they are within communication range
- Information is disseminated throughout network

Information Dissemination in MWN

• When network is well connected in "mobility" sense, as information dissemination process continues, eventually, a large fraction of the network, or even the whole network is informed of the message

Main Questions for Information Dissemination

- We seek answers to following questions:
 - What fraction of network eventually receives message?
 - How long does it take for this to be accomplished?

Main Results

- Answer to 1st question:
 - Under constrained i.i.d. mobility model, when network density satisfies a certain condition, constant fraction of nodes can receive source message eventually w.h.p.
 - Under some other mobility models, e.g., Brownian motion,
 all nodes can receive the message eventually w.h.p.
- Answer to 2nd question:
 - Network is subcritical (non-percolated): latency for information dissemination scales linearly with initial Euclidean distance between sender and receiver
 - Network is supercritical (percolated): latency for information dissemination scales sublinearly

Previous Work

- Throughput-delay trade-off: Grossglauser and Tse 02, Neely and Modiano 05, El Gammal *et al* 06, Lin *et al* 06, Sharma *et al* 06.
- Information dissemination in mobile networks: Groenevelt 05, Gunnarsson *et al* 06.

Stationary Random Geometric Graphs (RGG)

- $\bullet \ G(\mathcal{X}_n^{(0)}) \ \text{in} \ \mathbb{R}^2 : \ n \ \text{nodes} \ \mathbf{X}_1^{(0)}, \dots, \mathbf{X}_n^{(0)} \ \text{uniformly distributed}$ at random in $\mathcal{B} = \left[-\frac{\sqrt{n/\lambda}}{2}, \frac{\sqrt{n/\lambda}}{2} \right]^2.$
- ullet Undirected link between u and v iff $\|\mathbf{X}_u^{(0)} \mathbf{X}_v^{(0)}\| \leq 1$.
- ullet As n and $|\mathcal{B}| \to \infty$ but density $\lambda = \frac{n}{|\mathcal{B}|}$ is kept constant,

$$G(\mathcal{X}_n^{(0)}) \stackrel{D}{\to} G(\mathcal{X}^{(0)}),$$

a homogeneous Poisson point process.

Continuum Percolation and Critical Density

- \bullet For $G(\mathcal{X}^{(0)} \cup \{\mathbf{0}\})$,
 - Percolation probability $p_{\infty}(\lambda)$ = Pr(component containing the origin has an infinite number of nodes)
 - -Critical density $\lambda_c = \inf\{\lambda > 0 : p_{\infty}(\lambda) > 0\}$
- If $\lambda < \lambda_c$, largest component of $G(\mathcal{X}_n, 1)$ contains $O(\ln n)$ nodes a.a.s. (asymptotic almost surely) subcritical phase
- If $\lambda > \lambda_c$, there exists unique connected component containing $\Theta(n)$ nodes of $G(\mathcal{X}_n^{(0)})$ a.a.s. supercritical phase
 - This largest component called giant component $\mathcal{C}(G(\mathcal{X}_n^{(0)}))$.

RGG with Node Mobility

- ullet Random geometric graph with mobile nodes $G(\mathcal{X}^{(t)})$:
 - Each node u moves according to mobility model $M(t), t=0,1,2,\dots$
 - -u and v can communicate with each other (share a link) at time t iff $d_t(u,v) \triangleq ||\mathbf{X}_u^{(t)} \mathbf{X}_v^{(t)}|| \leq 1$
- ullet When M(t) results in Poisson spatial distribution of $\{\mathcal{X}^{(t)}\}$ for all time, critical density of $G(\mathcal{X}^{(t)})$ is same as one for static model
 - If network at time 0 is (not) percolated, then network is (not) percolated at any time.
 - If $\lambda > \lambda_c$, then for each $t \geq 0$, $G(\mathcal{X}^{(t)})$ is percolated, i.e. exists a giant component in $G(\mathcal{X}^{(t)})$ with probability 1.

Modelling Mobile Wireless Networks

- Map mobile wireless networks to stationary wireless networks with dynamic links
 - Nodes positions in stationary network are same as initial positions of mobile network
 - Link is on (active) in stationary network whenever end nodes of link are within communication range in mobile network
- Dynamic behavior viewed as "mobility-induced-fading process"

Wireless Networks with Unreliable Links

- Model for wireless networks with unreliable links: $G(\mathcal{H}_{\lambda}, 1, p_e(\cdot))$:
 - -Given $G(\mathcal{H}_{\lambda},1)$, each link (i,j) is active with probability $p_e(d_{ij})$.
 - $-G(\mathcal{H}_{\lambda},1,p_{e}(\cdot))$ consists of active links and their end nodes.
- Link quality varies with time—shadowing and fading
- Dynamic unreliable links: Markov On-off process $\{W_{ij}(d_{ij},t)\}$:
 - $-W_{ij}(d_{ij},t)=0/1$ if link (i,j) is inactive/active at time t.
 - $-\{W_{ij}(d_{ij},t)\}$ probabilistically identical for same $d_{ij}-\{W(d,t)\}$.
- Percolation-based connectivity and latency results (INFO-COM'08)

Constrained I.I.D. Mobility Model

- ullet Given initial positions $\{\mathcal{X}^{(0)}\}$
- At each time t=0,1,2,..., $\mathbf{X}_u^{(t+1)}$ is uniformly distributed at random in $\mathcal{A}(\mathbf{X}_u^{(0)},a)$ —circular region centered at $\mathbf{X}_u^{(0)}$ with radius a>0
- ullet $\mathbf{X}_u^{(t)}$ are mutually independent among all nodes and independent of all previous locations $\mathbf{X}_u^{(t')}, t'=1,...,t-1$.
- ullet As $a \to \infty$, constrained i.i.d. mobility model becomes an unconstrained i.i.d. model

First Meeting and Exiting Times

- ullet Given $\{\mathcal{X}^{(0)}\}$ and mobility model M(t)
- First meeting time of nodes i and j:

$$T_m(i,j) \triangleq \inf\{t \geq 0 : d_t(i,j) \leq 1\}$$

• First exiting time of nodes i and j:

$$T_e(i,j) \triangleq \inf\{t \geq 0 : d_t(i,j) > 1\}$$

By definition

$$-T_m(i,j)=0$$
 and $T_e(i,j)>0$ when $d_0(i,j)\leq 1$

$$-T_m(i,j) > 0$$
 and $T_e(i,j) = 0$ when $d_0(i,j) > 1$

Dynamic and Long-Term Connectivity Graphs

- ullet Given $\{\mathcal{X}^{(0)}\}$ and mobility model M(t)
- Dynamic connectivity graph G'(t)
 - -Nodes are located at $\{\mathcal{X}^{(0)}\}$
 - -Link exists between i and j iff $d_t(i,j) \leq 1$
- Long-term connectivity graph G'
 - -Nodes are located at $\{\mathcal{X}^{(0)}\}$
 - -Link exists between i and j iff $E[T_m(i,j)] < \infty$

Relationships

• In both G'(t) and G', nodes fixed to initial random positions rather than being mobile

- When u and v are connected in G', at least one path from u to v consisting of links in G'
- ullet If u broadcasts a message, v can receive it within finite expected time
 - End nodes of each link along the path have finite expected first meeting time
- When u and v are not connected in G', v cannot receive message (in finite expected time)
- ullet Assume G' is percolated

- ullet Supercritical phase: $G(\mathcal{X}^{(t)})$ is percolated for all t
 - One node inside $\mathcal{C}(G(\mathcal{X}^{(0)}))$ broadcasts message at time 0
 - Ignoring propagation delay, all nodes in $\mathcal{C}(G(\mathcal{X}^{(0)}))$ receive message instantaneously.
 - Nodes in $\mathcal{C}(G')$ but not in $\mathcal{C}(G(\mathcal{X}^{(0)}))$ can receive message later

- \bullet 1000 nodes on $[-12,12]^2$, constraint radius = 5
- ullet Source (black nodes) broadcasts message M at t=0.
- Blue links—exist, red nodes—received, white nodes—not received

- ullet 1000 nodes on $[-12,12]^2$, constraint radius =5
- ullet By t=2, all nodes in $\mathcal{C}(G')$ have received M.
- Links: blue—on, green—off; Nodes: red—received, white—not received

- ullet Supercritical phase: $G(\mathcal{X}^{(t)})$ is percolated for all t
 - One node inside $\mathcal{C}(G(\mathcal{X}^{(0)}))$ broadcasts message at time 0
 - Ignoring propagation delay, all nodes in $\mathcal{C}(G(\mathcal{X}^{(0)}))$ receive message instantaneously.
 - Nodes in $\mathcal{C}(G')$ but not in $\mathcal{C}(G(\mathcal{X}^{(0)}))$ can receive message later
- Subcritical phase: $G(\mathcal{X}^{(t)})$ is not percolated at any t.
 - If two nodes u and v are in $\mathcal{C}(G')$, information can be eventually transmitted from u to v
 - Large delay

- 1000 nodes on $[-30, 30]^2$, constraint radius = 5
- ullet Source (black nodes) broadcasts message M at t=0.
- Blue links—exist, red nodes—received, white nodes—not received

- 1000 nodes on $[-30, 30]^2$, constraint radius = 5.
- ullet By t=25, only 200 nodes have received message M.
- Blue links—exist, red nodes—received, white nodes—not received

Latency of Information Dissemination

- $ullet \mathcal{I}_u^{(t_0)}(t)$: set of nodes that have received source message broadcast at time t_0 by u up to time t
- ullet $T^{(t_0)}(u,v)$: first time node v receives message, i.e.,

$$T^{(t_0)}(u,v) \triangleq \inf\{t : v \in \mathcal{I}_u^{(t_0)}(t)\}$$

- ullet $T^{(t_0)}(u,v)$ is latency of information dissemination from u to v
- ullet Assume source node u initiates broadcast at time 0, write $T^{(t_0)}(u,v)$ as T(u,v)

Condition for Finite First Meeting Time

Lemma 1: Given $\{\mathcal{X}^{(0)}\}$ and constrained i.i.d. mobility model with constraint radius a>0, for any two nodes i and j,

$$0 < E[T_m(i,j)] < \infty \text{ iff } 1 < d_0(i,j) < 2a + 1$$

• Proof:

Condition for Finite First Exit Time

Lemma 2: Given $\{\mathcal{X}^{(0)}\}$ and constrained i.i.d. mobility model with constraint radius $a>\frac{1}{2}$, for any two nodes i and j

$$0 < E[T_e(i,j)] < \infty \text{ if } d_0(i,j) \le 1$$

• Proof is similar to previous one

Percolation in Constrained I.I.D. Model

Proposition 1: Given $G(\mathcal{X}^{(0)})$ and constrained i.i.d. mobility model with constraint radius a > 0, critical density for G' is

$$\lambda_c(a) = \frac{\lambda_c}{(2a+1)^2}$$

where λ_c is critical density for $G(\mathcal{X}^{(0)})$.

- Proof:
 - -By Lemma 1, there exists a link between i and j in G' iff $d_0(i,j) < 2a+1$
 - Use scaling property of random geometric graphs

Latency in Constrained I.I.D. Model

Theorem 3: Given $G(\mathcal{X}^{(0)})$ under constrained i.i.d. mobility model with a>1/2 and $\lambda>\lambda_c(a)$, for $u,v\in\mathcal{C}(G')$, ignoring propagation delay, \exists constant $0<\gamma<\infty$

(i) if $\lambda < \lambda_c$, i.e., $G(\mathcal{X}^{(t)})$ is not percolated at any time,

$$\Pr\left(\lim_{d_0(u,v)\to\infty}\frac{T(u,v)}{d_0(u,v)}=\gamma\right)=1$$

(ii) if $\lambda > \lambda_c$, i.e., $G(\mathcal{X}^{(t)})$ is percolated at any time,

$$\Pr\left(\lim_{d_0(u,v)\to\infty}\frac{T(u,v)}{d_0(u,v)}=0\right)=1$$

- Latency of information dissemination scales
 - Linearly with initial Euclidean distance between sender and receiver if $G(\mathcal{X}^{(t)})$ is in subcritical phase
 - Sub-linearly with distance if $G(\mathcal{X}^{(t)})$ is in supercritical phase

Mobility-Induced Fading Process

• Associate "mobility-induced fading process" $W_{i,j}(t)$ with each link $(i,j) \in G'$

$$-W_{i,j}(t) = 0 \text{ if } d_t(i,j) > 1 \text{ (i.e., } (i,j) \notin G'(t))$$

$$-W_{i,j}(t) = 1 \text{ if } d_t(i,j) \le 1 \text{ (i.e., } (i,j) \in G'(t))$$

ullet $W_{i,j}(t)$ has i.i.d. inactive periods $Y_k(i,j)$ and i.i.d. active periods $Z_k(i,j)$.

$$-E[Y_k(i,j)] = E[T_m(i,j)]$$

$$-E[Z_k(i,j)] = E[T_e(i,j)]$$

First Passage Percolation

- Similar to first passage percolation problems
- $T_{(i,j)}$: delay with link (i,j)
 - -Random variable depends on $W_{i,j}(t)$.
- Define

$$T(u,v) = \inf_{l(u,v) \in \mathcal{L}(u,v)} \left\{ \sum_{(i,j) \in l(u,v)} T_{(i,j)} \right\}$$

- -l(u,v): path from u to v in G'
- $-\mathcal{L}(u,v)$: set of all such paths
- -T(u,v): message delay on path having smallest delay

Lemma on Convergence

Let

$$\tilde{\mathbf{X}}_{i} \triangleq \underset{\mathbf{X}_{j}^{(0)} \in \mathcal{C}(G')}{\operatorname{argmin}} \{||(i,0) - \mathbf{X}_{j}^{(0)}||\}, \\
\mathbf{X}_{j}^{(0)} \in \mathcal{C}(G')$$

$$T_{l,m} \triangleq T(\tilde{\mathbf{X}}_{l}, \tilde{\mathbf{X}}_{m}), 0 \leq l \leq m$$

Lemma 3: Let

$$\gamma \triangleq \lim_{m \to \infty} \frac{E[T_{0,m}]}{m}$$

Then,

$$\gamma = \inf_{m \geq 1} \frac{E[T_{0,m}]}{m}$$
, and $\lim_{m \to \infty} \frac{T_{0,m}}{m} = \gamma$ with probability 1

Proof based on Subadditive Ergodic Theorem

Subadditive Ergodic Theorem

Theorem 2 (Liggett'85): Let $\{S_{l,m}\}$ be a collection of random variables indexed by integers $0 \le l < m$. Suppose $\{S_{l,m}\}$ has the following properties:

- (i) $S_{0,m} \leq S_{0,l} + S_{l,m}, 0 \leq l \leq m$;
- (ii) $\{S_{(m-1)j,mj}, m \ge 1\}$ is a stationary process for each j;
- (iii) $\{S_{l,l+j}, j \ge 0\} = \{S_{l+1,l+1+j}, j \ge 0\}$ in distribution for each l;
- (iv) $E[|S_{0,m}|] < \infty$ for each m.

Then

(a) $\alpha \triangleq \lim_{m \to \infty} \frac{E[S_{0,m}]}{m} = \inf_{m \ge 1} \frac{E[S_{0,m}]}{m}$, $S \triangleq \lim_{m \to \infty} \frac{S_{0,m}}{m}$ exists with probability 1, and $E[S] = \alpha$.

Furthermore, if

- (v) the stationary process in (ii) is ergodic, then
- (b) $S = \alpha$ with probability 1.

Lemma on Positiveness and Finiteness

Lemma 4: Let γ be defined as in Lemma 1, if $\lambda < \lambda_c$, then

$$0 < \gamma < \infty$$

Proof based on following Exponential Decay Proposition

Proposition 2: Given $G(\mathcal{X}^{(0)})$ with $\lambda_c(a) < \lambda < \lambda_c$, let $B(h) = [-h,h]^2$, $h \in \mathbb{R}^+$. Then there exist $c_1,c_2>0$ such that for any t>0, $\Pr(\tilde{\mathbf{X}}_0^{(0)} \leftrightsquigarrow B(h)^c) \leq c_1 e^{-c_2 h}$, where $\{\tilde{\mathbf{X}}_0^{(0)} \leftrightsquigarrow B(h)^c\}$ denotes event that the node closest to the origin at time 0 and some nodes in $B(h)^c$ are connected.

Proof of Theorem 1-(i)

- Consider any two nodes $u, v \in \mathcal{C}(G')$.
- Suppose $G(\mathcal{X}^{(0)})$ is subcritical. Then, as $d_0(u,v) \to \infty$, u and v cannot lie within the same component of G'(0), so that T(u,v) > 0.
- ullet Assume $\mathbf{X}_u^{(0)} = \mathbf{0}$, and take line $\mathbf{X}_u^{(0)} \mathbf{X}_v^{(0)}$ as x-axis.
- Let m be closest integer to x(v)—x-axis coordinate of node $\mathbf{X}_v^{(0)}$.
- ullet Now $T_{0,m}=T(\mathbf{X}_u^{(0)},\mathbf{ ilde{X}}_m)$.
- $\bullet \text{ If } \mathbf{X}_v^{(0)} = \tilde{\mathbf{X}}_m \text{, then } T(u,v) = T_{0,m} \text{, and since } m-1 \leq d_0(u,v) \leq m+1 \text{,}$ $\frac{T_{0,m}}{m+1} \leq \frac{T(u,v)}{d_0(u,v)} \leq \frac{T_{0,m}}{m-1}.$
- ullet If $\mathbf{X}_v^{(0)}
 eq ilde{\mathbf{X}}_m$, then $ilde{\mathbf{X}}_m$ must be adjacent to $\mathbf{X}_v^{(0)}$.
- Because $||(m,0) \mathbf{X}_v^{(0)}|| \leq \frac{1}{2}$ (m is closest integer to x(v)), $||(m,0) \tilde{\mathbf{X}}_m|| \leq \frac{1}{2}$ ($\tilde{\mathbf{X}}_m$ is closest node to (m,0)).

Proof of Theorem 1-(i) (con'd)

ullet Consequently, $T_{0,m}-T(\mathbf{\tilde{X}}_m,\mathbf{X}_v^{(0)})\leq T(u,v)\leq T_{0,m}+T(\mathbf{\tilde{X}}_m,\mathbf{X}_v^{(0)})$, so that

$$\frac{T_{0,m} - T(\tilde{\mathbf{X}}_m, \mathbf{X}_v^{(0)})}{m+1} \le \frac{T(u,v)}{d_0(u,v)} \le \frac{T_{0,m} + T(\tilde{\mathbf{X}}_m, \mathbf{X}_v^{(0)})}{m-1}.$$

- ullet Since $ilde{\mathbf{X}}_m$ is adjacent to $\mathbf{X}_v^{(0)}$, $T(ilde{\mathbf{X}}_m,\mathbf{X}_v^{(0)})<\infty$ by Lemma 1.
- Therefore in both cases, by Lemma 3,

$$\lim_{d_0(u,v)\to\infty} \frac{T(u,v)}{d_0(u,v)} = \lim_{m\to\infty} \frac{T_{0,m}}{m} = \gamma$$

with probability 1.

ullet By Lemma 4, $0 < \gamma < \infty$.

Proof of Theorem 1-(ii)

- Now, suppose $G(\mathcal{X}^{(0)})$ is supercritical, then for $u, v \in \mathcal{C}(G')$, as $d_0(u, v) \to \infty$, it is possible that they are within $\mathcal{C}(G'(0))$.
- In this situation, T(u, v) = 0
- Now assume neither node u nor v is in $\mathcal{C}(G'(0))$
- ullet Let t' be first time that some node (and therefore all nodes) in $\mathcal{C}(G'(t'))$ receives u's message
- Let $w_1 \triangleq \operatorname{argmin}_{i \in \mathcal{C}(G'(t'))} d_{t'}(i, u)$, and $w_2 \triangleq \operatorname{argmin}_{i \in \mathcal{C}(G'(t'))} d_{t'}(i, v)$.
- That is, w_1 and w_2 are nodes in C(G'(t')) with smallest Euclidean distances to nodes u and v, respectively.
- ullet Since both w_1 and w_2 belong to $\mathcal{C}(G'(t'))$, $T^{(t')}(w_1,w_2)=0$.

Proof of Theorem 1-(ii) (con'd)

- Can show $T^{(t')}(u,w_1)<\infty$ and $T^{(t')}(w_2,v)<\infty$ with probability 1.
- Moreover,

$$0 \le \frac{T(u,v)}{d_0(u,v)} \le \frac{T^{(t')}(u,w_1) + T^{(t')}(w_1,w_2) + T^{(t')}(w_2,v)}{d_0(u,v)}$$
$$= \frac{T^{(t')}(u,w_1) + T^{(t')}(w_2,v)}{d_0(u,v)} < \infty.$$

• Therefore

$$\Pr\left(\lim_{d_0(u,v)\to\infty}\frac{T(u,v)}{d_0(u,v)}=0\right)=1$$

• Applying same technique for case where only one of u and v is in $\mathcal{C}(G'(0))$, obtain the same result.

Latency with Propagation Delay

Corollary 1: Given $G(\mathcal{X}^{(0)})$ under constrained i.i.d. mobility model with a>1/2, $\lambda>\lambda_c(a)$ and propagation delay τ , for $u,v\in\mathcal{C}(G')$, \exists constants $\tau<\gamma_2\leq\gamma_1<\infty$

(i) if $\lambda < \lambda_c$, i.e., $G(\mathcal{X}^{(t)})$ is subcritical for all time,

$$\Pr\left(\lim_{d_0(u,v)\to\infty}\frac{T(u,v)}{d_0(u,v)}=\gamma_1\right)=1$$

(ii) if $\lambda > \lambda_c$, i.e., $G(\mathcal{X}^{(t)})$ is supercritical for all time,

$$\Pr\left(\lim_{d_0(u,v)\to\infty}\frac{T(u,v)}{d_0(u,v)}=\gamma_2\right)=1$$

Moreover, as $\tau \to 0$, $\gamma_1 \to \gamma$ and $\gamma_2 \to 0$.

Extensions: Other Mobility Models

- Discrete-time Brownian motion mobility model
 - At each time t, each node u follows two-dimensional Brownian motion

$$-\mathbf{X}_{u}^{(t+1)} = (X_{u,1}^{(t+1)}, X_{u,2}^{(t+1)})$$

$$-X_{u,1}^{(t+1)} = X_{u,1}^{(t)} + \sigma W_1$$
 and $X_{u,2}^{(t+1)} = X_{u,2}^{(t)} + \sigma W_2$

- $-\sigma$ —variance of Brownian motion
- $-W_1$, W_2 —two independent standard Normal random variables
- Random walk (Euclidean space) mobility model
 - At each time t, each node u uniformly chooses a random direction $\theta_u^{(t)} \in [0, 2\pi)$ and a random speed $v_u^{(t)} \in (0, v_{max})$

$$-\mathbf{X}_{u}^{(t+1)} = (X_{u,1}^{(t+1)}, X_{u,2}^{(t+1)})$$

$$-X_{u,1}^{(t+1)} = X_{u,1}^{(t)} + v_u^{(t)} \cos(\theta_u^{(t)})$$

$$-X_{u,2}^{(t+1)} = X_{u,2}^{(t)} + v_u^{(t)} \sin(\theta_u^{(t)})$$

Latency: Constrained I.I.D. Mobility

• Constrained radius a=5, propagation delay $\tau=0$, density $\lambda=0.1$ (subcritical) and $\lambda=1.73$ (supercritical)

Latency: with Propagation Delay

• Constrained radius a=6, propagation delay $\tau=1$, density $\lambda=0.1$ (subcritical) and $\lambda=2.0$ (supercritical)

Latency: Discrete-Time Brownian Motion

• Brownian motion variance $\sigma=1$, propagation delay $\tau=0$, density $\lambda=0.07$ (subcritical) and $\lambda=1.73$ (supercritical)

Latency: Random Walk (Euclidean Space)

• $v \sim \mathcal{U}(0,2), \theta \sim \mathcal{U}(0,2\pi)$, propagation delay $\tau = 0$, density $\lambda = 0.1$ (subcritical) and $\lambda = 1.73$ (supercritical)

Conclusion

- Studied information dissemination in large-scale mobile wireless networks
- Introduced "mobility-induced fading process" to map mobile networks to stationary networks with dynamic links
- Obtained scaling behavior results on the latency
 - Linear when subcritical
 - —Sublinear when supercritical

Thank you!