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Overview

e Problem I: Linear multi-hop CSMA /CA network

e Problem II: Distributed channel-aware scheduling

e Problem III: Queue-based channel-aware scheduling
iIn presence of flow-level dynamics



Problem I: Linear multi-hop CSMA /CA network

Linear multi-hop network with n links, sharing medium ac-
cording to CSMA /CA type protocol

e k-hop interference model, i.e., link can only transmit
successfully when no neighboring links within k-hop range
are active

e Packet transmission times on each link are independent
and exponentially distributed with unit mean

e When packets are pending for transmission, and no
neighboring links within k-hop range are active, link ac-
tivates at exponential rate v
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Let « € {0,1}" represent activity state, with z; indicating
whether or not link 2 is active

Set of feasible activity states

min{n,i+k}
S :={xe{0,1}": > z; <1foralli=1,...,n}
j=max{1l,i—k}



Scenario A: saturated queues

First suppose that all links have saturated queues
[Wang & Kar (2005), Duvry & Thiran (2006)]

Let X(¢) € S represent activity state at time ¢, with X;(¢)
indicating whether or not link : is active at time ¢

X(t) is reversible Markov process with stationary distribu-
tion
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Maximum number of simultaneously active links is

= max =
= xeS | Z i
Define S* = {x € S : Z x; = m} as set of states with

maximum number of actlve nodes
Now consider asymptotic regime where v — oo

States z € S* are asymptotically dominant

{ 1/|8*  xze S

lim w(x) = 0 rd S*
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Throughput of link i is 6, = W(ac)I{x.:l}
xeS !

Limiting throughput of link : is
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Limiting aggregate throughput is
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Observe that m is maximum achievable aggregate through-
put, so asymptotically efficient



However, tends to be highly unfair

Consider case with n = 2k + 1, then |S*| = k(k+ 1)/2, and
St =850 =k+1—i,i=1,.. k+1
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Thus 07 =05 15 = rF1)/2

In particular 67 = 9§k+ _|_ while 6;;+1 = 0!



Scenario B: queue dynamics

Now consider scenario with queue dynamics and packet
transfers

e Packets offered to link 1 as Poisson process of rate )\

e Packets are forwarded in multi-hop fashion, i.e., link 2
transfers packets to link 2 4+ 1

e Packets leave network after transmission on link n



Otherwise similar assumptions as before

e k-hop interference model, i.e., link can only transmit
successfully when no neighboring links within k-hop range
are active

e Packet transmission times on each link are independent
and exponentially distributed with unit mean

e When packets are pending for transmission, and no
neighboring links within k-hop range are active, link ac-
tivates at exponential rate v
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Let x € {0,1}" represent activity state, and y € N" queue
size, with y; denoting number of packets in buffer at link :

Set of feasible states

U= {(z,y) € SxN" with z; = 0 when y; = 0}
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Let X,;(¢) be 0—1 variable indicating whether or not link : is
active at time ¢

Let Y;(¢) represent number of packets in buffer of link i, ei-
ther pending for transmission or in process of being trans-
mitted

Z(t) = (X1(t),..., Xn(®),Y1(t),...,Yn(t)) is Markov process

Difficult to analyze...
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From now on consider asymptotic regime where v — o

Denote by 07 (\) = Jim 6;(\) limiting throughput of node
as function of \

Some observations

o 05(\) > ... > 05(\)

e 7(A) = ... =0;()\) = X for all values X\ < le+1

e 0;,(\) < g3 for all values )
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Define saturation throughput 6* = AIim 0y (N\)
— 00

One might expect that ¢} () = min{},0*} with 0* € (51, 131)

6, (A)
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Let us focus on network with £t =1 and n = 3, and deter-
mine saturation throughput 6* = AIim 05(N\)
— OO

Link 1 will be saturated for sufficiently large values of )\

It is easily seen that link 2 will then be saturated as well,
since its activity periods are (stochastically) shorter than
those of link 1 due to additional competition from link 3

Further observe that X>(¢t) = 1-X7(¢t) and X3(t) = X1 (t)I{Y3(t)21}

Markov process Z(t) = (X1(t),X>(t), X3(t),Y1(t),Y>(t),Y3(t))
may be reduced to (X1(¢),Y3(t)), with

e X1(t) € {0,1} indicating whether or not link 1 is active

e Y3(t) denoting number of packets in buffer of link 3
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Stationary distribution n(z,y) = tlim P{(X1(t),Y3(t)) = (z,y)}
—00
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End-to-end system throughput may be obtained as fraction
of time that link 3 is active: 6* = 502177(1,9) = 3/10

Equivalently, system throughput may be obtained as frac-
tion of time that link 2 is active: 6* = z;ozow(o,y) = 3/10

Recall that 65(\) = X for all A <1/3!

65 (V)
7110

node 2 becomes
saturated

node 1 becomes
saturated

1/3 7/10 A

3/10
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Now consider network with one extra link: n=4, k=1

One would expect end-to-end throughput to drop or remain
constant compared ton=3, k=1

It turns out however that end-to-end throughput in fact
goes up

Interpretation: bottleneck link 2 benefits from presence of
link 4 in competition with links 1 and 3
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Conjecture: zkﬂ-z < 9* < Qkﬂ_l for all n > 2k + 1

In contrast, end-to-end throughput Hil can be achieved

using TDMA type scheme
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Problem II: Distributed channel-aware scheduling

Multi-access channel with N users, operating in time-slotted
fashion

R;(t) is feasible transmission rate of user i in time slot ¢
{R;(t)}+>1 is stationary ergodic sequence

F;(r) = P{R; < r} continuous distribution function with den-
sity f;(r) = dF(r)/dr

When several users decide to transmit in same time slot,
collision occurs and all transmissions fail

When R;(t) = r, user ¢ transmits in time slot ¢t with proba-
bility P;(r), regardless of decisions of other users
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Pareto-optimal throughput vectors achieved by threshold
strategies [Adireddy & Tong (2002), Qin & Berry (2003)]:

O r<~;
i 7

for some threshold parameter ~;, i.e., user : transmits in
time slot ¢ if and only if R;(t) > ~;

For given throughput utilitity function, is it possible to de-
termine optimal transmission thresholds +7,...,vy in dis-
tributed fashion without explicit knowledge of rate statis-
tics?

Denote expected throughput of user : as function of vector

of transmission thresholds v = (v1,...,7n)
T;(v) = Si(w) 1] Fi(vy)
JF

with S;(v;) = E{Ril;p.~,1}
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Weighted Proportional Fairness

Consider aggregate throughput utility function

N
G(v) = > wilog(T;(7))
1=1

Note that

G(v) = w; 109 (Sz'(%') 11 Fj(’}’j>)

JF

Wy

log (S;(vi)) + > 109(F;(v5)
J7t

(w; 1og (S;(7v;)) + w_; log(F; ()],

[
1= 1= 1=
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We obtain

85(7) - 4 [w;i log (S;(vi)) + w—; log(F;(7;))]
Vi d-;

w; dSi(y) w—; dFi(y)
S(%,) dv; F(%,) dv;

— S ( Z)’Yzfz(’)’z) F( Z)fz('yz)
. W;7s
= [sz-m) Fm)] Filw

o w@g@{%(;“) marginal relative throughput gain for user ;

° w;{fgﬁ marginal aggregate relative throughput loss for

all other users
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Thus 8(5—57) = 0 requires

1

wivi F5 (v;) = w_;5;(7;)

Above equation may be solved by each individual user esti-
mating F;(v;) and S;(v;), and either increasing or decreasing
transmission threshold ~;, by small amount, depending on
whether

wivi Fi (7)) < w_;8; ()
or

wiy; B (v;) > w_8;(~;)
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Queue stability
Now suppose user : generates average of \; bits per slot

T here exists transmission strategy that achieves stability if
and only if (\1,...,\y) € 7, with

T ={(T1(7),-..,Tn(7)) 1 v € RY}

representing achievable throughput region
Is it possible to determine suitable transmission thresholds

Y1,---,YN 1IN distributed fashion without explicit knowledge
of (\1,...,Ay) and rate statistics?

24



Approach: periodically update transmission thresholds, us-
iIng queue lengths as weight factors

Either increase or decrease transmission threshold ~;(¢) at
time ¢t by small amount, depending on whether

w; (£)7; () F; (7(8)) < w—ij () 8;(7:(t))
or

w; (£)7; () F; (i () > w_; () S;(7:(t))
with w;(t) = Q;(t) and w_;(t) = _;_Qj(t)
VESD)

25



Extensions

e Capture effects, multi-user reception, network setting

e General concave utility functions
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Problem III: Queue-based channel-aware schedul-
ing in presence of flow-level dynamics

Broadcast channel, operating in time-slotted fashion

In each time slot, exactly one flow is selected for transmis-
sion

R;(t) is feasible rate of i-th flow in time slot ¢, if selected
for transmission

Q;(t) is backlog of i-th flow in time slot ¢
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Scenario A: static flow population, packet arrivals
Static population of N flows
Each flow generates bits over time

Queue-based scheduling: time slot ¢t is assigned to flow
i*(1) 1= arg_max  Qi(t)R;(t)
i—

TEEEE)

Achieves maximum stability
[ Tassiulas & Ephremides (1992), McKeown et al. (1996),
Neely et al. (2003), Stolyar (2004)]
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Scenario B: dynamic flow configuration

Flows arrive over time, at average rate of o per slot

Each flow either produces instantaneous traffic burst upon
arrival or generates bits over some finite random time pe-

riod

Denote by B total service requirement (in bits) of arbitrary
flow

Denote by RERmax maximum feasible transmission rate

Suppose any flow could be served at rate Rmax in any time
slot

Expected number of required transmissions per slot

p = aE{|B/Rmax]|}

Necessary stability condition: p <1 -



Utility-based scheduling: time slot ¢ is assigned to flow

*(t) :=a a (L) R; (T
i*(t) rgi:Qr?(t)xww() (1)

Weights w;(t) set according to «-fair utility optimization

Achieves maximum stability (p < 1)
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Note: utility-based strategies in general fail to ensure max-
Imum packet-level stability in case of static flow population

Utility-based strategies do not respond to queue build-ups,
suggesting that queue-based strategies could provide po-
tentially better packet-level performance

It turns out however that queue-based strategies may Iin
fact cause instability

Interpretation: flows with large backlogs may receive pri-
ority over flows with smaller backlogs, even when their
transmission rates are relatively low

In case of static flow population, flows with smaller back-
logs will build up large backlogs as well, and situation can-
not persist

In presence of flow-level dynamics however, instability man-
ifests itself in form of large number of flows rather than

large backlogs per flow .



For example, assume

e service requirement B is an (even) constant

e feasible transmission rate R is either 1 or 2 with equal
probability

so that p = aB/2
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Number of flows with residual size larger than %B cannot
grow without bound as long as p <1

Suppose that were not true, then flows of residual size In
[3B,3B] can only be served at rate 2

Hence flows with residual size smaller than %B will not be
served at all

Thus total fraction of time spent on service of flows with
residual size larger than %B Is at most

3 1 7 7 7
°Bio+-Bl="ap="p<"
algB/2+ 3Bl =1gaB=5r<3
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Let p be probability that there is at least one flow of residual
size larger than %B, but no such flow with feasible rate 2

Probability p is bounded away from zero as long as p <1

Hence average service rate is bounded away from 2 as long
as p<1

It follows that system is unstable for p > 1 —¢ for some ¢ > 0
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