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Consider Gaussian N x N-random matrices

N

AN = (aij>z',j:1

i.e., Ay is N x N-matrix, where a;; are random variables whose
distribution is determined as follows:
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Consider Gaussian N x N-random matrices

N

AN — (&Z]>1j:1

i.e., Ay is N x N-matrix, where a;; are random variables whose
distribution is determined as follows:

e Ay is selfadjoint, i.e., aj; = Q;j
e Otherwise, all entries are independent and identically dis-

tributed with centered normal distribution of variance 1/N
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Convergence of typical eigenvalue distribution of Gaussian




Consider the empirical eigenvalue distribution of Ay,

1 N

1=

A;(w) are the N eigenvalues (counted with multiplicity) of Ax(w)
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Consider the empirical eigenvalue distribution of Ay
1 N
pay(W) == 0w
Ni=
A;(w) are the N eigenvalues (counted with multiplicity) of Ax(w)

Then Wigner’s semicircle law says that

KAy — MW almost surely,

i.e., for all continuous and bounded f

im [ f@dpay () = [ F(Odun (1) = % /_22f(t)\/4 ~ 2t

N —o00
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Show

Jim g () = pw (£)
in two steps:
o limy_ oo Elpay (N = pw(f)

o >y Varlua,(f)] <oo

almost surely
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Convergence of averaged eigenvalue distribution of Gaussian
N x N random matrices to Wigner’s semicircle

0
1 -0.5 0 0.5 1 15 2 25 -25 -2 -15 -1 -0.5 0 0.5

number of realizations = 10000
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For

lim Elua, ()] = pw(f)

N —o0

it suffices to treat convergence of all averaged moments, i.e.,

lim E[/t”d,uAN(t)]:/t”d,uW(t) vn € N

N —o0
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Note:

1 N
B[ "duay ()] = Bl 30 A1 = Eltr(AR)
1=1



Note:

but

B[ "dua, (0] = Bl > X = Bltr(a3)]
z—l

1 N
Eftr(Ay )]_N Z E[ailigaigig"'ainil]

7’15 Y
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Note:

but

1 N
B[ "dpua, (O] = Bl 3 ] = Bltr(AR)
1=1

1 N
E[t"(A%)]=N > Elaijiyaigiy - aiyig]

Zl,...,’in:]_

expregged in
terms of pairings
“Wick formula”
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Asymptotically, for N — oo, only non-crossing pairings survive:

Jim Bltr(AR)] = #NCa(n)
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Asymptotically, for N — oo, only non-crossing pairings survive:

Jim Bltr(AR)] = #NCa(n)

Define limiting semicircle element s by

@(s") ;= #NCo(n).

(s € A, where A is some unital algebra, ¢ : A — C)

19



Asymptotically, for N — oo, only non-crossing pairings survive:

Jim Bltr(AR)] = #NCa(n)

Define limiting semicircle element s by

@(s") ;= #NCo(n).

(s € A, where A is some unital algebra, ¢ : A — C)

Then we say that our Gaussian random matrices Ay converge
in distribution to the semicircle element s,

distr
AN —> S
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Claim:

What is distribution of s?

P (s") = [ "dpy (1)
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Claim:

more concretely:

What is distribution of s?

P (s") = [y (1)

1 42
#NCs(n) = 2—/ "/ 4 — t2dt

w™J=2
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n=2: ¢(s?) =

n=4: p(s*) =

n=6: o(s®) =

What is distribution of s?
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n=2: p(s?) =1
L

n=4: p(s*) =

n==6: o(s®) =

What is distribution of s?
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n=2: ¢(s?) =1
L
n==4: p(s*) =2

LU

n==6: o(s®) =

What is distribution of s?

2]

25



What is distribution of s?
n=2: p(s?) =1
||

n==4: p(s*) =2

Ju 2

n==6: p(s®) =5

ST T e T ]
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Claim:

What is distribution of s?

p(s2F) = ¢,

k-th Catalan number
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Claim:

What is distribution of s?

p(s2F) = Cl k-th Catalan number
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What is distribution of s?

Claim:

p(s2F) = Cl k-th Catalan number

_ 1 (2k
* Ok = 531 ( k)
e (}. is determined by Cog = (/1 = 1 and the recurrence relation

k
Cr= > C_1Cy_y.
=1
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k
QO(SQk) — Z QO(SQZ_Q)QO(SQk_Ql)
=1



Put

k
50(82]{) — Z @(Szl_z)go(SQk_Ql).
[=1

M(z):= ) @(s™"=1+ i 0(s2F) 22k
n=0 k=1
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Put

Then

k
QO(SQk) — Z QO(SQZ_Q)QO(SQk_QZ).
[=1

M(z) = > p(s™"=14+ > o(s2F) 22k
n=0 k=1

oo k
M(z) =1+ 27 S % o(52172) 2202 5 ( $2k—21y 2k—2
k=11=1
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Put

Then

k
QO(SQk) — Z QO(SQZ_Q)QO(SQk_QZ).
[=1

M(z) = > p(s™"=14+ > o(s2F) 22k
n=0 k=1

oo k
M(z) =1+ 27 S % o(52172) 2202 5 ( $2k—21y 2k—2
k=11=1

=1+ 22M(z) - M(2)
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M@2) =14 2°M(z) - M(2)

Instead of moment generating series M(z) consider Cauchy
transform

G() = o)
Note
=3 L =13 een() = masn

n=0
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M(@2) =14 2°M(2) - M(2)

Instead of moment generating series M(z) consider Cauchy
transform

G() = ()
Note
=3 LR =1 3 een()" = mas

n=0

thus
2G(2) = 1 4 G(2)?
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For any probability measure u on R corresponding Cauchy trans-
form

G(z) = /]R id,u(t)

is analytic function on complex upper half plane Ct and allows
to recover p via Stieltjes inversion formula

du(t) = —+ im Im Gt + ie)

meE—

36



For semicircle s:

implies

2G(2) = 1 4 G(2)?

—\/z2—4

G(z) =2 s
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For semicircle s:

implies

and thus

1
du(t) = Z\M — t2dt

2G(2) = 14 G(2)?
z— /22 —
Gy ==V 4
on [-2,2]
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Consider now more general random matrices

o Keep the entries independent, but change distribution of en-
tries, globally or depending on position of entry

Arnold

Bai und Silverstein

Molchanov, Pastur, Khorunzhii (1996)
Khorunzhy, Khoruzhenko, Pastur (1996)
Shlyakhtenko (1996)

Guionnet (2002)

Anderson, Zeitouni (2006)

40



e Keep the distributions normal, but allow correlations between
entries

— for weak correlations one still gets semicircle

Chatterjee (2006)
Gotze + Tikhomirov (2005)
Schenker und Schulz-Baldes (2006)

— for stronger correlations other distributions occur

Boutet de Monvel, Khorunzhy, Vasilchuck (1996)
Girko (2001)

Hachem, Loubaton, Najim (2005)

Anderson, Zeitouni (Preprint)

Rashidi Far, Oraby, Bryc, Speicher (Preprint)



Consider block matrix

ANy By Cn
XNy =|Bn An Bn |,
Cn By Ay
where Ay, By, Cpn are independent Gaussian N x N-random ma-
trices.
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Consider block matrix

Ay By Cn
XNy =|Bny Ax Bn|,
Cn By Apn

where Ay, By, Cpn are independent Gaussian N x N-random ma-
trices.

What is eigenvalue distribution of X, for N — oc0?
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eigenvalue distribution for one realisation

0
N=10
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eigenvalue distribution for one realisation
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eigenvalue distribution for one realisation

0.2r




averaged eigenvalue distributions

N=50
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This limiting distribution is not a semicircle, and it cannot be
described nicely within usual free probability theory.
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This limiting distribution is not a semicircle, and it cannot be
described nicely within usual free probability theory.

However, it fits well into the frame of

operator-valued free probability theory!

48



What is an operator-valued probability space~?

scalars —_ operator-valued scalars

C B
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What is an operator-valued probability space~?

scalars —_ operator-valued scalars
C B
state — conditional expectation
p: A—C EFE.A—B

E[bi1abs] = b1 E[a]bs
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What is an operator-valued probability space~?

scalars

C

state

w: A—C

moments

p(a™)

operator-valued scalars

B

conditional expectation
EFE.A—B
E[byaby] = b1 Ela]bs
operator-valued moments

Elabiabsa - --ab,,_1a]
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B can be a general algebra of bounded operators on a Hilbert
space; in the following just consider

B = matrix algebra
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What is an operator-valued semicircular element?

Consider an operator-valued probability space

F: A—B

s € A is semicircular if
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What is an operator-valued semicircular element?

Consider an operator-valued probability space

F: A—B

s € A is semicircular if

e second moment is given by
E[sbs] = n(b)
for a completely positive map n: B — B
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What is an operator-valued semicircular element?
Consider an operator-valued probability space

F: A—B

s € A is semicircular if

e second moment is given by

E[sbs] = n(b)
for a completely positive map n: B — B

e higher moments of s are given in terms of second moments
by summing over non-crossing pairings

55



E[sbs] = n(b)

sbs
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sbs

E[sbs] = 1(b) -
Elsbysbps---sb,_1s] = ) (iterated application of n according to w)
TeNCr(n)
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sbq sbo sb3y sby sbys
sb1 sbo sb3 sby sbgs 1572273274275

||

sb1 sbo sb3 sby sbgs

ERENNE N

n(b1)-b2m(b3)-ban(bs) n(b1)-bo-n(bz1(ba)-bs) ?7(51°?7(bz°?7(b3)°b4>'b5)

sb1 sbo sb3 sby sbgs sb1 sbo sbz sby sbgs

|| L

n(b1 - 1(b2) - b3) - ba - n(bs) n(by - 1(b2) - bz - n(ba) - bs)
58




E[sbysbosbasbasbss] =n(by) - ba - n(b3) - by - n(bs)
+n(b1) - ba - 1(b3 - n(ba) - bs)
+ (b1 (b2 n(bs) - ba) - bs
+ (b1 - n(b2) - b3) - ba - n(bs)

+ (b1 - n(b2) - b3 - 1(ba) - bs)

IEl
=

2L

uu‘
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Elssssss] =n(1) -n(1) - n(1)
+n(1) - n(n(1))
+n(n(n()))
+n(n(1)) - n(1)

+n(n(1) -n(1))

L2

=

=

uu‘
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We have the recurrence relation

k
E[SQk‘] — Z n(E[SQZ—Q]) . E[SQk_Ql].
=1

61



We have the recurrence relation

k
E[SQk] — Z ﬂ(E[SQl_Q]) . E[SQk_Ql].
=1
Put

©.@)

M(z):= Y E[s"]z"=1+ fj E[s2k) 22k,
n=0 k=1

thus

M(z) =1+ zn(M(z)) . M(2)
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Consider the operator-valued Cauchy transform

for z € CT.

Note

thus

G(z) ;= E[i]

G(=) = B — ] =~ M(sz ™),

z 1 —sz—1

2G(2) = 141(G(2)) - G(=)

63



Thus: operator-valued Cauchy-transform of s
G:Ct =B

satisfies
e (G analytic

e (G solution of

2G(2) = 1+41(G(2)) - G(2)

OG(z)Nél for z — oo
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back to random matrices

special classes of random matrices are asymptotically described
by operator-valued semicircular elements, e.g.

e band matrices (Shlyakhtenko 1996)

e block matrices (Rashidi Far, Oraby, Bryc, Speicher 2006)
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Example:
An By Cy
XNy=|Bny AN Bn|,
Cny By An
where Ay, By, Cpn are independent Gaussian N x N random ma-
trices

For N — oo, Xy converges to

S1 S2 83
S— 1582 S1 $S2|,
$s3 So 81

where s1, 5o, s3 IS free semicircular family.
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s1 S S3
s=1|s> s1 so, s1,52,53 € (A, ¢)
s3 Sp S1

s is an operator-valued semicircular element over Ms3(C) with
respect to
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s1 S S3
s=1|s> s1 so, s1,52,53 € (A, ¢)
s3 Sp S1

s is an operator-valued semicircular element over Ms3(C) with
respect to

o A= M3(A), B = M3(C)
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s1 S S3
s=1|s> s1 so, s1,52,53 € (A, ¢)
$3 S» 81

s is an operator-valued semicircular element over Ms3(C) with
respect to

o A= M3(A), B = M3(C)

e E=id® ¢ M3(A) — M3(C), (%‘j)ijzl = (w(aij))ijzl

69



s1 S S3
s=1|s> s1 so, s1,52,53 € (A, ¢)
$3 S» 81

s is an operator-valued semicircular element over Ms3(C) with
respect to

o A= M3(A), B = M3(C)

3

e E=id®¢: M3(A) — M3(C), (az’j)?' — (‘P(aij))z,jzl

,J=1

e n: M3(C) — M3(C) given by n(D) = E[sDs]

70



§1 82 83
S=— | S2 81 S2], S$1,82,83 € (Aa 90)
$3 82 S§1

Asymptotic eigenvalue distribution p of X, is given by distribu-
tion of s with respect to tr3 ® ¢:

HG) = [ —du(®) = trs@ o)

<z — S
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§1 82 83
S=— | S2 81 S2], S$1,82,83 € (Aa 90)
$3 82 S§1

Asymptotic eigenvalue distribution p of X, is given by distribu-
tion of s with respect to tr3 ® ¢:

) = [ ——du() = trs © o(——) = tra{Bl—1},
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s1 S S3
s=1|s> s1 so, s1,52,53 € (A, ¢)
s3 S S1

Asymptotic eigenvalue distribution p of X, is given by distribu-
tion of s with respect to trz3 ® ¢:

HG) = [ du(t) =trs® o) = trs{ B[},
and G(z) = E[;X] is solution of

2G(2) = 141(G(2)) - G(=)

73
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G(z) = (

f(2)
0
h(z)

0

g(z)
0

h(z)
0

f(z)

|
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Z;(

A B C
B A BJ:
C B A

2 f(z) + g(2)
0

9(z) +2h(z)

f(z) O
G(z)=1] 0 g(2)
h(z) O
0
2 f(z) + g9(2) + 2h(z)
0]

h(z))
0
f(2)

9(z) + 2h(z)
O

2 f(z) + g(z)

76
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Z;(

A B C f(z) O
B A BJ: G(z) =] 0 g(2)
C B A h(z) O
2 f(2) +9(2) 0

0 2 f(2) +9(2) +2h(z)
9(2) +2h(z) 0

2G(2) = 141(G(2)) - G(=)

h(z))
0
f(2)

9(z) + 2h(z)
O

2 f(z) + g(z)

7

|



A B C f(z) 0 h(z2)
X = (B A B) ; G(z) = ( 0O g(z) O )
C B h(z) 0  f(2)

A
L (25(2) +9(2) 0 g(2) + 2 h(2)
(G(2) =3 0 2 f(2) + 9(2) + 2h(2) 0 ,
9(2) + 2 h(z) 0 2 f(2) + g(2)

2G(2) = 1+1(G(2)) - G(=)

H(2) = tra(G(2)) = 5(2f(2) + 9())
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Comparison of this solution with simulations
L.(n)
3

0.35

0.3 A 1w
0.25 j‘ \
/ ‘
0.2 /( \,
oid \
0.1r / T\

0.05
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L, L (n)

some more examples
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So we have solved the problem of finding the eigenvalue distri-
bution of block matrices by recognizing a block matrix as an
operator-valued semicircular element ...
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So we have solved the problem of finding the eigenvalue distri-
bution of block matrices by recognizing a block matrix as an
operator-valued semicircular element ...

. however, we are now actually facing another problem:

How to deal with our special

matrix-valued quadratic equations?

82



Problem: We have to solve

2G(2) = 1+41(CG(2)) - G(2)

for z close to real axis.

Recall: Stieltjes inversion formula

1
dpu(t) = —— lim Im H (t + ie)

()
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Problem: We have to solve
2G(z) =1+ n(G(z)) - G(2)

for z close to real axis.

()

Recall: Stieltjes inversion formula

du(t) = 1 Iin%Im H(t + ie)

meE—

For fixed z,

() =

—~

quadratic matrix equation
system of quadratic equations

has many solutions!

How do we find the right one?
84



n(G(2))

X =

Wl

(
(

A B C f(z) 0
B A B) , G(z) = ( 0  g(2)
C B A h(z) 0

2 f(z) +9(=) 0
0 2f(2) +9(2) +2h(2)
9(2) + 2h(z) 0

2G(2) = 141(G(2)) - G(=)

h(z))

0

f(2)

9(=) +02 h(z)
2 f(2) +g(2)

)
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A B C f(2) 0 h(z)
X = (B A B) , G(z) = ( 0 g(») O )
h(z) 0  f(2)

C B A

1 [(2f(2) +9(2) 0 9(z) +2h(z)
n(G<z>)=—( 0 2 £(2) +g(2) + 2h(2) 0 )
3 \g(2) +2h(2) 0 2 f(2) + g(2)
g (f+h)+2 (f2+h2)
zf =1+
3
2 h

=14+ 90t 3(f+ )

_4fh+g(f+h)
zh = .

3
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0.14

0.12-

0.1-

0.08-

0.06~

0.04-

0.02-

3

5 -2 -15 -1 -05 0 0.5 1 15 2

solving the system
by Newton’'s method
with "bad’ initial values

0.3~

0.25-

0.2r

0.15-

0.1-

0.05-

3

5 -2 -15 -1 -05 0 0.5 1 15

correct solution

87

2.5



We are interested in a solution with a special positivity property:
For Imz > O we have

1 1 1 Im
IMG(z) = ~B[—— - -~ ]<—-—-—-"_1
2 z—s z-—s 2| + ||s]|2

88



We are interested in a solution with a special positivity property:
For Imz > 0O we have

1 1 1 Im
ImG(z) = Bl— - —] < —————0
2 z—s zZ-—s 12| 4+ || s]]

Thus: we look for

e a solution of  2G(z) =1+ n(G(2)) - G(z)

e with ImG(z) := GG g

89



Set
G(z) := —iW(z2)

T hen

e ReW(z) = W(Z)EW(Z)* > 0

o —izW(z)+ n(W(z)) W) =1

90



Set
G(z) .= —iW(z2)

Then

e ReW(z) := W(Z)EW(Z)* > 0

o —izW(2) —|—n(W(z)) W) =1

Claim: For each z with Imz > 0 there is exactly one solution
with this property!

91



—izW(z)—I—n(W(z))-W(z) =1 — F(W)=W (%%)

for
1

FW) = —iz1l 4+ n(W)
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—zzW(z)—I—n(W(z))W(z) =1 <— F.(W) =W (%)

for
1

F2(W) = —iz1l + n(W)

Put
B+Z:{WEB|RGW>O}
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—zzW(z)—I—n(W(z))W(z) =1 <~ F(W)=W ()

for
1

F2(W) = —iz1l 4+ n(W)

Put
B+Z:{WEB|RGW>O}

Theorem [Helton, Rashidi Far, Speicher 2007]: ForImz > 0
there exists exactly one solution W € By to (xx); this W is the
limit of iterates

Wn = F7(Wo)

for any Wo € 5.
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Note: F, is not a contraction in operator norm.
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Note: F, is not a contraction in operator norm.

However, is contraction in some other, canonical metric!
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Note: F, is not a contraction in operator norm.
However, is contraction in some other, canonical metric!

Theorem [Earle, Hamilton 1968]: Consider X complex Ba-
nach space, 0 # D domain, h : D — D bounded holomorphic

function.

If (D) lies strictly(*) inside D, then h is a strict contraction in
the Caratheodory metric p, thus has a unique fixed point in
D.

Furthermore, I3m > 0 : p(x,y) > m||lx —y|| for all z,y € D and thus
(h”(wo))n converges in norm to fixed point, for all xg € D

(*) 3¢ > OVz € D: B:(h(z)) C D
o7



in our case:

e h = F, analytic

o D=Ry :={WeBy|||W]| <b}

Check that F.(Rp) lies strictly in Ry,

Note: B_|_ = Ub>0 Rb
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in our case:

e h = F, analytic

o D=Ry,:={WeBy||W|<b}

Check that F.(Rp) lies strictly in Ry,
Note: B_|_ = Ub>0 Rb

Remark: Same arguments work for

ZG(Z) =1+n(G(2)) - G(Z)

where Z € B with Im Z = ZEiZ* > 0 and invertible.
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Theorem [Helton, Rashidi Far, Speicher 2007]: For fixed
V € b4 there exists exactly one solution W € B4 to

VW + (W)W = 1;

this W is the limit of iterates Wy, = F{}(Wp) for any Wy € A4,
where
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Theorem [Helton, Rashidi Far, Speicher 2007]: For fixed
V € B4 there exists exactly one solution W € By to

VW + (W)W = 1;

this W is the limit of iterates Wy, = F{}(Wp) for any Wy € A4,
where

Fr(W) = —
VI Ty a(w)
Furthermore,
1
W] < |[(Re V)1, Re W >
m? - ||[(Re V)1
where

m = V| + [Inll - [(Re V)™
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Summary

e interesting classes of random matrices with correlations be-
tween entries can be described by operator-valued semicir-
cular elements
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Summary

e interesting classes of random matrices with correlations be-
tween entries can be described by operator-valued semicircu-
lar elements

e operator-valued semicircular elements have an accessible
operator-valued structure, in terms of combinatorics of
NoN-Ccrossing pairings
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Summary

e interesting classes of random matrices with correlations be-
tween entries can be described by operator-valued semicircu-
lar elements

e operator-valued semicircular elements have an accessible
operator-valued structure, in terms of combinatorics of non-
Crossing pairings

e corresponding equation for operator-valued Cauchy trans-
form (quadratic matrix equation) has exactly one solution
with the right positivity properties
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Literature on the combinatorial side of free probability

e A. Nica and R. Speicher: Lectures on the Combinatorics of
Free Probability.

LL.ondon Mathematical Society Lecture Note Series, vol. 335,
Cambridge University Press, 2006

e R. Speicher: Combinatorial theory of the free product with

amalgamation and operator-valued free probability theory.
Memoir of the AMS 627 (1998)
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