Another construction of type II_1 factors with prescribed countable fundamental group

Cyril Houdayer

University of California at Los Angeles

Workshop on von Neumann algebras Fields Institute, Toronto October 30, 2007 Let *M* be a type II₁ factor, and t > 0. Let $n \ge t$, and choose in $M_n(\mathbf{C}) \otimes M$ a projection *p* of normalized trace t/n. Define

$$M^t = p(M_n(\mathbf{C}) \otimes M)p.$$

Note that M^t is a type II₁ factor and it does not depend on the choice of *n* and *p*. Moreover, $(M^s)^t \simeq M^{st}$, $\forall s, t > 0$.

Let *M* be a type II₁ factor, and t > 0. Let $n \ge t$, and choose in $M_n(\mathbf{C}) \otimes M$ a projection *p* of normalized trace t/n. Define

$$M^t = p(M_n(\mathbf{C}) \otimes M)p.$$

Note that M^t is a type II₁ factor and it does not depend on the choice of *n* and *p*. Moreover, $(M^s)^t \simeq M^{st}$, $\forall s, t > 0$.

Definition (Fundamental group of M) $\mathcal{F}(M) = \{t > 0; M^t \simeq M\}.$ Let *M* be a type II₁ factor, and t > 0. Let $n \ge t$, and choose in $M_n(\mathbf{C}) \otimes M$ a projection *p* of normalized trace t/n. Define

$$M^t = p(M_n(\mathbf{C}) \otimes M)p.$$

Note that M^t is a type II₁ factor and it does not depend on the choice of *n* and *p*. Moreover, $(M^s)^t \simeq M^{st}$, $\forall s, t > 0$.

Definition (Fundamental group of M)

 $\mathcal{F}(M) = \{t > 0; M^t \simeq M\}.$

Equivalent definition. On $M \otimes B(\ell^2)$, fix a f.n.s. trace Tr. For $\theta \in \operatorname{Aut}(M \otimes B(\ell^2))$, denote by $\operatorname{mod}(\theta)$ the unique $\lambda > 0$ such that $\operatorname{Tr}(\theta) = \lambda \operatorname{Tr}$. Then $\mathcal{F}(M) = \{\operatorname{mod}(\theta) : \theta \in \operatorname{Aut}(M \otimes B(\ell^2))\}$.

F(R) = R^{*}₊ (Murray & von Neumann, 1943). It is a consequence of the uniqueness of the AFD type II₁ factor. Moreover, it can be realized through a one-parameter trace-scaling action (θ_s) on R ⊗ B(ℓ²).

- F(R) = R^{*}₊ (Murray & von Neumann, 1943). It is a consequence of the uniqueness of the AFD type II₁ factor. Moreover, it can be realized through a one-parameter trace-scaling action (θ_s) on R ⊗ B(ℓ²).
- *F*(*L*(Γ)) is countable for Γ an ICC c.d. Kazhdan group (Connes, 1979). This is the first occurrence of a rigidity phenomenon in vN algebras.

- F(R) = R^{*}₊ (Murray & von Neumann, 1943). It is a consequence of the uniqueness of the AFD type II₁ factor. Moreover, it can be realized through a one-parameter trace-scaling action (θ_s) on R ⊗ B(ℓ²).
- *F*(*L*(Γ)) is countable for Γ an ICC c.d. Kazhdan group (Connes, 1979). This is the first occurrence of a rigidity phenomenon in vN algebras.
- F(L(F_∞)) = R^{*}₊ (Rădulescu, 1991). This is proved using free probability. Once again, it can be realized through a one-parameter trace-scaling action on L(F_∞) ⊗ B(ℓ²).

F(L(G)) = {1}, for G = Z² ⋊ SL(2, Z) (Popa, 2001). This is proved using the tension between the relative property (T) of the pair (Z² ⋊ SL(2, Z), Z²) and the Haagerup property of SL(2, Z) and Gaboriau's results.

- F(L(G)) = {1}, for G = Z² ⋊ SL(2, Z) (Popa, 2001). This is proved using the tension between the relative property (T) of the pair (Z² ⋊ SL(2, Z), Z²) and the Haagerup property of SL(2, Z) and Gaboriau's results.
- ∀S ⊂ R^{*}₊ countable subgroup, ∃G ∩ R, such that F(R ⋊ G) = S (Popa, 2003). The Connes-Størmer Bernoulli shift G ∩ ⊗_G(B(ℓ²), ψ_S) is mixing and malleable. Realize R as the centralizer of ⊗_G(B(ℓ²), ψ_S) and restrict the action.

- F(L(G)) = {1}, for G = Z² ⋊ SL(2, Z) (Popa, 2001). This is proved using the tension between the relative property (T) of the pair (Z² ⋊ SL(2, Z), Z²) and the Haagerup property of SL(2, Z) and Gaboriau's results.
- ▶ $\forall S \subset \mathbf{R}^*_+$ countable subgroup, $\exists G \curvearrowright \mathcal{R}$, such that $\mathcal{F}(\mathcal{R} \rtimes G) = S$ (Popa, 2003). The Connes-Størmer Bernoulli shift $G \curvearrowright \bigotimes_G (B(\ell^2), \psi_S)$ is mixing and malleable. Realize \mathcal{R} as the centralizer of $\bigotimes_G (B(\ell^2), \psi_S)$ and restrict the action.
- $\mathcal{F}(*_{s \in S} L(G)^s) = S$ (Ioana, Peterson & Popa, 2005).

- F(L(G)) = {1}, for G = Z² ⋊ SL(2, Z) (Popa, 2001). This is proved using the tension between the relative property (T) of the pair (Z² ⋊ SL(2, Z), Z²) and the Haagerup property of SL(2, Z) and Gaboriau's results.
- ► $\forall S \subset \mathbf{R}^*_+$ countable subgroup, $\exists G \curvearrowright \mathcal{R}$, such that $\mathcal{F}(\mathcal{R} \rtimes G) = S$ (Popa, 2003). The Connes-Størmer Bernoulli shift $G \curvearrowright \bigotimes_G (B(\ell^2), \psi_S)$ is mixing and malleable. Realize \mathcal{R} as the centralizer of $\bigotimes_G (B(\ell^2), \psi_S)$ and restrict the action.

•
$$\mathcal{F}(*_{s\in S}L(G)^s) = S$$
 (Ioana, Peterson & Popa, 2005).

▶ $\forall S \subset \mathbf{R}^*_+$ countable subgroup, $\exists G \frown L(\mathbf{F}_\infty)$, such that $\mathcal{F}(L(\mathbf{F}_\infty) \rtimes G) = S$ (H, 2007). This time the free Bogoliubov shift $G \frown (T_S, \varphi_S)$ on the free Araki-Woods factor is mixing and malleable (in a free sense). Realize $L(\mathbf{F}_\infty)$ as the centralizer of (T_S, φ_S) and restrict the action.

Let (\mathcal{M}, φ) be a vN algebra endowed with a f.n. state φ . We shall always assume that \mathcal{M} has separable predual \mathcal{M}_* .

Let (\mathcal{M}, φ) be a vN algebra endowed with a f.n. state φ . We shall always assume that \mathcal{M} has separable predual \mathcal{M}_* . For $\gamma > 0$, denote by $\mathcal{M}_{\gamma} = \{x \in \mathcal{M}; \varphi(xy) = \gamma \varphi(yx), \forall y \in \mathcal{M}\}$ the subspace of all γ -eigenvectors. Note that $\mathcal{M}_1 \subset \mathcal{M}$ is a vN subalgebra called the centralizer of φ , usually denoted by \mathcal{M}^{φ} . Of course, \mathcal{M}^{φ} is a finite vN algebra.

Let (\mathcal{M}, φ) be a vN algebra endowed with a f.n. state φ . We shall always assume that \mathcal{M} has separable predual \mathcal{M}_* . For $\gamma > 0$, denote by $\mathcal{M}_{\gamma} = \{x \in \mathcal{M}; \varphi(xy) = \gamma \varphi(yx), \forall y \in \mathcal{M}\}$ the subspace of all γ -eigenvectors. Note that $\mathcal{M}_1 \subset \mathcal{M}$ is a vN subalgebra called the centralizer of φ , usually denoted by \mathcal{M}^{φ} . Of course, \mathcal{M}^{φ} is a finite vN algebra. Set $Sp(\mathcal{M}, \varphi) = \{\gamma > 0; \mathcal{M}_{\gamma} \neq 0\}$, necessarily countable. (\mathcal{M}, φ) is said to be almost periodic if

$$L^{2}(\mathcal{M}, \varphi) = \bigoplus_{\gamma \in \mathsf{Sp}(\mathcal{M}, \varphi)} L^{2}(\mathcal{M}_{\gamma}).$$

Let (\mathcal{M}, φ) be a vN algebra endowed with a f.n. state φ . We shall always assume that \mathcal{M} has separable predual \mathcal{M}_* . For $\gamma > 0$, denote by $\mathcal{M}_{\gamma} = \{x \in \mathcal{M}; \varphi(xy) = \gamma \varphi(yx), \forall y \in \mathcal{M}\}$ the subspace of all γ -eigenvectors. Note that $\mathcal{M}_1 \subset \mathcal{M}$ is a vN subalgebra called the centralizer of φ , usually denoted by \mathcal{M}^{φ} . Of course, \mathcal{M}^{φ} is a finite vN algebra. Set $Sp(\mathcal{M}, \varphi) = \{\gamma > 0; \mathcal{M}_{\gamma} \neq 0\}$, necessarily countable. (\mathcal{M}, φ) is said to be almost periodic if

$$L^2(\mathcal{M}, \varphi) = \bigoplus_{\gamma \in \mathsf{Sp}(\mathcal{M}, \varphi)} L^2(\mathcal{M}_{\gamma}).$$

Examples

Any finite vN algebra (N, τ) . Any type I factor $(B(H), \psi)$ endowed with a f.n. state. Any factor of type III_{λ} , $0 < \lambda < 1$, endowed with a $\frac{2\pi}{\log \lambda}$ -periodic f.n. state. Any tensor/free product of a.p. vN algebras.

Haagerup property for finite vN algebras

Let (P, τ) be a finite vN algebra. Denote $||x||_2 = \tau (x^*x)^{1/2}$, $\forall x \in P$. A sequence of n.c.p. maps $\phi_n : P \to P$ is said to be a τ -deformation if $\phi_n(1) \le 1$, $\tau \circ \phi_n \le \tau$, $\forall n \in \mathbb{N}$ and $\lim_n \|\phi_n(x) - x\|_2 = 0, \forall x \in P$.

Haagerup property for finite vN algebras

Let (P, τ) be a finite vN algebra. Denote $||x||_2 = \tau (x^*x)^{1/2}$, $\forall x \in P$. A sequence of n.c.p. maps $\phi_n : P \to P$ is said to be a τ -deformation if $\phi_n(1) \leq 1$, $\tau \circ \phi_n \leq \tau$, $\forall n \in \mathbf{N}$ and $\lim_n \|\phi_n(x) - x\|_2 = 0$, $\forall x \in P$.

Definition (Choda, 1983)

A finite vN algebra (P, τ) is said to have the Haagerup property if there exists a τ -deformation $\phi_n : P \to P$ such that the corresponding bounded operator T_{ϕ_n} on $L^2(P, \tau)$ is compact, $\forall n \in \mathbf{N}$.

Haagerup property for finite vN algebras

Let (P, τ) be a finite vN algebra. Denote $||x||_2 = \tau (x^*x)^{1/2}$, $\forall x \in P$. A sequence of n.c.p. maps $\phi_n : P \to P$ is said to be a τ -deformation if $\phi_n(1) \le 1$, $\tau \circ \phi_n \le \tau$, $\forall n \in \mathbb{N}$ and $\lim_n \|\phi_n(x) - x\|_2 = 0$, $\forall x \in P$.

Definition (Choda, 1983)

A finite vN algebra (P, τ) is said to have the Haagerup property if there exists a τ -deformation $\phi_n : P \to P$ such that the corresponding bounded operator T_{ϕ_n} on $L^2(P, \tau)$ is compact, $\forall n \in \mathbf{N}$.

Examples

Any amenable finite vN algebra. Any interpolated free group factor $L(\mathbf{F}_t)$, $\forall 1 < t \leq \infty$. And of course, for any *G* c.d. group, we have

L(G) has the H. property $\iff G$ has the H. property.

Definition (Popa, 2001)

An inclusion $B \subset N$ of finite vN algebras is said to be rigid or to have the relative property (T) if $\exists \tau$ (or equivalently $\forall \tau$) a f.n. trace on N such that for any τ -deformation $\phi_n : N \to N$,

$$\lim_{n} \sup_{x \in (B)_{1}} \|\phi_{n}(x) - x\|_{2} = 0.$$

Definition (Popa, 2001)

An inclusion $B \subset N$ of finite vN algebras is said to be rigid or to have the relative property (T) if $\exists \tau$ (or equivalently $\forall \tau$) a f.n. trace on N such that for any τ -deformation $\phi_n : N \to N$,

$$\lim_{n} \sup_{x \in (B)_{1}} \|\phi_{n}(x) - x\|_{2} = 0.$$

Examples

(G, H) has the relative property $(T) \iff L(H) \subset L(G)$ is rigid. Examples are given by $(\mathbf{Z}^2 \rtimes \Gamma, \mathbf{Z}^2)$ where $\Gamma \subset SL(2, \mathbf{Z})$ is a non-amenable subgroup; $(G \times \Gamma, G)$, with G a property (T) group, and Γ any c.d. group.

This device is a very STRONG method to prove the conjugacy of two vN subalgebras of a given vN algebra.

This device is a very STRONG method to prove the conjugacy of two vN subalgebras of a given vN algebra.

Theorem (Popa, 2003)

Let (\mathcal{M}, φ) be an a.p. vN algebra, and let $A, B \subset \mathcal{M}^{\varphi}$ be two vN subalgebras. TFAE:

This device is a very STRONG method to prove the conjugacy of two vN subalgebras of a given vN algebra.

Theorem (Popa, 2003)

Let (\mathcal{M}, φ) be an a.p. vN algebra, and let $A, B \subset \mathcal{M}^{\varphi}$ be two vN subalgebras. TFAE:

► $\exists n \geq 1, \exists \gamma > 0, \exists p \text{ a projection in } M_n(\mathbf{C}) \otimes B,$ $\exists v \in M_{1,n}(\mathbf{C}) \otimes \mathcal{M} \text{ a non-zero partial isometry which is a } \gamma$ -eigenvector for φ , and $\exists \theta : A \rightarrow p(M_n(\mathbf{C}) \otimes B)p$ a *-homomorphism such that $v^*v \leq p$ and $xv = v\theta(x), \forall x \in A.$

This device is a very STRONG method to prove the conjugacy of two vN subalgebras of a given vN algebra.

Theorem (Popa, 2003)

Let (\mathcal{M}, φ) be an a.p. vN algebra, and let $A, B \subset \mathcal{M}^{\varphi}$ be two vN subalgebras. TFAE:

- ▶ $\exists n \geq 1, \exists \gamma > 0, \exists p \text{ a projection in } M_n(\mathbf{C}) \otimes B,$ $\exists v \in M_{1,n}(\mathbf{C}) \otimes \mathcal{M} \text{ a non-zero partial isometry which is a } \gamma$ -eigenvector for φ , and $\exists \theta : A \rightarrow p(M_n(\mathbf{C}) \otimes B)p$ a *-homomorphism such that $v^*v \leq p$ and $xv = v\theta(x), \forall x \in A.$
- ∃γ > 0, and ∃ℋ a non-zero A-B-subbimodule of L²(M_γ) which is finitely generated as a right B-module.

This device is a very STRONG method to prove the conjugacy of two vN subalgebras of a given vN algebra.

Theorem (Popa, 2003)

Let (\mathcal{M}, φ) be an a.p. vN algebra, and let $A, B \subset \mathcal{M}^{\varphi}$ be two vN subalgebras. TFAE:

- ▶ $\exists n \geq 1, \exists \gamma > 0, \exists p \text{ a projection in } M_n(\mathbf{C}) \otimes B,$ $\exists v \in M_{1,n}(\mathbf{C}) \otimes \mathcal{M} \text{ a non-zero partial isometry which is a } \gamma$ -eigenvector for φ , and $\exists \theta : A \rightarrow p(M_n(\mathbf{C}) \otimes B)p$ a *-homomorphism such that $v^*v \leq p$ and $xv = v\theta(x), \forall x \in A.$
- ∃γ > 0, and ∃ℋ a non-zero A-B-subbimodule of L²(M_γ) which is finitely generated as a right B-module.
- ► There is no sequence of unitaries (u_n) in A, such that $||E_B(x^*u_ny)||_2 \rightarrow 0, \forall x, y \in \mathcal{M}.$

We shall denote $A \prec_{\mathcal{M}} B$, and say that A embeds into B inside \mathcal{M} .

Note that if $B = \mathbf{C}$, we have $E_{\mathbf{C}} = \varphi 1$ and

$$\begin{array}{rcl} A \not\prec_{\mathcal{M}} \mathbf{C} & \Longleftrightarrow & \exists (u_n) \text{ in } A, \varphi(x^*u_n y) \to 0, \forall x, y \in \mathcal{M} \\ & \Longleftrightarrow & A \text{ is diffuse} \end{array}$$

We gave a generalization of this device in the following way:

Note that if $B = \mathbf{C}$, we have $E_{\mathbf{C}} = \varphi 1$ and

$$\begin{array}{rcl} A \not\prec_{\mathcal{M}} \mathbf{C} & \Longleftrightarrow & \exists (u_n) \text{ in } A, \varphi(x^*u_n y) \to 0, \forall x, y \in \mathcal{M} \\ & \Longleftrightarrow & A \text{ is diffuse} \end{array}$$

We gave a generalization of this device in the following way:

Theorem (H, 2007)

Let (\mathcal{M}, φ) be an a.p. vN algebra, let $A \subset \mathcal{M}^{\varphi}$ and \mathcal{B} globally invariant under (σ_t^{φ}) . TFAE:

- ∃γ > 0, and ∃ℋ a non-zero A-ℬ^φ-subbimodule of L²(ℳ_γ) which is finitely generated as a right ℬ^φ-module.
- ► There is no sequence of unitaries (u_n) in A such that $||E_{\mathcal{B}}(x^*u_ny)||_2 \rightarrow 0, \forall x, y \in \mathcal{M}.$

Note that if $B = \mathbf{C}$, we have $E_{\mathbf{C}} = \varphi 1$ and

$$\begin{array}{rcl} A \not\prec_{\mathcal{M}} \mathbf{C} & \Longleftrightarrow & \exists (u_n) \text{ in } A, \varphi(x^*u_n y) \to 0, \forall x, y \in \mathcal{M} \\ & \Longleftrightarrow & A \text{ is diffuse} \end{array}$$

We gave a generalization of this device in the following way:

Theorem (H, 2007)

Let (\mathcal{M}, φ) be an a.p. vN algebra, let $A \subset \mathcal{M}^{\varphi}$ and \mathcal{B} globally invariant under (σ_t^{φ}) . TFAE:

- ∃γ > 0, and ∃ℋ a non-zero A-B^φ-subbimodule of L²(M_γ) which is finitely generated as a right B^φ-module.
- ► There is no sequence of unitaries (u_n) in A such that $||E_{\mathcal{B}}(x^*u_ny)||_2 \rightarrow 0, \forall x, y \in \mathcal{M}.$

Using this device, we generalized two results of Ioana, Peterson & Popa.

Let $\mathcal{A} \subset \mathcal{M}$ be an inclusion of vN algebras. A unitary $u \in \mathcal{U}(\mathcal{M})$ is said to normalize \mathcal{A} if $u\mathcal{A}u^* = \mathcal{A}$. The normalizer of \mathcal{A} inside \mathcal{M} is the vN subalgebra of \mathcal{M} generated by such unitaries.

Let $\mathcal{A} \subset \mathcal{M}$ be an inclusion of vN algebras. A unitary $u \in \mathcal{U}(\mathcal{M})$ is said to normalize \mathcal{A} if $u\mathcal{A}u^* = \mathcal{A}$. The normalizer of \mathcal{A} inside \mathcal{M} is the vN subalgebra of \mathcal{M} generated by such unitaries.

Theorem (H, 2007)

For i = 1, 2, let $(\mathcal{M}_i, \varphi_i)$ be a.p. vN algebras, and let $N \subset \mathcal{M}_i^{\varphi_i}$, $\varphi_{1|N} = \varphi_{2|N}$. Set $\mathcal{M} = \mathcal{M}_1 *_N \mathcal{M}_2$ and φ the free product state. Let $Q \subset \mathcal{M}_1^{\varphi_1}$ be such that $Q \not\prec_{\mathcal{M}_1} N$. Then, any $Q \cdot \mathcal{M}_1^{\varphi_1}$ -subbimodule of $L^2(\mathcal{M}, \varphi)$ finitely generated as a right $\mathcal{M}_1^{\varphi_1}$ -module is contained in $L^2(\mathcal{M}_1)$. Let $\mathcal{A} \subset \mathcal{M}$ be an inclusion of vN algebras. A unitary $u \in \mathcal{U}(\mathcal{M})$ is said to normalize \mathcal{A} if $u\mathcal{A}u^* = \mathcal{A}$. The normalizer of \mathcal{A} inside \mathcal{M} is the vN subalgebra of \mathcal{M} generated by such unitaries.

Theorem (H, 2007)

For i = 1, 2, let $(\mathcal{M}_i, \varphi_i)$ be a.p. vN algebras, and let $N \subset \mathcal{M}_i^{\varphi_i}$, $\varphi_{1|N} = \varphi_{2|N}$. Set $\mathcal{M} = \mathcal{M}_1 *_N \mathcal{M}_2$ and φ the free product state. Let $Q \subset \mathcal{M}_1^{\varphi_1}$ be such that $Q \not\prec_{\mathcal{M}_1} N$. Then, any $Q \cdot \mathcal{M}_1^{\varphi_1}$ -subbimodule of $L^2(\mathcal{M}, \varphi)$ finitely generated as a right $\mathcal{M}_1^{\varphi_1}$ -module is contained in $L^2(\mathcal{M}_1)$.

This theorem implies in particular that $Q' \cap \mathcal{M} \subset \mathcal{M}_1$, and more generally that the (quasi-)normalizer of Q inside \mathcal{M} is contained in \mathcal{M}_1 !

Theorem (H, 2007)

For i = 1, 2, let $(\mathcal{M}_i, \varphi_i)$ be a.p. vN algebras, and let $N \subset \mathcal{M}_i^{\varphi_i}$, $\varphi_{1|N} = \varphi_{2|N}$. Set $\mathcal{M} = \mathcal{M}_1 *_N \mathcal{M}_2$ and φ the free product state. Let $Q \subset \mathcal{M}^{\varphi}$ be a vN subalgebra such that the inclusion is rigid. Then, there exists $i \in \{1, 2\}$ such that $Q \prec_{\mathcal{M}} \mathcal{M}_i$.

Using this result and the previous one, we can prove the main result of this talk.

A type II₁ factor N is said to be w-rigid if there exists a vN subalgebra $B \subset N$ such that the inclusion is rigid, B is diffuse, and $B \subset N$ is regular, i.e., the normalizer of B inside N is precisely N.

A type II₁ factor N is said to be w-rigid if there exists a vN subalgebra $B \subset N$ such that the inclusion is rigid, B is diffuse, and $B \subset N$ is regular, i.e., the normalizer of B inside N is precisely N. Theorem (H, 2007)

Let N be a w-rigid factor such that $\mathcal{F}(N) = \{1\}$. Let (\mathcal{A}, ψ) be an a.p. vN algebra such that \mathcal{A}^{ψ} has the Haagerup property. Write $(\mathcal{M}, \varphi) = (N, \tau) * (\mathcal{A}, \psi)$, and $M = \mathcal{M}^{\varphi}$. Then, M is a type II₁ factor and $\mathcal{F}(M)$ is the subgroup of \mathbf{R}^*_+ generated by $\operatorname{Sp}(\mathcal{A}, \psi)$.

A type II₁ factor N is said to be w-rigid if there exists a vN subalgebra $B \subset N$ such that the inclusion is rigid, B is diffuse, and $B \subset N$ is regular, i.e., the normalizer of B inside N is precisely N. Theorem (H, 2007)

Let N be a w-rigid factor such that $\mathcal{F}(N) = \{1\}$. Let (\mathcal{A}, ψ) be an a.p. vN algebra such that \mathcal{A}^{ψ} has the Haagerup property. Write $(\mathcal{M}, \varphi) = (N, \tau) * (\mathcal{A}, \psi)$, and $M = \mathcal{M}^{\varphi}$. Then, M is a type II₁ factor and $\mathcal{F}(M)$ is the subgroup of \mathbf{R}^*_+ generated by $\operatorname{Sp}(\mathcal{A}, \psi)$.

Examples

A type II₁ factor N is said to be w-rigid if there exists a vN subalgebra $B \subset N$ such that the inclusion is rigid, B is diffuse, and $B \subset N$ is regular, i.e., the normalizer of B inside N is precisely N. Theorem (H, 2007)

Let N be a w-rigid factor such that $\mathcal{F}(N) = \{1\}$. Let (\mathcal{A}, ψ) be an a.p. vN algebra such that \mathcal{A}^{ψ} has the Haagerup property. Write $(\mathcal{M}, \varphi) = (N, \tau) * (\mathcal{A}, \psi)$, and $M = \mathcal{M}^{\varphi}$. Then, M is a type II₁ factor and $\mathcal{F}(M)$ is the subgroup of \mathbf{R}^*_+ generated by $\operatorname{Sp}(\mathcal{A}, \psi)$.

Examples

- We can take N = L[∞](T²) × Γ, with Γ ⊂ SL(2, Z) non-amenable.
- ► Many examples of such A's do exist: all amenable vN algebras endowed with an a.p.f.n. state; a.p. free Araki-Woods factors (in the sense of Shlyakhtenko) endowed with their free quasi-free state...

M is a type II₁ factor. Since *N* is diffuse, $N \not\prec_{\mathcal{M}} \mathbf{C}$, thus (Th.Cont.) $\Longrightarrow N' \cap \mathcal{M} \subset N$. So, $\mathcal{Z}(M) \subset \mathcal{Z}(N) = \mathbf{C}$ and *M* is a type II₁ factor.

M is a type II₁ factor. Since *N* is diffuse, $N \not\prec_{\mathcal{M}} \mathbf{C}$, thus (Th.Cont.) $\implies N' \cap \mathcal{M} \subset N$. So, $\mathcal{Z}(M) \subset \mathcal{Z}(N) = \mathbf{C}$ and *M* is a type II₁ factor. Sp(\mathcal{A}, ψ) $\subset \mathcal{F}(M)$. Denote by $\Gamma \subset \mathbf{R}^*_+$ the subgroup generated by Sp(\mathcal{A}, ψ), and note that $\Gamma = \text{Sp}(\mathcal{M}, \varphi)$. The inclusion $\Gamma \subset \mathcal{F}(M)$ is quite simple. Indeed, take $\gamma \in \text{Sp}(\mathcal{A}, \psi)$ and *v* a non-zero partial isometry in \mathcal{A}_{γ} . Write $p = v^*v$, $q = vv^*$. Note that $p, q \in \mathcal{A}^{\psi}$ and $\psi(q) = \gamma \psi(p)$. Consequently, Ad(*v*) yields a *-isomorphism between pMp and qMq, and then $\gamma \in \mathcal{F}(M)$.

M is a type II₁ factor. Since N is diffuse, $N \not\prec_M \mathbf{C}$, thus (Th.Cont.) $\implies N' \cap \mathcal{M} \subset N$. So, $\mathcal{Z}(M) \subset \mathcal{Z}(N) = \mathbf{C}$ and M is a type II_1 factor. $\mathsf{Sp}(\mathcal{A},\psi) \subset \mathcal{F}(\mathcal{M})$. Denote by $\Gamma \subset \mathbf{R}^*_+$ the subgroup generated by $\operatorname{Sp}(\mathcal{A}, \psi)$, and note that $\Gamma = \operatorname{Sp}(\mathcal{M}, \varphi)$. The inclusion $\Gamma \subset \mathcal{F}(\mathcal{M})$ is quite simple. Indeed, take $\gamma \in \text{Sp}(\mathcal{A}, \psi)$ and v a non-zero partial isometry in \mathcal{A}_{γ} . Write $p = v^* v$, $q = vv^*$. Note that $p, q \in \mathcal{A}^{\psi}$ and $\psi(q) = \gamma \psi(p)$. Consequently, Ad(v) yields a *-isomorphism between *pMp* and *qMq*, and then $\gamma \in \mathcal{F}(M)$. $\mathcal{F}(M) \subset \Gamma$: the hard part. Let $t \in \mathcal{F}(M)$ such that $t \geq 1$, and let $\theta: M \to M^t$ be a *-isomorphism. Since N is w-rigid, let $B \subset N$ be such that the inclusion is rigid, B is diffuse and regular in N. Now, we are moving $B \subset N \subset M$ through the isomorphism θ ...

Sketch of the proof: part II

Denote $Q = \theta(B)$, $P = \theta(N)$, $Q \subset P \subset M^t$. Then, we are going back to M. Since $s = 1/t \leq 1$, choose a projection $q \in Q$, such that $Q^s := qQq$ and $P^s := qPq$. We regard $Q^s \subset P^s \subset M$. Note that the inclusion $Q^s \subset P^s$ is rigid, Q^s is diffuse and P^s is the (quasi-)normalizer of Q^s inside M.

Sketch of the proof: part II

Denote $Q = \theta(B)$, $P = \theta(N)$, $Q \subset P \subset M^t$. Then, we are going back to M. Since $s = 1/t \leq 1$, choose a projection $q \in Q$, such that $Q^s := qQq$ and $P^s := qPq$. We regard $Q^s \subset P^s \subset M$. Note that the inclusion $Q^s \subset P^s$ is rigid, Q^s is diffuse and P^s is the (quasi-)normalizer of Q^s inside M. Thus, (Th.Intertw.) $\Longrightarrow Q^s \prec_M N$ or $Q^s \prec_M A$. But actually $Q^s \not\prec_M A$. Indeed otherwise, once again thanks to (Th.Cont.), we would have $Q^s \subset P^s \subset A^{\psi}$ (modulo amplification!!!). This situation is impossible because A^{ψ} has the Haagerup property.

Sketch of the proof: part II

Denote $Q = \theta(B)$, $P = \theta(N)$, $Q \subset P \subset M^t$. Then, we are going back to *M*. Since $s = 1/t \le 1$, choose a projection $q \in Q$, such that $Q^s := qQq$ and $P^s := qPq$. We regard $Q^s \subset P^s \subset M$. Note that the inclusion $Q^{s} \subset P^{s}$ is rigid, Q^{s} is diffuse and P^{s} is the (quasi-)normalizer of Q^s inside M. Thus, (Th.Intertw.) $\implies Q^s \prec_M N$ or $Q^s \prec_M A$. But actually $Q^{s} \not\prec_{M} A$. Indeed otherwise, once again thanks to (Th.Cont.), we would have $Q^s \subset P^s \subset A^{\psi}$ (modulo amplification!!!). This situation is impossible because \mathcal{A}^{ψ} has the Haagerup property. Avoiding some technical details, we can then show that $\exists n > 1$, $\exists \gamma \in \text{Sp}(\mathcal{M}, \varphi)$ and $\exists v \in M_n(\mathbf{C}) \otimes \mathcal{M}$ a non-zero partial isometry which is a γ -eigenvector and such that $vv^* = 1_P = 1_{M^t}$ and $v^* Pv \subset N^{t/\gamma}$. The same proof as before with θ^{-1} instead of θ can show that actually $v^* P v = N^{t/\gamma}$. Thus, $N \simeq N^{t/\gamma}$, $t/\gamma \in \mathcal{F}(N)$ and so $t = \gamma \in \text{Sp}(\mathcal{M}, \varphi) = \Gamma$.