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The fundamental group F(M)

Let M be a type II1 factor, and t > 0. Let n ≥ t, and choose in
Mn(C)⊗M a projection p of normalized trace t/n. Define

Mt = p(Mn(C)⊗M)p.

Note that Mt is a type II1 factor and it does not depend on the
choice of n and p. Moreover, (Ms)t ' Mst , ∀s, t > 0.

Definition (Fundamental group of M)

F(M) = {t > 0;Mt ' M}.
Equivalent definition. On M ⊗ B(`2), fix a f.n.s. trace Tr. For
θ ∈ Aut(M ⊗ B(`2)), denote by mod(θ) the unique λ > 0 such
that Tr(θ) = λTr. Then F(M) = {mod(θ) : θ ∈ Aut(M ⊗B(`2))}.
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Review on some computations of F(M)

I F(R) = R∗+ (Murray & von Neumann, 1943). It is a
consequence of the uniqueness of the AFD type II1 factor.
Moreover, it can be realized through a one-parameter
trace-scaling action (θs) on R⊗ B(`2).

I F(L(Γ)) is countable for Γ an ICC c.d. Kazhdan group
(Connes, 1979). This is the first occurrence of a rigidity
phenomenon in vN algebras.

I F(L(F∞)) = R∗+ (Rădulescu, 1991). This is proved using free
probability. Once again, it can be realized through a
one-parameter trace-scaling action on L(F∞)⊗ B(`2).
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Review on some computations of F(M)

I F(L(G )) = {1}, for G = Z2 o SL(2,Z) (Popa, 2001). This is
proved using the tension between the relative property (T) of
the pair (Z2 o SL(2,Z),Z2) and the Haagerup property of
SL(2,Z) and Gaboriau’s results.

I ∀S ⊂ R∗+ countable subgroup, ∃G y R, such that
F(Ro G ) = S (Popa, 2003). The Connes-Størmer Bernoulli
shift G y

⊗
G (B(`2), ψS) is mixing and malleable. Realize R

as the centralizer of
⊗

G (B(`2), ψS) and restrict the action.

I F(∗s∈SL(G )s) = S (Ioana, Peterson & Popa, 2005).

I ∀S ⊂ R∗+ countable subgroup, ∃G y L(F∞), such that
F(L(F∞) o G ) = S (H, 2007). This time the free Bogoliubov
shift G y (TS , ϕS) on the free Araki-Woods factor is mixing
and malleable (in a free sense). Realize L(F∞) as the
centralizer of (TS , ϕS) and restrict the action.
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Almost periodic vN algebra (M, ϕ)

Let (M, ϕ) be a vN algebra endowed with a f.n. state ϕ. We shall
always assume that M has separable predual M∗.

For γ > 0,
denote by Mγ = {x ∈M;ϕ(xy) = γϕ(yx),∀y ∈M} the
subspace of all γ-eigenvectors. Note that M1 ⊂M is a vN
subalgebra called the centralizer of ϕ, usually denoted by Mϕ. Of
course, Mϕ is a finite vN algebra.
Set Sp(M, ϕ) = {γ > 0;Mγ 6= 0}, necessarily countable. (M, ϕ)
is said to be almost periodic if

L2(M, ϕ) =
⊕

γ∈Sp(M,ϕ)

L2(Mγ).

Examples

Any finite vN algebra (N, τ). Any type I factor (B(H), ψ) endowed
with a f.n. state. Any factor of type IIIλ, 0 < λ < 1, endowed
with a 2π

log λ -periodic f.n. state. Any tensor/free product of a.p. vN
algebras.
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Haagerup property for finite vN algebras

Let (P, τ) be a finite vN algebra. Denote ‖x‖2 = τ(x∗x)1/2,
∀x ∈ P. A sequence of n.c.p. maps φn : P → P is said to be a
τ -deformation if φn(1) ≤ 1, τ ◦ φn ≤ τ , ∀n ∈ N and
limn ‖φn(x)− x‖2 = 0,∀x ∈ P.

Definition (Choda, 1983)

A finite vN algebra (P, τ) is said to have the Haagerup property if
there exists a τ -deformation φn : P → P such that the
corresponding bounded operator Tφn on L2(P, τ) is compact,
∀n ∈ N.

Examples

Any amenable finite vN algebra. Any interpolated free group factor
L(Ft), ∀1 < t ≤ ∞. And of course, for any G c.d. group, we have

L(G ) has the H. property ⇐⇒ G has the H. property.
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Relative property (T) for finite vN algebras

Definition (Popa, 2001)

An inclusion B ⊂ N of finite vN algebras is said to be rigid or to
have the relative property (T) if ∃τ (or equivalently ∀τ) a f.n.
trace on N such that for any τ -deformation φn : N → N,

lim
n

sup
x∈(B)1

‖φn(x)− x‖2 = 0.

Examples

(G ,H) has the relative property (T) ⇐⇒ L(H) ⊂ L(G ) is rigid.
Examples are given by (Z2 o Γ,Z2) where Γ ⊂ SL(2,Z) is a
non-amenable subgroup; (G × Γ,G ), with G a property (T) group,
and Γ any c.d. group.
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Popa’s intertwining-by-bimodules device

This device is a very STRONG method to prove the conjugacy of
two vN subalgebras of a given vN algebra.

Theorem (Popa, 2003)

Let (M, ϕ) be an a.p. vN algebra, and let A,B ⊂Mϕ be two vN
subalgebras. TFAE:

I ∃n ≥ 1, ∃γ > 0, ∃p a projection in Mn(C)⊗ B,
∃v ∈ M1,n(C)⊗M a non-zero partial isometry which is a
γ-eigenvector for ϕ, and ∃θ : A → p(Mn(C)⊗ B)p a
∗-homomorphism such that v∗v ≤ p and xv = vθ(x),∀x ∈ A.

I ∃γ > 0, and ∃H a non-zero A-B-subbimodule of L2(Mγ)
which is finitely generated as a right B-module.

I There is no sequence of unitaries (un) in A, such that
‖EB(x∗uny)‖2 → 0, ∀x , y ∈M.

We shall denote A ≺M B, and say that A embeds into B inside M.
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Popa’s intertwining-by-bimodules device

Note that if B = C, we have EC = ϕ1 and

A ⊀M C ⇐⇒ ∃(un) in A, ϕ(x∗uny) → 0,∀x , y ∈M
⇐⇒ A is diffuse

We gave a generalization of this device in the following way:

Theorem (H, 2007)

Let (M, ϕ) be an a.p. vN algebra, let A ⊂Mϕ and B globally
invariant under (σϕt ). TFAE:

I ∃γ > 0, and ∃H a non-zero A-Bϕ-subbimodule of L2(Mγ)
which is finitely generated as a right Bϕ-module.

I There is no sequence of unitaries (un) in A such that
‖EB(x∗uny)‖2 → 0, ∀x , y ∈M.

Using this device, we generalized two results of Ioana, Peterson &
Popa.
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Controlling relative commutants in a free product

Let A ⊂M be an inclusion of vN algebras. A unitary u ∈ U(M)
is said to normalize A if uAu∗ = A. The normalizer of A inside
M is the vN subalgebra of M generated by such unitaries.

Theorem (H, 2007)

For i = 1, 2, let (Mi , ϕi ) be a.p. vN algebras, and let N ⊂Mϕi
i ,

ϕ1|N = ϕ2|N . Set M = M1 ∗N M2 and ϕ the free product state.
Let Q ⊂Mϕ1

1 be such that Q ⊀M1 N. Then, any
Q-Mϕ1

1 -subbimodule of L2(M, ϕ) finitely generated as a right
Mϕ1

1 -module is contained in L2(M1).

This theorem implies in particular that Q ′ ∩M ⊂M1, and more
generally that the (quasi-)normalizer of Q inside M is contained in
M1!
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Intertwining rigid subalgebras in a free product

Theorem (H, 2007)

For i = 1, 2, let (Mi , ϕi ) be a.p. vN algebras, and let N ⊂Mϕi
i ,

ϕ1|N = ϕ2|N . Set M = M1 ∗N M2 and ϕ the free product state.
Let Q ⊂Mϕ be a vN subalgebra such that the inclusion is rigid.
Then, there exists i ∈ {1, 2} such that Q ≺M Mi .

Using this result and the previous one, we can prove the main
result of this talk.
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Main theorem

A type II1 factor N is said to be w-rigid if there exists a vN
subalgebra B ⊂ N such that the inclusion is rigid, B is diffuse, and
B ⊂ N is regular, i.e., the normalizer of B inside N is precisely N.

Theorem (H, 2007)

Let N be a w-rigid factor such that F(N) = {1}. Let (A, ψ) be an
a.p. vN algebra such that Aψ has the Haagerup property. Write
(M, ϕ) = (N, τ) ∗ (A, ψ), and M = Mϕ. Then, M is a type II1
factor and F(M) is the subgroup of R∗+ generated by Sp(A, ψ).

Examples

I We can take N = L∞(T2) o Γ, with Γ ⊂ SL(2,Z)
non-amenable.

I Many examples of such A’s do exist: all amenable vN
algebras endowed with an a.p.f.n. state; a.p. free
Araki-Woods factors (in the sense of Shlyakhtenko) endowed
with their free quasi-free state...
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Sketch of the proof: part I

M is a type II1 factor. Since N is diffuse, N ⊀M C, thus
(Th.Cont.) =⇒ N ′ ∩M ⊂ N. So, Z(M) ⊂ Z(N) = C and M is a
type II1 factor.

Sp(A, ψ) ⊂ F(M). Denote by Γ ⊂ R∗+ the subgroup generated by
Sp(A, ψ), and note that Γ = Sp(M, ϕ). The inclusion Γ ⊂ F(M)
is quite simple. Indeed, take γ ∈ Sp(A, ψ) and v a non-zero partial
isometry in Aγ . Write p = v∗v , q = vv∗. Note that p, q ∈ Aψ and
ψ(q) = γψ(p). Consequently, Ad(v) yields a ∗-isomorphism
between pMp and qMq, and then γ ∈ F(M).
F(M) ⊂ Γ: the hard part. Let t ∈ F(M) such that t ≥ 1, and let
θ : M → Mt be a ∗-isomorphism. Since N is w -rigid, let B ⊂ N be
such that the inclusion is rigid, B is diffuse and regular in N. Now,
we are moving B ⊂ N ⊂ M through the isomorphism θ...
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Sketch of the proof: part II

Denote Q = θ(B), P = θ(N), Q ⊂ P ⊂ Mt . Then, we are going
back to M. Since s = 1/t ≤ 1, choose a projection q ∈ Q, such
that Qs := qQq and Ps := qPq. We regard Qs ⊂ Ps ⊂ M. Note
that the inclusion Qs ⊂ Ps is rigid, Qs is diffuse and Ps is the
(quasi-)normalizer of Qs inside M.

Thus, (Th.Intertw.) =⇒ Qs ≺M N or Qs ≺M A. But actually
Qs ⊀M A. Indeed otherwise, once again thanks to (Th.Cont.), we
would have Qs ⊂ Ps ⊂ Aψ (modulo amplification!!!). This
situation is impossible because Aψ has the Haagerup property.
Avoiding some technical details, we can then show that ∃n ≥ 1,
∃γ ∈ Sp(M, ϕ) and ∃v ∈ Mn(C)⊗M a non-zero partial isometry
which is a γ-eigenvector and such that vv∗ = 1P = 1Mt and
v∗Pv ⊂ Nt/γ . The same proof as before with θ−1 instead of θ can
show that actually v∗Pv = Nt/γ . Thus, N ' Nt/γ , t/γ ∈ F(N)
and so t = γ ∈ Sp(M, ϕ) = Γ.
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