Strong homotopy algebra categories via co-rings over operads

Jonathan Scott

Ontario Topology Seminar July 31, 2007

○ Outline

Introduction

SH (Co)algebras

SH Morphisms

Operads and Algebras

Co-rings over operads

Outline

Introduction

Outline > Introduction	☐ Joint work with Kathryn Hess (EPFL).		
SH (Co)algebras	Strong homotopy algebras are complicated structures that		
SH Morphisms	are best defined by <i>operads</i> .		
Operads and Algebras	Operads do not describe the desired <i>morphisms</i> of SH algebras.		
Co-rings over operads	□ Co-rings over operads "free" the morphisms from the		
	algebras.		
	☐ The <i>Koszul resolution</i> of an operad, if it exists, is a co-ring		
	that describes SH morphisms.		
	☐ Applies to SH associative, Lie, Poisson, Gerstenhaber		
	algebras. (Any algebra described by a "quadratic Koszul		
	operad".)		

Outline

SH (Co)algebras

Canonical example

The cobar

construction

Cobar differential

Reversing the

process

SH associative

coalgebras

Remarks

Example:

Adams-Hilton model

Lie algebras

SH Lie algebras

Example: Sullivan

model

SH Morphisms

Operads and

Algebras

Co-rings over operads

SH (Co)algebras

Canonical example

Outline SH (Co)algebras Canonical > example The cobar construction Cobar differential Reversing the process SH associative coalgebras Remarks Example: Adams-Hilton model Lie algebras SH Lie algebras Example: Sullivan model SH Morphisms Operads and Algebras Co-rings over operads

 ΩX — space of based loops on pointed space X $C_*(\Omega X)$ — strongly homotopy-associative algebra Notice: $H_*(\Omega X)$ is a strictly associative algebra Ω We will work for the moment with graded coalgebras.

The cobar construction

Outline

SH (Co)algebras

Canonical example
The cobar
construction

Cobar differential Reversing the process

SH associative coalgebras

Remarks

Example:

Adams-Hilton model

Lie algebras

SH Lie algebras

Example: Sullivan model

SH Morphisms

Operads and Algebras

Co-rings over operads

Let (C, ∂) be a coaugmented dg coalgebra over a commutative ring R.

 \square The *cobar construction on* C is the associative algebra:

$$\Omega C = (T(s^{-1}\bar{C}), d).$$

- \Box \bar{C} is the cokernel of the coaugmentation $R \to C$
- \square d is the sum of derivations d_1 and d_2

Cobar differential

Outline

SH (Co)algebras

Canonical example The cobar construction

Cobar differential Reversing the process

SH associative coalgebras

Remarks

Example:

Adams-Hilton model

Lie algebras

SH Lie algebras

Example: Sullivan

model

SH Morphisms

Operads and Algebras

Co-rings over operads

Let
$$V = s^{-1}\bar{C}$$
.

 \square $d_1:V \to V$ is the derivation defined by

$$d_1(s^{-1}c) = -s^{-1}\partial(c)$$

 \square $d_2:V \to V^{\otimes 2}$ is the derivation defined by

$$d_2(s^{-1}c) = (s^{-1})^{\otimes 2}\bar{\Delta}(c)$$

where $\bar{\Delta}$ is the reduced diagonal on C.

Reversing the process

Outline

SH (Co)algebras

Canonical example

The cobar

construction

Cobar differential Reversing the

> process

SH associative coalgebras

Remarks

Example:

Adams-Hilton model

Lie algebras

SH Lie algebras

Example: Sullivan

model

SH Morphisms

Operads and Algebras

Co-rings over operads

 \square Given $(TV, d_1 + d_2)$, one may define

-
$$C = R \oplus sV$$

$$- \partial = sd_1s^{-1}$$

$$- \quad \bar{\Delta} = s^{\otimes 2} d_2 s^{-1}$$

-
$$d_1^2 = 0 \Rightarrow \partial$$
 is a differential

-
$$d_1d_2 + d_2d_1 = 0 \Rightarrow \partial$$
 is a coderivation

-
$$d_2^2 = 0 \Rightarrow \bar{\Delta}$$
 is associative.

 \square Therefore, (C, Δ, ∂) is a dg coalgebra.

SH associative coalgebras

Outline

SH (Co)algebras

Canonical example
The cobar
construction

Cobar differential Reversing the process

SH associative coalgebras

Remarks

Example:

Adams-Hilton model

Lie algebras

SH Lie algebras

Example: Sullivan

model

SH Morphisms

Operads and Algebras

Co-rings over operads

 \square Consider (TV, d), where d is the sum of derivations,

$$d_1+d_2+d_3+\cdots,$$

such that $d_i: V \to V^{\otimes i}$.

 \square Now, $d^2=0$ does not imply that $d_2^2=0$; instead,

$$d_2^2 + d_1 d_2 + d_2 d_1 = 0.$$

- \square Set $C = R \oplus sV$, and, for $i \geq 2$, define $\Delta_i = s^{\otimes i} d_i s^{-1}$.
- \square Δ_2 is a homotopy-associative diagonal, with homotopy Δ_3 .

Definition 1. $(C, \partial, \{\Delta_i\})$ is a strongly homotopy-associative coalgebra.

Remarks

Outline

SH (Co)algebras

Canonical example
The cobar
construction
Cobar differential
Reversing the
process
SH associative

coalgebras

Remarks
Example:

Adams-Hilton model

Lie algebras

SH Lie algebras

Example: Sullivan

model

SH Morphisms

Operads and Algebras

Co-rings over operads

- \Box $(H_*(C), H_*(\Delta_2))$ is an associative coalgebra.
- \square We write $\tilde{\Omega}C = (TV, d)$.

Example: Adams-Hilton model

Outline

SH (Co)algebras

Canonical example The cobar construction Cobar differential Reversing the process SH associative coalgebras

Remarks

Example:

Adams-Hilton

> model

Lie algebras

SH Lie algebras

Example: Sullivan

model

SH Morphisms

Operads and Algebras

Co-rings over operads

Let X be a CW-complex.

The Adams-Hilton model for $C_*(\Omega X)$ is a quasi-isomorphism of algebras of the form,

$$(TV,d) \xrightarrow{\simeq} C_*(\Omega X).$$

- The SH coalgebra $W(X) := s(V, d_1)$ may be identified with the cellular complex of X.
- $H_*(W(X)) \cong H_*(X)$ (in fact, as coalgebras, if $H_*(X;R)$ is torsion-free).

Lie algebras

Outline

SH (Co)algebras

Canonical example The cobar

construction

Cobar differential Reversing the process

SH associative coalgebras

Remarks

Example:

Adams-Hilton model

SH Lie algebras

Example: Sullivan

model

SH Morphisms

Operads and Algebras

Co-rings over operads

- \square We identify a dg Lie algebra (L, ∂) with its Chevalley-Eilenberg complex, $C(L, \partial)$.
- $\Box \quad C(L,\partial) = (\Gamma(sL), d_1 + d_2)$
 - $\Gamma(sL)$ is the co-free symmetric co-algebra over sL.
 - d_1 and d_2 are coderivations, and

$$d_2(sx \cdot sy) = \pm s[x, y] \ \forall x, y \in L.$$

 \square Given $(\Gamma(V), d_1 + d_2)$, we set $L = s^{-1}V$, and define

$$[x,y] = \pm s^{-1}d_2(sx \cdot sy).$$

 \Box (L,∂) is a dg Lie algebra; the bracket satisfies the Jacobi identity because $d_2^2=0$.

SH Lie algebras

Outline

SH (Co)algebras

Canonical example The cobar construction

Cobar differential Reversing the process

SH associative coalgebras

Remarks

Example:

Adams-Hilton model

Lie algebras

SH Lie algebras Example: Sullivan

model

SH Morphisms

Operads and Algebras

Co-rings over operads

- \square Dualize: $C^*(L) = (\land V, d_1 + d_2), V = (sL)^{\sharp}$.
- ☐ By considering cdga's of the form,

$$(\land V, d_1 + d_2 + d_3 + \cdots)$$

we get strong homotopy Lie algebras.

- \square d_2 dualizes to define an anti-commutative bracket that satisfies the Jacobi identity up to a null homotopy, provided by d_3 .
- \square We write $\tilde{C}^*(L) = (\land V, d)$.
- Data: $(L, \partial, \{[]_i\}_{i\geq 2})$, where $[]_i$ is an n-ary bracket of degree i-2.

Example: Sullivan model

Outline

SH (Co)algebras

Canonical example The cobar construction

Cobar differential Reversing the process

SH associative coalgebras

Remarks

Example:

Adams-Hilton model

Lie algebras

SH Lie algebras Example:

Sullivan model

SH Morphisms

Operads and Algebras

Co-rings over operads

Let X be a simply connected space.

- \square Let $A_{PL}(X)$ be the commutative dga of polynomial forms on X.
- The Sullivan model is a quasi-isomorphism,

$$(\land V, d) \xrightarrow{\simeq} A_{PL}(X)$$

where d is nilpotent in a certain sense.

- \Box $L = (s^{-1}V)^{\sharp}$ is a SH Lie algebra.
- \square $H_*(L) \cong \pi_*(\Omega X) \otimes \mathbf{Q}$. (Cartan-Serre, Milnor-Moore, Sullivan)

Outline

SH (Co)algebras

SH Morphisms

The SH coalgebra category

Examples

Another example:

Adams-Hilton and

Adams cobar

The SH Lie algebra

category

Example

Operads and

Algebras

Co-rings over operads

SH Morphisms

The SH coalgebra category

Outline

SH (Co)algebras

SH Morphisms

The SH coalgebra

Examples

Another example: Adams-Hilton and Adams cobar

The SH Lie algebra category

Example

Operads and Algebras

Co-rings over operads

Let **SHC** be the *full* subcategory of **DGA** consisting of all objects of the form (TV, d).

- \square $C_1 \xrightarrow{SH} C_2$ is really $\tilde{\Omega}(C_1) \xrightarrow{DGA} \tilde{\Omega}(C_2)$.
- \square Get a sequence of morphisms $arphi_i:C_1 o C_2^{\otimes i}$ of degree i-1.
- \square In particular, $\varphi_2:\Delta\varphi_1\simeq(\varphi_1\otimes\varphi_1)\Delta$.

Examples

Outline

SH (Co)algebras

SH Morphisms

The SH coalgebra category

Another example:
Adams-Hilton and
Adams cobar
The SH Lie algebra
category
Example

Operads and Algebras

Co-rings over operads

1. Co-unit of cobar-bar adjunction yields

$$\Omega(B\tilde{\Omega}C) \xrightarrow{\simeq} \tilde{\Omega}C.$$

- \Rightarrow every SH coalgebra is weakly SH equivalent to a strict coalgebra (Stasheff 1963).
- 2. Let C be a strict coalgebra. The unit of the cobar-bar adjunction,

$$C \xrightarrow{\simeq} B\Omega C$$

is a coalgebra morphism with an SH splitting:

$$\Omega B\Omega C \to \Omega C$$
.

Another example: Adams-Hilton and Adams cobar

റ	ut	line
\smile	uu	IIIIC

SH (Co)algebras

SH Morphisms

The SH coalgebra category

Examples

Another example:
Adams-Hilton
and Adams cobar
The SH Lie algebra
category

Example

Operads and Algebras

Co-rings over operads

Lifting (up to homotopy) the Adams cobar equivalence

$$\Omega C_*(X) \xrightarrow{\simeq} C_*(\Omega X)$$

through the Adams-Hilton equivalence

$$(TV,d) \xrightarrow{\simeq} C_*(\Omega X)$$

yields an SH quasi-isomorphism,

$$C_*(X) \xrightarrow{\simeq} W_*(X).$$

The SH Lie algebra category

Outline

SH (Co)algebras

SH Morphisms

The SH coalgebra category

Examples

Another example:

Adams-Hilton and

Adams cobar The SH Lie

> algebra category

Example

Operads and

Algebras

Co-rings over operads

Let **SHL** be the *full* subcategory of **CDGA**^{op} consisting of all objects of the form $(\land V, d)$.

- \Box $L_1 \xrightarrow{SH} L_2$ is really $\tilde{C}^*(L_2) \xrightarrow{CDGA} \tilde{C}^*(L_1)$.
- \square Get a sequence of morphisms $arphi_i:L_1^{\otimes i} o L_2$ of degree i-1 .
- □ In particular,

$$\varphi_2:[,](\varphi_1\otimes\varphi_1)\simeq\varphi_1[,].$$

Example

Outline

SH (Co)algebras

SH Morphisms

The SH coalgebra category

Examples

Another example:
Adams-Hilton and
Adams cobar
The SH Lie algebra
category

Example

Operads and Algebras

Co-rings over operads

Let X be simply connected, finite type.

- \square Let (L_X, ∂) be the Quillen dg Lie algebra model for X.
- \Box $C^*(L_X)$ is a model for $A_{PL}(X)$.
- \square By lifting, we obtain

$$C^*(L_X) \xrightarrow{\simeq} (\land V, d),$$

where $(\land V, d)$ is any Sullivan model for $A_{PL}(X)$.

 \square Set $L=(s^{-1}V)^{\sharp}$; recall that L is an SH Lie algebra. So $L\xrightarrow{\simeq} L_X$.

Outline

SH (Co)algebras

SH Morphisms

Operads and ➢ Algebras

Why operads?

Symmetric

sequences

Monoidal structures

Monoidal structures

Operads as monoids

Left \mathcal{P} -modules

 \mathcal{P} -algebras

Morphisms

Examples

Operads for SH

algebras

Co-rings over operads

Operads and Algebras

Why operads?

Outline SH coalgebras and SH Lie algebras are easy to describe via SH (Co)algebras their "standard" resolutions (cobar and Chevalley-Eilenberg, SH Morphisms respectively). Operads and other types of algebras are of interest: for example, SH Algebras Why operads? Gerstenhaber or SH Poisson; they often have standard Symmetric sequences resolutions, but these get complicated. Monoidal structures need a way of parametrizing (and keeping books on) Monoidal structures sequences of n-ary operations. Operads as monoids operads are (one) solution: they are "analytic monads". Left P-modules \mathcal{P} -algebras Morphisms Examples Operads for SH algebras Co-rings over operads

Symmetric sequences

Outline SH (Co)algebras SH Morphisms Operads and Algebras Why operads? Symmetric > sequences Monoidal structures Monoidal structures Operads as monoids Left \mathcal{P} -modules \mathcal{P} -algebras Morphisms Examples Operads for SH algebras

Co-rings over

operads

- □ Let **Sym** be the category of symmetric sequences of dg modules.
- Objects are sequences of chain complexes, $\mathfrak{X}=\mathfrak{X}(0),\mathfrak{X}(1),\mathfrak{X}(2),\ldots$, such that $\mathfrak{X}(n)$ is a right Σ_n -module.
- \square *n* is the *arity* of $\mathfrak{X}(n)$.
- \square Morphisms are sequences of Σ_n -equivariant chain maps.

Monoidal structures I

Outline

SH (Co)algebras

SH Morphisms

Operads and Algebras

Why operads? Symmetric

sequences Monoidal

> structures I

Monoidal structures

Ш

Operads as monoids

Left \mathcal{P} -modules

 \mathcal{P} -algebras

Morphisms

Examples

Operads for SH

algebras

Co-rings over operads

 $\hfill\Box$ The graded tensor product of symmetric sequences $\mathcal X$ and $\mathcal Y$ is defined by

$$(\mathfrak{X} \odot \mathfrak{Y})(n) = \coprod_{i+j=n} (\mathfrak{X}(i) \otimes \mathfrak{Y}(j)) \otimes_{\Sigma_i \times \Sigma_j} R[\Sigma_n]$$

with action induced by natural right action of Σ_n on $R[\Sigma_n]$. $\mathfrak{Y}^{\odot m}(n)$ is a left Σ_m , right Σ_n module.

Monoidal structures II

Outline

SH (Co)algebras

SH Morphisms

Operads and Algebras

Why operads? Symmetric sequences Monoidal structures

Monoidal

> structures II

Operads as monoids

Left \mathcal{P} -modules

 \mathcal{P} -algebras

Morphisms

Examples

Operads for SH

algebras

Co-rings over operads

☐ The *composition product* (Joyal) is defined by

$$(\mathfrak{X} \circ \mathfrak{Y})(n) = \coprod_{m \ge 0} \mathfrak{X}(m) \otimes_{\Sigma_m} (\mathfrak{Y}^{\odot m}(n))$$

with unit \mathcal{J} given by

$$\mathcal{J}(n) = \left\{ \begin{array}{ll} R & \text{if } n = 1, \\ O & \text{otherwise.} \end{array} \right.$$

☐ This is the formula that you get for the coefficients in the composition of two formal power series.

Operads as monoids

Outline

SH (Co)algebras

SH Morphisms

Operads and Algebras

Why operads?

Symmetric sequences

Monoidal structures

Monoidal structures

Operads as
monoids

....

Left $\mathcal{P}\text{-modules}$

 $\mathcal{P}\text{-algebras}$

Morphisms

Examples

Operads for SH

algebras

Co-rings over operads

An *operad* is a monoid in $(\mathbf{Sym}, \circ, \mathcal{J})$.

So, an operad is a symmetric sequence \mathcal{P} , equipped with a unit

$$\eta: \mathcal{J} \to \mathcal{P}$$

and an associative, unital multiplication

$$\gamma: \mathcal{P} \circ \mathcal{P} \to \mathcal{P}$$
.

Left P-modules

Outline

SH (Co)algebras

SH Morphisms

Operads and Algebras

Why operads?
Symmetric
sequences
Monoidal structures

Monoidal structures

Operads as monoids

Deft ⊕-modules

 \mathcal{P} -algebras

Morphisms

Examples

Operads for SH algebras

Co-rings over operads

Let \mathcal{P} be an operad. A *left* \mathcal{P} -module is a symmetric sequence, \mathcal{M} , along with an associative, unital structure morphism,

$$\lambda: \mathcal{P} \circ \mathcal{M} \to \mathcal{M}$$
.

This is equivalent to a collection of associative, equivariant, unital morphisms,

$$\mathfrak{P}(k) \otimes \mathfrak{M}(n_1) \otimes \cdots \otimes \mathfrak{M}(n_k) \to \mathfrak{M}(n)$$

where
$$n = \sum_{j} n_{j}$$
.

\mathcal{P} -algebras

Outline

SH (Co)algebras

SH Morphisms

Operads and Algebras

Why operads? Symmetric sequences Monoidal structures

Monoidal structures

Operads as monoids

Left \mathcal{P} -modules

 $\triangleright \mathcal{P}$ -algebras

Morphisms

Examples

Operads for SH

algebras

Co-rings over operads

A \mathcal{P} -algebra is a left \mathcal{P} -module, concentrated in arity zero, that is, a dg module A along with a sequence of associative, equivariant, unital structure maps,

$$\lambda_n: \mathfrak{P}(n) \otimes A^{\otimes n} \to A.$$

We denote the category of \mathcal{P} -algebras and their morphisms by \mathcal{P} - \mathbf{Alg} .

Morphisms

Outline

SH (Co)algebras

SH Morphisms

Operads and Algebras

Why operads?
Symmetric
sequences
Monoidal structures

Monoidal structures

Operads as monoids

Left $\mathcal{P}\text{-modules}$

 $\mathcal{P}\text{-algebras}$

▶ Morphisms

Examples

operads

Operads for SH algebras

Co-rings over

Let A_1,A_2 be \mathcal{P} -algebras. A map $f:A_1\to A_2$ is a morphism of \mathcal{P} -algebras if

$$\begin{array}{c|c}
\mathcal{P}(n) \otimes A_1^{\otimes n} & \xrightarrow{\lambda} A_1 \\
\downarrow^{1 \otimes f^{\otimes n}} & & \downarrow^f \\
\mathcal{P}(n) \otimes A_2^{\otimes n} & \xrightarrow{\lambda} A_2
\end{array}$$

commutes for all n.

This means that f must commute *strictly* with the operations parametrized by \mathcal{P} .

Examples

Outline \mathcal{J} ; algebras are dg modules SH (Co)algebras C; algebras are dg commutative, associative algebras SH Morphisms A; algebras are dg associative algebras Operads and \mathcal{L} ; algebras are dg Lie algebras Algebras Why operads? Symmetric sequences Monoidal structures Monoidal structures Operads as monoids Left \mathcal{P} -modules \mathcal{P} -algebras Morphisms Operads for SH algebras Co-rings over operads

Operads for SH algebras

Outline

SH (Co)algebras

SH Morphisms

Operads and Algebras

Why operads?
Symmetric sequences

Monoidal structures

Monoidal structures

Operads as monoids

Left \mathcal{P} -modules

 \mathcal{P} -algebras

Morphisms

Examples

Operads for SH

□ algebras

Co-rings over operads

From now on, R is a field of characteristic zero.

Ginzburg and Kapranov (1994) provide a construction on a quadratic operad \mathcal{P} that yields an operad for SH \mathcal{P} -algebras:

$$oldsymbol{\Omega}(\mathcal{P}^\perp)$$

where \mathcal{P}^{\perp} is the *quadratic dual cooperad* to \mathcal{P} , and Ω is the operadic cobar construction.

lf

$$\mathbf{\Omega}(\mathbb{P}^{\perp}) \xrightarrow{\simeq} \mathbb{P}$$

then we say that \mathcal{P} is *Koszul*.

Again, morphisms must commute with operations on the nose.

Outline

SH (Co)algebras

SH Morphisms

Operads and Algebras

Co-rings over
operads

Composition over an operad

Co-rings

 $\operatorname{\mathcal{K}-morphisms}$

Composition of

 $\mathcal{K} ext{-morphisms}$

Co-ring resolutions

Koszul resolutions SH \mathcal{P} -algebra

category

Co-rings over operads

Composition over an operad

Outline

SH (Co)algebras

SH Morphisms

Operads and Algebras

Co-rings over operads

Composition over

> an operad

Co-rings

 $\operatorname{\mathcal{K}-morphisms}$

Composition of

 $\mathcal{K} ext{-morphisms}$

Co-ring resolutions

Koszul resolutions SH 𝒫-algebra

category

Let \mathcal{L} be a left \mathcal{P} -module with structure morphism

$$\lambda: \mathcal{P} \circ \mathcal{L} \to \mathcal{L},$$

and let $\mathcal R$ be a right $\mathcal P$ -module with structure morphism

$$\rho: \mathcal{R} \circ \mathcal{P} \to \mathcal{R}$$
.

Define $\mathcal{R} \circ_{\mathcal{P}} \mathcal{L}$ to be the coequalizer of $\rho \circ 1$ and $1 \circ \lambda$:

$$\mathcal{R}\circ\mathcal{P}\circ\mathcal{L}\rightrightarrows\mathcal{R}\circ\mathcal{L}\to\mathcal{R}\circ_{\mathcal{P}}\mathcal{L}.$$

Then $-\circ_{\mathcal{P}}$ — makes \mathcal{P} - \mathbf{Mod} - \mathcal{P} into a monoidal category with unit \mathcal{P} .

Co-rings

Outline

SH (Co)algebras

SH Morphisms

Operads and Algebras

Co-rings over operads

Composition over an operad

Co-rings

 $\mathcal{K} ext{-morphisms}$

Composition of

 $\mathcal{K} ext{-morphisms}$

Co-ring resolutions

Koszul resolutions SH \mathcal{P} -algebra

category

A *co-ring* over \mathcal{P} is a comonoid in the monoidal category $(\mathcal{P}\text{-}\mathbf{Mod}\text{-}\mathcal{P}, \circ_{\mathcal{P}}, \mathcal{P}).$

Thus, a \mathcal{P} -co-ring consists of a triple $(\mathcal{K}, \psi, \varepsilon)$, where

$$\psi: \mathcal{K} \to \mathcal{K} \circ_{\mathcal{P}} \mathcal{K}$$

and

$$\varepsilon: \mathcal{K} \to \mathcal{P}$$

are morphisms of \mathcal{P} -bimodules, and ψ is coassociative and counital with respect to ε .

\mathcal{K} -morphisms

Outline

SH (Co)algebras

SH Morphisms

Operads and Algebras

Co-rings over operads

Composition over an operad

Co-rings

 $\triangleright \mathcal{K}$ -morphisms

Composition of \mathcal{K} -morphisms

Co-ring resolutions

 $\begin{array}{l} {\sf Koszul \ resolutions} \\ {\sf SH \ \mathcal{P}-algebra} \end{array}$

category

Let \mathcal{K} be a \mathcal{P} -co-ring. Let $A_1, A_2 \in \mathcal{P}$ - \mathbf{Alg} . A \mathcal{K} -morphism is a morphism of left \mathcal{P} -modules,

$$f: \mathcal{K} \circ_{\mathcal{P}} A_1 \to A_2$$

Composition of \mathcal{K} -morphisms

Outline

SH (Co)algebras

SH Morphisms

Operads and Algebras

Co-rings over operads

Composition over an operad

Co-rings

 \mathcal{K} -morphisms
Composition of \mathcal{K} -morphisms
Co-ring resolutions
Koszul resolutions

SH P-algebra

category

Composition of \mathcal{K} -morphisms is accomplished via the diagonal in \mathcal{K} .

Let $f: \mathcal{K} \circ_{\mathcal{P}} A_1 \to A_2$, $g: \mathcal{K} \circ_{\mathcal{P}} A_2 \to A_3$ be \mathcal{K} -morphisms. gf is the composite:

$$\mathcal{K} \circ_{\mathcal{P}} A_1 \to \mathcal{K} \circ_{\mathcal{P}} \mathcal{K} \circ_{\mathcal{P}} A_1 \xrightarrow{1 \circ f} \mathcal{K} \circ_{\mathcal{P}} A_2 \xrightarrow{g} A_3.$$

The category of \mathcal{P} -algebras and \mathcal{K} -morphisms is denoted \mathcal{P} - $\mathbf{Alg}_{\mathcal{K}}$.

Co-ring resolutions

Outline

SH (Co)algebras

SH Morphisms

Operads and Algebras

Co-rings over operads

Composition over an operad

Co-rings

 $\mathcal{K}\text{-morphisms}$

Composition of

 $\mathcal{K} ext{-morphisms}$

Co-ring

> resolutions

Koszul resolutions SH ூ-algebra category Let \mathcal{P} be a quadratic Koszul operad. Let $\mathcal{P}' = \Omega(\mathcal{P}^{\perp})$.

Since \mathcal{P} is Koszul, $\mathcal{P}' \xrightarrow{\cong} \mathcal{P}$ is an *operad* resolution, hence controls SH \mathcal{P} -algebras.

To describe SH \mathcal{P} -morphisms, we want a co-ring resolution of \mathcal{P}' .

Koszul resolutions

Outline

SH (Co)algebras

SH Morphisms

Operads and Algebras

Co-rings over operads

Composition over an operad

Co-rings

 $\mathcal{K} ext{-morphisms}$

Composition of

 $\operatorname{\mathcal{K}-morphisms}$

Co-ring resolutions

Koszul > resolutions

SH P-algebra

category

Let \mathcal{P} be a quadratic operad.

- \Box The Koszul construction for \mathcal{P} is "well-known" (as a bimodule).
- \square The Koszul construction for $\mathfrak{P}'=\Omega(\mathfrak{P}^{\perp})$ is defined as follows:

$$K(\mathfrak{P}') = \mathfrak{P}' \circ \mathfrak{P}^{\perp} \circ \mathfrak{P}'$$

- \square differential: $d_{\Omega} + d_L + d_R$,
- □ diagonal:

$$\mathcal{P}^{\perp} \to \mathcal{P}^{\perp} \circ \mathcal{P}^{\perp} \cong \mathcal{P}^{\perp} \circ \mathcal{J} \circ \mathcal{P}^{\perp} \to \mathcal{P}^{\perp} \circ \mathcal{P}' \circ \mathcal{P}^{\perp} \to K(\mathcal{P}') \circ_{\mathcal{P}'} K(\mathcal{P}').$$

Proposition 2. $K(\mathcal{P}')$ is a \mathcal{P}' -co-ring resolution of \mathcal{P}' .

SH P-algebra category

Outline

SH (Co)algebras

SH Morphisms

Operads and Algebras

Co-rings over operads

Composition over an operad

Co-rings

 $\mathcal{K} ext{-morphisms}$

Composition of

 $\operatorname{\mathcal{K}-morphisms}$

Co-ring resolutions

Koszul resolutions SH \mathcal{P} -algebra

Theorem 3. (Hess-S.) Let \mathcal{P} be a quadratic Koszul operad. Then the category of SH \mathcal{P} -algebras and SH morphisms is equivalent to the category of $\Omega(\mathcal{P}^{\perp})$ -algebras and $K(\Omega(\mathcal{P}^{\perp}))$ -morphisms.

Remark 4. The result holds for coalgebras, as well as categories of strict coalgebras and SH morphisms.