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� Joint work with Kathryn Hess (EPFL).
� Strong homotopy algebras are complicated structures that

are best defined by operads.
� Operads do not describe the desired morphisms of SH

algebras.
� Co-rings over operads “free” the morphisms from the

algebras.
� The Koszul resolution of an operad, if it exists, is a co-ring

that describes SH morphisms.
� Applies to SH associative, Lie, Poisson, Gerstenhaber ...

algebras. (Any algebra described by a “quadratic Koszul
operad”.)
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� ΩX – space of based loops on pointed space X
� C∗(ΩX) – strongly homotopy-associative algebra
� Notice: H∗(ΩX) is a strictly associative algebra
� We will work for the moment with graded coalgebras.
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Let (C, ∂) be a coaugmented dg coalgebra over a commutative
ring R.

� The cobar construction on C is the associative algebra:

ΩC = (T (s−1C̄), d).

� C̄ is the cokernel of the coaugmentation R→ C
� d is the sum of derivations d1 and d2
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Let V = s−1C̄.

� d1 : V → V is the derivation defined by

d1(s−1c) = −s−1∂(c)

� d2 : V → V ⊗2 is the derivation defined by

d2(s−1c) = (s−1)⊗2Δ̄(c)

where Δ̄ is the reduced diagonal on C.
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� Given (TV, d1 + d2), one may define

– C = R⊕ sV
– ∂ = sd1s

−1

– Δ̄ = s⊗2d2s
−1

� (d1 + d2)2 = 0 implies that

– d2
1 = 0 ⇒ ∂ is a differential

– d1d2 + d2d1 = 0 ⇒ ∂ is a coderivation
– d2

2 = 0 ⇒ Δ̄ is associative.

� Therefore, (C,Δ, ∂) is a dg coalgebra.
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� Consider (TV, d), where d is the sum of derivations,

d1 + d2 + d3 + · · · ,

such that di : V → V ⊗i.
� Now, d2 = 0 does not imply that d2

2 = 0; instead,

d2
2 + d1d2 + d2d1 = 0.

� Set C = R⊕ sV , and, for i ≥ 2, define Δi = s⊗idis
−1.

� Δ2 is a homotopy-associative diagonal, with homotopy Δ3.

Definition 1. (C, ∂, {Δi}) is a strongly homotopy-associative
coalgebra.



Remarks

Outline

SH (Co)algebras

Canonical example

The cobar
construction

Cobar differential
Reversing the
process

SH associative
coalgebras

� Remarks
Example:
Adams-Hilton model

Lie algebras

SH Lie algebras

Example: Sullivan
model

SH Morphisms

Operads and
Algebras

Co-rings over
operads

10 / 39

� (H∗(C), H∗(Δ2)) is an associative coalgebra.
� We write Ω̃C = (TV, d).
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Let X be a CW-complex.

� The Adams-Hilton model for C∗(ΩX) is a
quasi-isomorphism of algebras of the form,

(TV, d) �−→ C∗(ΩX).

� The SH coalgebra W (X) := s(V, d1) may be identified with
the cellular complex of X.

� H∗(W (X)) ∼= H∗(X) (in fact, as coalgebras, if H∗(X;R) is
torsion-free).
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� We identify a dg Lie algebra (L, ∂) with its
Chevalley-Eilenberg complex, C(L, ∂).

� C(L, ∂) = (Γ(sL), d1 + d2)

– Γ(sL) is the co-free symmetric co-algebra over sL.
– d1 and d2 are coderivations, and

d2(sx · sy) = ±s[x, y] ∀x, y ∈ L.

� Given (Γ(V ), d1 + d2), we set L = s−1V , and define

[x, y] = ±s−1d2(sx · sy).

� (L, ∂) is a dg Lie algebra; the bracket satisfies the Jacobi
identity because d2

2 = 0.
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� Dualize: C∗(L) = (∧V, d1 + d2), V = (sL)�.
� ∧V is the free graded commutative algebra on V .
� By considering cdga’s of the form,

(∧V, d1 + d2 + d3 + · · · )

we get strong homotopy Lie algebras.
� d2 dualizes to define an anti-commutative bracket that

satisfies the Jacobi identity up to a null homotopy, provided
by d3.

� We write C̃∗(L) = (∧V, d).
� Data: (L, ∂, {[ ]i}i≥2), where [ ]i is an n-ary bracket of

degree i− 2.
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Let X be a simply connected space.

� Let APL(X) be the commutative dga of polynomial forms
on X.

� The Sullivan model is a quasi-isomorphism,

(∧V, d) �−→ APL(X)

where d is nilpotent in a certain sense.
� L = (s−1V )� is a SH Lie algebra.
� H∗(L) ∼= π∗(ΩX) ⊗Q . (Cartan-Serre, Milnor-Moore,

Sullivan)
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Let SHC be the full subcategory of DGA consisting of all
objects of the form (TV, d).

� C1
SH−−→ C2 is really Ω̃(C1)

DGA−−−→ Ω̃(C2).
� Get a sequence of morphisms ϕi : C1 → C⊗i

2 of degree i− 1.

� In particular, ϕ2 : Δϕ1 � (ϕ1 ⊗ ϕ1)Δ.



Examples

Outline

SH (Co)algebras

SH Morphisms

The SH coalgebra
category

� Examples

Another example:
Adams-Hilton and
Adams cobar
The SH Lie algebra
category

Example

Operads and
Algebras

Co-rings over
operads

17 / 39

1. Co-unit of cobar-bar adjunction yields

Ω(BΩ̃C) �−→ Ω̃C.

⇒ every SH coalgebra is weakly SH equivalent to a strict
coalgebra (Stasheff 1963).

2. Let C be a strict coalgebra. The unit of the cobar-bar
adjunction,

C
�−→ BΩC,

is a coalgebra morphism with an SH splitting:

ΩBΩC → ΩC.
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Lifting (up to homotopy) the Adams cobar equivalence

ΩC∗(X) �−→ C∗(ΩX)

through the Adams-Hilton equivalence

(TV, d) �−→ C∗(ΩX)

yields an SH quasi-isomorphism,

C∗(X) �−−→
SH

W∗(X).
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Let SHL be the full subcategory of CDGAop consisting of all
objects of the form (∧V, d).

� L1
SH−−→ L2 is really C̃∗(L2)

CDGA−−−−→ C̃∗(L1).
� Get a sequence of morphisms ϕi : L⊗i

1 → L2 of degree i− 1.
� In particular,

ϕ2 : [, ](ϕ1 ⊗ ϕ1) � ϕ1[, ].
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Let X be simply connected, finite type.

� Let (LX , ∂) be the Quillen dg Lie algebra model for X.
� C∗(LX) is a model for APL(X).
� By lifting, we obtain

C∗(LX) �−→ (∧V, d),

where (∧V, d) is any Sullivan model for APL(X).
� Set L = (s−1V )�; recall that L is an SH Lie algebra. So

L
�−−→

SH
LX .
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� SH coalgebras and SH Lie algebras are easy to describe via
their “standard” resolutions (cobar and Chevalley-Eilenberg,
respectively).

� other types of algebras are of interest: for example, SH
Gerstenhaber or SH Poisson; they often have standard
resolutions, but these get complicated.

� need a way of parametrizing (and keeping books on)
sequences of n-ary operations.

� operads are (one) solution: they are “analytic monads”.
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� Let Sym be the category of symmetric sequences of dg
modules.

� Objects are sequences of chain complexes,
X = X(0),X(1),X(2), . . ., such that X(n) is a right
Σn-module.

� n is the arity of X(n).
� Morphisms are sequences of Σn-equivariant chain maps.
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� The graded tensor product of symmetric sequences X and Y

is defined by

(X � Y)(n) =
∐

i+j=n

(X(i) ⊗ Y(j)) ⊗Σi×Σj R[Σn]

with action induced by natural right action of Σn on R[Σn].
� Y�m(n) is a left Σm, right Σn module.
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� The composition product (Joyal) is defined by

(X ◦ Y)(n) =
∐
m≥0

X(m) ⊗Σm

(
Y�m (n)

)

with unit J given by

J(n) =
{
R if n = 1,
O otherwise.

� This is the formula that you get for the coefficients in the
composition of two formal power series.
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An operad is a monoid in (Sym, ◦, J).
So, an operad is a symmetric sequence P, equipped with a unit

η : J → P

and an associative, unital multiplication

γ : P ◦ P → P.
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Let P be an operad. A left P-module is a symmetric sequence,
M, along with an associative, unital structure morphism,

λ : P ◦ M → M.

This is equivalent to a collection of associative, equivariant,
unital morphisms,

P(k) ⊗ M(n1) ⊗ · · · ⊗ M(nk) → M(n)

where n =
∑

j nj .
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A P-algebra is a left P-module, concentrated in arity zero,
that is, a dg module A along with a sequence of associative,
equivariant, unital structure maps,

λn : P(n) ⊗A⊗n → A.

We denote the category of P-algebras and their morphisms by
P-Alg.
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Let A1, A2 be P-algebras. A map f : A1 → A2 is a morphism of
P-algebras if

P(n) ⊗A⊗n
1

λ ��

1⊗f⊗n

��

A1

f

��
P(n) ⊗A⊗n

2 λ
�� A2

commutes for all n.
This means that f must commute strictly with the operations
parametrized by P.
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� J; algebras are dg modules
� C; algebras are dg commutative, associative algebras
� A; algebras are dg associative algebras
� L; algebras are dg Lie algebras
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From now on, R is a field of characteristic zero.
Ginzburg and Kapranov (1994) provide a construction on a
quadratic operad P that yields an operad for SH P-algebras:

Ω(P⊥)

where P⊥ is the quadratic dual cooperad to P, and Ω is the
operadic cobar construction.
If

Ω(P⊥) �−→ P

then we say that P is Koszul.
Again, morphisms must commute with operations on the nose.
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Let L be a left P-module with structure morphism

λ : P ◦ L → L,

and let R be a right P-module with structure morphism

ρ : R ◦ P → R.

Define R ◦P L to be the coequalizer of ρ ◦ 1 and 1 ◦ λ:

R ◦ P ◦ L ⇒ R ◦ L → R ◦P L.

Then − ◦P − makes P-Mod-P into a monoidal category with
unit P.
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A co-ring over P is a comonoid in the monoidal category
(P-Mod-P, ◦P,P).
Thus, a P-co-ring consists of a triple (K, ψ, ε), where

ψ : K → K ◦P K

and
ε : K → P

are morphisms of P-bimodules, and ψ is coassociative and
counital with respect to ε.
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Let K be a P-co-ring. Let A1, A2 ∈ P-Alg.
A K-morphism is a morphism of left P-modules,

f : K ◦PA1 → A2
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Composition of K-morphisms is accomplished via the diagonal in
K.
Let f : K ◦PA1 → A2, g : K ◦PA2 → A3 be K-morphisms.
gf is the composite:

K ◦PA1 → K ◦P K ◦PA1
1◦f−−→ K ◦PA2

g−→ A3.

The category of P-algebras and K-morphisms is denoted
P-AlgK.
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Let P be a quadratic Koszul operad. Let P′ = Ω(P⊥).
Since P is Koszul, P′ �−→ P is an operad resolution, hence
controls SH P-algebras.
To describe SH P-morphisms, we want a co-ring resolution of P′.
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Let P be a quadratic operad.

� The Koszul construction for P is “well-known” (as a
bimodule).

� The Koszul construction for P′ = Ω(P⊥) is defined as
follows:

K(P′) = P′ ◦ P⊥ ◦ P′

� differential: dΩ + dL + dR,
� diagonal:

P⊥ → P⊥◦P⊥ ∼= P⊥◦J◦P⊥ → P⊥◦P′◦P⊥ → K(P′)◦P′K(P′).

Proposition 2. K(P′) is a P′-co-ring resolution of P′.
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Theorem 3. (Hess-S.) Let P be a quadratic Koszul operad.
Then the category of SH P-algebras and SH morphisms is
equivalent to the category of Ω(P⊥)-algebras and
K(Ω(P⊥))-morphisms.

Remark 4. The result holds for coalgebras, as well as categories
of strict coalgebras and SH morphisms.
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